aboutsummaryrefslogtreecommitdiff
path: root/core/mach-o.h
blob: c596842423ba20754b2a6fa5db708545f693b2b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
/**
 * Mach-O format.
 */

#ifndef MACH_O_H
#define MACH_O_H

#ifdef __APPLE__
#include "mach-o/reloc.h"
#include "mach-o/nlist.h"
#else

#pragma pack(push, 1)

/* 
 * These structures and constants were taken from
 * xnu-1699.24.8/EXTERNAL_HEADERS/mach-o/loader.h,
 * http://opensource.apple.com/source/cctools/cctools-758/include/mach/machine.h,
 * xnu-1699.24.8/osfmk/mach/vm_prot.h
 */

typedef int32_t cpu_type_t;
typedef int32_t cpu_subtype_t;

/*
 * Capability bits used in the definition of cpu_type.
 */
#define	CPU_ARCH_MASK	0xff000000		/* mask for architecture bits */
#define CPU_ARCH_ABI64	0x01000000		/* 64 bit ABI */

/*
 *	Machine types known by all.
 */

#define CPU_TYPE_ANY		((cpu_type_t) -1)

#define CPU_TYPE_VAX		((cpu_type_t) 1)
#define CPU_TYPE_ROMP		((cpu_type_t) 2)
#define CPU_TYPE_NS32032	((cpu_type_t) 4)
#define CPU_TYPE_NS32332    ((cpu_type_t) 5)
#define	CPU_TYPE_MC680x0	((cpu_type_t) 6)
#define CPU_TYPE_I386		((cpu_type_t) 7)
#define CPU_TYPE_X86_64		((cpu_type_t) (CPU_TYPE_I386 | CPU_ARCH_ABI64))
#define CPU_TYPE_MIPS		((cpu_type_t) 8)
#define CPU_TYPE_NS32532    ((cpu_type_t) 9)
#define CPU_TYPE_HPPA       ((cpu_type_t) 11)
#define CPU_TYPE_ARM		((cpu_type_t) 12)
#define CPU_TYPE_MC88000	((cpu_type_t) 13)
#define CPU_TYPE_SPARC		((cpu_type_t) 14)
#define CPU_TYPE_I860		((cpu_type_t) 15) // big-endian
#define	CPU_TYPE_I860_LITTLE	((cpu_type_t) 16) // little-endian
#define CPU_TYPE_RS6000		((cpu_type_t) 17)
#define CPU_TYPE_MC98000	((cpu_type_t) 18)
#define CPU_TYPE_POWERPC	((cpu_type_t) 18)
#define CPU_TYPE_POWERPC64	((cpu_type_t)(CPU_TYPE_POWERPC | CPU_ARCH_ABI64))

/*
 *	Machine subtypes (these are defined here, instead of in a machine
 *	dependent directory, so that any program can get all definitions
 *	regardless of where is it compiled).
 */

/*
 * Capability bits used in the definition of cpu_subtype.
 */
#define CPU_SUBTYPE_MASK       0xff000000      /* mask for feature flags */
#define CPU_SUBTYPE_LIB64      0x80000000      /* 64 bit libraries */


/*
 *	Object files that are hand-crafted to run on any
 *	implementation of an architecture are tagged with
 *	CPU_SUBTYPE_MULTIPLE.  This functions essentially the same as
 *	the "ALL" subtype of an architecture except that it allows us
 *	to easily find object files that may need to be modified
 *	whenever a new implementation of an architecture comes out.
 *
 *	It is the responsibility of the implementor to make sure the
 *	software handles unsupported implementations elegantly.
 */
#define	CPU_SUBTYPE_MULTIPLE	((cpu_subtype_t) -1)


/*
 *	VAX subtypes (these do *not* necessary conform to the actual cpu
 *	ID assigned by DEC available via the SID register).
 */

#define	CPU_SUBTYPE_VAX_ALL	((cpu_subtype_t) 0) 
#define CPU_SUBTYPE_VAX780	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_VAX785	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_VAX750	((cpu_subtype_t) 3)
#define CPU_SUBTYPE_VAX730	((cpu_subtype_t) 4)
#define CPU_SUBTYPE_UVAXI	((cpu_subtype_t) 5)
#define CPU_SUBTYPE_UVAXII	((cpu_subtype_t) 6)
#define CPU_SUBTYPE_VAX8200	((cpu_subtype_t) 7)
#define CPU_SUBTYPE_VAX8500	((cpu_subtype_t) 8)
#define CPU_SUBTYPE_VAX8600	((cpu_subtype_t) 9)
#define CPU_SUBTYPE_VAX8650	((cpu_subtype_t) 10)
#define CPU_SUBTYPE_VAX8800	((cpu_subtype_t) 11)
#define CPU_SUBTYPE_UVAXIII	((cpu_subtype_t) 12)

/*
 *	ROMP subtypes.
 */

#define	CPU_SUBTYPE_RT_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_RT_PC	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_RT_APC	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_RT_135	((cpu_subtype_t) 3)

/*
 *	32032/32332/32532 subtypes.
 */

#define	CPU_SUBTYPE_MMAX_ALL	    ((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MMAX_DPC	    ((cpu_subtype_t) 1)	/* 032 CPU */
#define CPU_SUBTYPE_SQT		    ((cpu_subtype_t) 2)
#define CPU_SUBTYPE_MMAX_APC_FPU    ((cpu_subtype_t) 3)	/* 32081 FPU */
#define CPU_SUBTYPE_MMAX_APC_FPA    ((cpu_subtype_t) 4)	/* Weitek FPA */
#define CPU_SUBTYPE_MMAX_XPC	    ((cpu_subtype_t) 5)	/* 532 CPU */

/*
 *	I386 subtypes.
 */

#define CPU_SUBTYPE_INTEL(f, m)	((cpu_subtype_t) (f) + ((m) << 4))

#define CPU_SUBTYPE_INTEL_FAMILY(x)	((x) & 15)
#define CPU_SUBTYPE_INTEL_FAMILY_MAX	15

#define CPU_SUBTYPE_INTEL_MODEL(x)	((x) >> 4)
#define CPU_SUBTYPE_INTEL_MODEL_ALL	0


/*
 *	Mips subtypes.
 */

#define	CPU_SUBTYPE_MIPS_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MIPS_R2300	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MIPS_R2600	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_MIPS_R2800	((cpu_subtype_t) 3)
#define CPU_SUBTYPE_MIPS_R2000a	((cpu_subtype_t) 4)

/*
 * 	680x0 subtypes
 *
 * The subtype definitions here are unusual for historical reasons.
 * NeXT used to consider 68030 code as generic 68000 code.  For
 * backwards compatability:
 * 
 *	CPU_SUBTYPE_MC68030 symbol has been preserved for source code
 *	compatability.
 *
 *	CPU_SUBTYPE_MC680x0_ALL has been defined to be the same
 *	subtype as CPU_SUBTYPE_MC68030 for binary comatability.
 *
 *	CPU_SUBTYPE_MC68030_ONLY has been added to allow new object
 *	files to be tagged as containing 68030-specific instructions.
 */

#define	CPU_SUBTYPE_MC680x0_ALL		((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC68030		((cpu_subtype_t) 1) /* compat */
#define CPU_SUBTYPE_MC68040		((cpu_subtype_t) 2) 
#define	CPU_SUBTYPE_MC68030_ONLY	((cpu_subtype_t) 3)

/*
 *	HPPA subtypes for Hewlett-Packard HP-PA family of
 *	risc processors. Port by NeXT to 700 series. 
 */

#define	CPU_SUBTYPE_HPPA_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_HPPA_7100		((cpu_subtype_t) 0) /* compat */
#define CPU_SUBTYPE_HPPA_7100LC		((cpu_subtype_t) 1)

/* 
 * 	Acorn subtypes - Acorn Risc Machine port done by
 *		Olivetti System Software Laboratory
 */

#define	CPU_SUBTYPE_ARM_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_ARM_A500_ARCH	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_ARM_A500		((cpu_subtype_t) 2)
#define CPU_SUBTYPE_ARM_A440		((cpu_subtype_t) 3)
#define CPU_SUBTYPE_ARM_M4		((cpu_subtype_t) 4)
#define CPU_SUBTYPE_ARM_V4T		((cpu_subtype_t) 5)
#define CPU_SUBTYPE_ARM_V6		((cpu_subtype_t) 6)
#define CPU_SUBTYPE_ARM_V5TEJ		((cpu_subtype_t) 7)
#define CPU_SUBTYPE_ARM_XSCALE		((cpu_subtype_t) 8)

/*
 *	MC88000 subtypes
 */
#define	CPU_SUBTYPE_MC88000_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MMAX_JPC	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC88100	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC88110	((cpu_subtype_t) 2)

/*
 *	MC98000 (PowerPC) subtypes
 */
#define	CPU_SUBTYPE_MC98000_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MC98601	((cpu_subtype_t) 1)

/*
 *	I860 subtypes
 */
#define CPU_SUBTYPE_I860_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_I860_860	((cpu_subtype_t) 1)

/*
 * 	I860 subtypes for NeXT-internal backwards compatability.
 *	These constants will be going away.  DO NOT USE THEM!!!
 */
#define CPU_SUBTYPE_LITTLE_ENDIAN	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_BIG_ENDIAN		((cpu_subtype_t) 1)

/*
 *	I860_LITTLE subtypes
 */
#define	CPU_SUBTYPE_I860_LITTLE_ALL	((cpu_subtype_t) 0)
#define	CPU_SUBTYPE_I860_LITTLE	((cpu_subtype_t) 1)

/*
 *	RS6000 subtypes
 */
#define	CPU_SUBTYPE_RS6000_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_RS6000	((cpu_subtype_t) 1)

/*
 *	Sun4 subtypes - port done at CMU
 */
#define	CPU_SUBTYPE_SUN4_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_SUN4_260		((cpu_subtype_t) 1)
#define CPU_SUBTYPE_SUN4_110		((cpu_subtype_t) 2)

#define	CPU_SUBTYPE_SPARC_ALL		((cpu_subtype_t) 0)

/*
 *      PowerPC subtypes
 */
#define CPU_SUBTYPE_POWERPC_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_POWERPC_601		((cpu_subtype_t) 1)
#define CPU_SUBTYPE_POWERPC_602		((cpu_subtype_t) 2)
#define CPU_SUBTYPE_POWERPC_603		((cpu_subtype_t) 3)
#define CPU_SUBTYPE_POWERPC_603e	((cpu_subtype_t) 4)
#define CPU_SUBTYPE_POWERPC_603ev	((cpu_subtype_t) 5)
#define CPU_SUBTYPE_POWERPC_604		((cpu_subtype_t) 6)
#define CPU_SUBTYPE_POWERPC_604e	((cpu_subtype_t) 7)
#define CPU_SUBTYPE_POWERPC_620		((cpu_subtype_t) 8)
#define CPU_SUBTYPE_POWERPC_750		((cpu_subtype_t) 9)
#define CPU_SUBTYPE_POWERPC_7400	((cpu_subtype_t) 10)
#define CPU_SUBTYPE_POWERPC_7450	((cpu_subtype_t) 11)
#define CPU_SUBTYPE_POWERPC_970		((cpu_subtype_t) 100)

/*
 * VEO subtypes
 * Note: the CPU_SUBTYPE_VEO_ALL will likely change over time to be defined as
 * one of the specific subtypes.
 */
#define CPU_SUBTYPE_VEO_1	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_VEO_2	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_VEO_3	((cpu_subtype_t) 3)
#define CPU_SUBTYPE_VEO_4	((cpu_subtype_t) 4)
#define CPU_SUBTYPE_VEO_ALL	CPU_SUBTYPE_VEO_2

/*
 *	Machine subtypes (these are defined here, instead of in a machine
 *	dependent directory, so that any program can get all definitions
 *	regardless of where is it compiled).
 */

/*
 *	Object files that are hand-crafted to run on any
 *	implementation of an architecture are tagged with
 *	CPU_SUBTYPE_MULTIPLE.  This functions essentially the same as
 *	the "ALL" subtype of an architecture except that it allows us
 *	to easily find object files that may need to be modified
 *	whenever a new implementation of an architecture comes out.
 *
 *	It is the responsibility of the implementor to make sure the
 *	software handles unsupported implementations elegantly.
 */
#define	CPU_SUBTYPE_MULTIPLE		((cpu_subtype_t) -1)
#define CPU_SUBTYPE_LITTLE_ENDIAN	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_BIG_ENDIAN		((cpu_subtype_t) 1)

/*
 *     Machine threadtypes.
 *     This is none - not defined - for most machine types/subtypes.
 */
#define CPU_THREADTYPE_NONE		((cpu_threadtype_t) 0)

/*
 *	VAX subtypes (these do *not* necessary conform to the actual cpu
 *	ID assigned by DEC available via the SID register).
 */

#define	CPU_SUBTYPE_VAX_ALL	((cpu_subtype_t) 0) 
#define CPU_SUBTYPE_VAX780	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_VAX785	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_VAX750	((cpu_subtype_t) 3)
#define CPU_SUBTYPE_VAX730	((cpu_subtype_t) 4)
#define CPU_SUBTYPE_UVAXI	((cpu_subtype_t) 5)
#define CPU_SUBTYPE_UVAXII	((cpu_subtype_t) 6)
#define CPU_SUBTYPE_VAX8200	((cpu_subtype_t) 7)
#define CPU_SUBTYPE_VAX8500	((cpu_subtype_t) 8)
#define CPU_SUBTYPE_VAX8600	((cpu_subtype_t) 9)
#define CPU_SUBTYPE_VAX8650	((cpu_subtype_t) 10)
#define CPU_SUBTYPE_VAX8800	((cpu_subtype_t) 11)
#define CPU_SUBTYPE_UVAXIII	((cpu_subtype_t) 12)

/*
 * 	680x0 subtypes
 *
 * The subtype definitions here are unusual for historical reasons.
 * NeXT used to consider 68030 code as generic 68000 code.  For
 * backwards compatability:
 * 
 *	CPU_SUBTYPE_MC68030 symbol has been preserved for source code
 *	compatability.
 *
 *	CPU_SUBTYPE_MC680x0_ALL has been defined to be the same
 *	subtype as CPU_SUBTYPE_MC68030 for binary comatability.
 *
 *	CPU_SUBTYPE_MC68030_ONLY has been added to allow new object
 *	files to be tagged as containing 68030-specific instructions.
 */

#define	CPU_SUBTYPE_MC680x0_ALL		((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC68030		((cpu_subtype_t) 1) /* compat */
#define CPU_SUBTYPE_MC68040		((cpu_subtype_t) 2) 
#define	CPU_SUBTYPE_MC68030_ONLY	((cpu_subtype_t) 3)

/*
 *	I386 subtypes
 */

#define	CPU_SUBTYPE_I386_ALL			CPU_SUBTYPE_INTEL(3, 0)
#define CPU_SUBTYPE_386					CPU_SUBTYPE_INTEL(3, 0)
#define CPU_SUBTYPE_486					CPU_SUBTYPE_INTEL(4, 0)
#define CPU_SUBTYPE_486SX				CPU_SUBTYPE_INTEL(4, 8)	// 8 << 4 = 128
#define CPU_SUBTYPE_586					CPU_SUBTYPE_INTEL(5, 0)
#define CPU_SUBTYPE_PENT	CPU_SUBTYPE_INTEL(5, 0)
#define CPU_SUBTYPE_PENTPRO	CPU_SUBTYPE_INTEL(6, 1)
#define CPU_SUBTYPE_PENTII_M3	CPU_SUBTYPE_INTEL(6, 3)
#define CPU_SUBTYPE_PENTII_M5	CPU_SUBTYPE_INTEL(6, 5)
#define CPU_SUBTYPE_CELERON				CPU_SUBTYPE_INTEL(7, 6)
#define CPU_SUBTYPE_CELERON_MOBILE		CPU_SUBTYPE_INTEL(7, 7)
#define CPU_SUBTYPE_PENTIUM_3			CPU_SUBTYPE_INTEL(8, 0)
#define CPU_SUBTYPE_PENTIUM_3_M			CPU_SUBTYPE_INTEL(8, 1)
#define CPU_SUBTYPE_PENTIUM_3_XEON		CPU_SUBTYPE_INTEL(8, 2)
#define CPU_SUBTYPE_PENTIUM_M			CPU_SUBTYPE_INTEL(9, 0)
#define CPU_SUBTYPE_PENTIUM_4			CPU_SUBTYPE_INTEL(10, 0)
#define CPU_SUBTYPE_PENTIUM_4_M			CPU_SUBTYPE_INTEL(10, 1)
#define CPU_SUBTYPE_ITANIUM				CPU_SUBTYPE_INTEL(11, 0)
#define CPU_SUBTYPE_ITANIUM_2			CPU_SUBTYPE_INTEL(11, 1)
#define CPU_SUBTYPE_XEON				CPU_SUBTYPE_INTEL(12, 0)
#define CPU_SUBTYPE_XEON_MP				CPU_SUBTYPE_INTEL(12, 1)

#define CPU_SUBTYPE_INTEL_FAMILY(x)	((x) & 15)
#define CPU_SUBTYPE_INTEL_FAMILY_MAX	15

#define CPU_SUBTYPE_INTEL_MODEL(x)	((x) >> 4)
#define CPU_SUBTYPE_INTEL_MODEL_ALL	0

/*
 *	X86 subtypes.
 */

#define CPU_SUBTYPE_X86_ALL		((cpu_subtype_t)3)
#define CPU_SUBTYPE_X86_64_ALL		((cpu_subtype_t)3)
#define CPU_SUBTYPE_X86_ARCH1		((cpu_subtype_t)4)


#define CPU_THREADTYPE_INTEL_HTT	((cpu_threadtype_t) 1)

/*
 *	Mips subtypes.
 */

#define	CPU_SUBTYPE_MIPS_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MIPS_R2300	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MIPS_R2600	((cpu_subtype_t) 2)
#define CPU_SUBTYPE_MIPS_R2800	((cpu_subtype_t) 3)
#define CPU_SUBTYPE_MIPS_R2000a	((cpu_subtype_t) 4)	/* pmax */
#define CPU_SUBTYPE_MIPS_R2000	((cpu_subtype_t) 5)
#define CPU_SUBTYPE_MIPS_R3000a	((cpu_subtype_t) 6)	/* 3max */
#define CPU_SUBTYPE_MIPS_R3000	((cpu_subtype_t) 7)

/*
 *	MC98000 (PowerPC) subtypes
 */
#define	CPU_SUBTYPE_MC98000_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MC98601	((cpu_subtype_t) 1)

/*
 *	HPPA subtypes for Hewlett-Packard HP-PA family of
 *	risc processors. Port by NeXT to 700 series. 
 */

#define	CPU_SUBTYPE_HPPA_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_HPPA_7100		((cpu_subtype_t) 0) /* compat */
#define CPU_SUBTYPE_HPPA_7100LC		((cpu_subtype_t) 1)

/*
 *	MC88000 subtypes.
 */
#define	CPU_SUBTYPE_MC88000_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_MC88100	((cpu_subtype_t) 1)
#define CPU_SUBTYPE_MC88110	((cpu_subtype_t) 2)

/*
 *	SPARC subtypes
 */
#define	CPU_SUBTYPE_SPARC_ALL		((cpu_subtype_t) 0)

/*
 *	I860 subtypes
 */
#define CPU_SUBTYPE_I860_ALL	((cpu_subtype_t) 0)
#define CPU_SUBTYPE_I860_860	((cpu_subtype_t) 1)

/*
 *	PowerPC subtypes
 */
#define CPU_SUBTYPE_POWERPC_ALL		((cpu_subtype_t) 0)
#define CPU_SUBTYPE_POWERPC_601		((cpu_subtype_t) 1)
#define CPU_SUBTYPE_POWERPC_602		((cpu_subtype_t) 2)
#define CPU_SUBTYPE_POWERPC_603		((cpu_subtype_t) 3)
#define CPU_SUBTYPE_POWERPC_603e	((cpu_subtype_t) 4)
#define CPU_SUBTYPE_POWERPC_603ev	((cpu_subtype_t) 5)
#define CPU_SUBTYPE_POWERPC_604		((cpu_subtype_t) 6)
#define CPU_SUBTYPE_POWERPC_604e	((cpu_subtype_t) 7)
#define CPU_SUBTYPE_POWERPC_620		((cpu_subtype_t) 8)
#define CPU_SUBTYPE_POWERPC_750		((cpu_subtype_t) 9)
#define CPU_SUBTYPE_POWERPC_7400	((cpu_subtype_t) 10)
#define CPU_SUBTYPE_POWERPC_7450	((cpu_subtype_t) 11)
#define CPU_SUBTYPE_POWERPC_970		((cpu_subtype_t) 100)

/*
 *      CPU families (sysctl hw.cpufamily)
 *
 * NB: the encodings of the CPU families are intentionally arbitrary.
 * There is no ordering, and you should never try to deduce whether
 * or not some feature is available based on the family.
 * Use feature flags (eg, hw.optional.altivec) to test for optional
 * functionality.
 */
#define CPUFAMILY_UNKNOWN    0
#define CPUFAMILY_POWERPC_G3 0xcee41549
#define CPUFAMILY_POWERPC_G4 0x77c184ae
#define CPUFAMILY_POWERPC_G5 0xed76d8aa
#define CPUFAMILY_INTEL_6_14 0x73d67300  /* Intel Core Solo and Intel Core Duo (32-bit Pentium-M with SSE3) */
#define CPUFAMILY_INTEL_6_15 0x426f69ef  /* Intel Core 2 */

/*
 * The 32-bit mach header appears at the very beginning of the object file for
 * 32-bit architectures.
 */
struct mach_header {
	uint32_t	magic;		/* mach magic number identifier */
	cpu_type_t	cputype;	/* cpu specifier */
	cpu_subtype_t	cpusubtype;	/* machine specifier */
	uint32_t	filetype;	/* type of file */
	uint32_t	ncmds;		/* number of load commands */
	uint32_t	sizeofcmds;	/* the size of all the load commands */
	uint32_t	flags;		/* flags */
};

/* Constant for the magic field of the mach_header (32-bit architectures) */
#define	MH_MAGIC	0xfeedface	/* the mach magic number */
#define MH_CIGAM	0xcefaedfe	/* NXSwapInt(MH_MAGIC) */

/*
 * The 64-bit mach header appears at the very beginning of object files for
 * 64-bit architectures.
 */
struct mach_header_64 {
	uint32_t	magic;		/* mach magic number identifier */
	cpu_type_t	cputype;	/* cpu specifier */
	cpu_subtype_t	cpusubtype;	/* machine specifier */
	uint32_t	filetype;	/* type of file */
	uint32_t	ncmds;		/* number of load commands */
	uint32_t	sizeofcmds;	/* the size of all the load commands */
	uint32_t	flags;		/* flags */
	uint32_t	reserved;	/* reserved */
};

/* Constant for the magic field of the mach_header_64 (64-bit architectures) */
#define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
#define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */

/*
 * The layout of the file depends on the filetype.  For all but the MH_OBJECT
 * file type the segments are padded out and aligned on a segment alignment
 * boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
 * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
 * of their first segment.
 * 
 * The file type MH_OBJECT is a compact format intended as output of the
 * assembler and input (and possibly output) of the link editor (the .o
 * format).  All sections are in one unnamed segment with no segment padding. 
 * This format is used as an executable format when the file is so small the
 * segment padding greatly increases its size.
 *
 * The file type MH_PRELOAD is an executable format intended for things that
 * are not executed under the kernel (proms, stand alones, kernels, etc).  The
 * format can be executed under the kernel but may demand paged it and not
 * preload it before execution.
 *
 * A core file is in MH_CORE format and can be any in an arbritray legal
 * Mach-O file.
 *
 * Constants for the filetype field of the mach_header
 */
#define	MH_OBJECT	0x1		/* relocatable object file */
#define	MH_EXECUTE	0x2		/* demand paged executable file */
#define	MH_FVMLIB	0x3		/* fixed VM shared library file */
#define	MH_CORE		0x4		/* core file */
#define	MH_PRELOAD	0x5		/* preloaded executable file */
#define	MH_DYLIB	0x6		/* dynamically bound shared library */
#define	MH_DYLINKER	0x7		/* dynamic link editor */
#define	MH_BUNDLE	0x8		/* dynamically bound bundle file */
#define	MH_DYLIB_STUB	0x9		/* shared library stub for static */
					/*  linking only, no section contents */
#define	MH_DSYM		0xa		/* companion file with only debug */
					/*  sections */
#define	MH_KEXT_BUNDLE	0xb		/* x86_64 kexts */

/* Constants for the flags field of the mach_header */
#define	MH_NOUNDEFS	0x1		/* the object file has no undefined
					   references */
#define	MH_INCRLINK	0x2		/* the object file is the output of an
					   incremental link against a base file
					   and can't be link edited again */
#define MH_DYLDLINK	0x4		/* the object file is input for the
					   dynamic linker and can't be staticly
					   link edited again */
#define MH_BINDATLOAD	0x8		/* the object file's undefined
					   references are bound by the dynamic
					   linker when loaded. */
#define MH_PREBOUND	0x10		/* the file has its dynamic undefined
					   references prebound. */
#define MH_SPLIT_SEGS	0x20		/* the file has its read-only and
					   read-write segments split */
#define MH_LAZY_INIT	0x40		/* the shared library init routine is
					   to be run lazily via catching memory
					   faults to its writeable segments
					   (obsolete) */
#define MH_TWOLEVEL	0x80		/* the image is using two-level name
					   space bindings */
#define MH_FORCE_FLAT	0x100		/* the executable is forcing all images
					   to use flat name space bindings */
#define MH_NOMULTIDEFS	0x200		/* this umbrella guarantees no multiple
					   defintions of symbols in its
					   sub-images so the two-level namespace
					   hints can always be used. */
#define MH_NOFIXPREBINDING 0x400	/* do not have dyld notify the
					   prebinding agent about this
					   executable */
#define MH_PREBINDABLE  0x800           /* the binary is not prebound but can
					   have its prebinding redone. only used
                                           when MH_PREBOUND is not set. */
#define MH_ALLMODSBOUND 0x1000		/* indicates that this binary binds to
                                           all two-level namespace modules of
					   its dependent libraries. only used
					   when MH_PREBINDABLE and MH_TWOLEVEL
					   are both set. */ 
#define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into
					    sub-sections via symbols for dead
					    code stripping */
#define MH_CANONICAL    0x4000		/* the binary has been canonicalized
					   via the unprebind operation */
#define MH_WEAK_DEFINES	0x8000		/* the final linked image contains
					   external weak symbols */
#define MH_BINDS_TO_WEAK 0x10000	/* the final linked image uses
					   weak symbols */

#define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks 
					   in the task will be given stack
					   execution privilege.  Only used in
					   MH_EXECUTE filetypes. */
#define	MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs.  When
					     linking against a dylib that
					     has this bit set, the static linker
					     will automatically not create a
					     LC_LOAD_DYLIB load command to the
					     dylib if no symbols are being
					     referenced from the dylib. */
#define MH_ROOT_SAFE 0x40000           /* When this bit is set, the binary 
					  declares it is safe for use in
					  processes with uid zero */
                                         
#define MH_SETUID_SAFE 0x80000         /* When this bit is set, the binary 
					  declares it is safe for use in
					  processes when issetugid() is true */

#define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib, 
					  the static linker does not need to
					  examine dependent dylibs to see
					  if any are re-exported */
#define	MH_PIE 0x200000			/* When this bit is set, the OS will
					   load the main executable at a
					   random address.  Only used in
					   MH_EXECUTE filetypes. */
#define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type 
					   S_THREAD_LOCAL_VARIABLES */
#define MH_NO_HEAP_EXECUTION 0x1000000	/* When this bit is set, the OS will
					   run the main executable with
					   a non-executable heap even on
					   platforms (e.g. i386) that don't
					   require it. Only used in MH_EXECUTE
					   filetypes. */

/*
 * The load commands directly follow the mach_header.  The total size of all
 * of the commands is given by the sizeofcmds field in the mach_header.  All
 * load commands must have as their first two fields cmd and cmdsize.  The cmd
 * field is filled in with a constant for that command type.  Each command type
 * has a structure specifically for it.  The cmdsize field is the size in bytes
 * of the particular load command structure plus anything that follows it that
 * is a part of the load command (i.e. section structures, strings, etc.).  To
 * advance to the next load command the cmdsize can be added to the offset or
 * pointer of the current load command.  The cmdsize for 32-bit architectures
 * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
 * of 8 bytes (these are forever the maximum alignment of any load commands).
 * The padded bytes must be zero.  All tables in the object file must also
 * follow these rules so the file can be memory mapped.  Otherwise the pointers
 * to these tables will not work well or at all on some machines.  With all
 * padding zeroed like objects will compare byte for byte.
 */
struct load_command {
	uint32_t cmd;		/* type of load command */
	uint32_t cmdsize;	/* total size of command in bytes */
};

/*
 * After MacOS X 10.1 when a new load command is added that is required to be
 * understood by the dynamic linker for the image to execute properly the
 * LC_REQ_DYLD bit will be or'ed into the load command constant.  If the dynamic
 * linker sees such a load command it it does not understand will issue a
 * "unknown load command required for execution" error and refuse to use the
 * image.  Other load commands without this bit that are not understood will
 * simply be ignored.
 */
#define LC_REQ_DYLD 0x80000000

/* Constants for the cmd field of all load commands, the type */
#define	LC_SEGMENT	0x1	/* segment of this file to be mapped */
#define	LC_SYMTAB	0x2	/* link-edit stab symbol table info */
#define	LC_SYMSEG	0x3	/* link-edit gdb symbol table info (obsolete) */
#define	LC_THREAD	0x4	/* thread */
#define	LC_UNIXTHREAD	0x5	/* unix thread (includes a stack) */
#define	LC_LOADFVMLIB	0x6	/* load a specified fixed VM shared library */
#define	LC_IDFVMLIB	0x7	/* fixed VM shared library identification */
#define	LC_IDENT	0x8	/* object identification info (obsolete) */
#define LC_FVMFILE	0x9	/* fixed VM file inclusion (internal use) */
#define LC_PREPAGE      0xa     /* prepage command (internal use) */
#define	LC_DYSYMTAB	0xb	/* dynamic link-edit symbol table info */
#define	LC_LOAD_DYLIB	0xc	/* load a dynamically linked shared library */
#define	LC_ID_DYLIB	0xd	/* dynamically linked shared lib ident */
#define LC_LOAD_DYLINKER 0xe	/* load a dynamic linker */
#define LC_ID_DYLINKER	0xf	/* dynamic linker identification */
#define	LC_PREBOUND_DYLIB 0x10	/* modules prebound for a dynamically */
				/*  linked shared library */
#define	LC_ROUTINES	0x11	/* image routines */
#define	LC_SUB_FRAMEWORK 0x12	/* sub framework */
#define	LC_SUB_UMBRELLA 0x13	/* sub umbrella */
#define	LC_SUB_CLIENT	0x14	/* sub client */
#define	LC_SUB_LIBRARY  0x15	/* sub library */
#define	LC_TWOLEVEL_HINTS 0x16	/* two-level namespace lookup hints */
#define	LC_PREBIND_CKSUM  0x17	/* prebind checksum */

/*
 * load a dynamically linked shared library that is allowed to be missing
 * (all symbols are weak imported).
 */
#define	LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD)

#define	LC_SEGMENT_64	0x19	/* 64-bit segment of this file to be
				   mapped */
#define	LC_ROUTINES_64	0x1a	/* 64-bit image routines */
#define LC_UUID		0x1b	/* the uuid */
#define LC_RPATH       (0x1c | LC_REQ_DYLD)    /* runpath additions */
#define LC_CODE_SIGNATURE 0x1d	/* local of code signature */
#define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */
#define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */
#define	LC_LAZY_LOAD_DYLIB 0x20	/* delay load of dylib until first use */
#define	LC_ENCRYPTION_INFO 0x21	/* encrypted segment information */
#define	LC_DYLD_INFO 	0x22	/* compressed dyld information */
#define	LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD)	/* compressed dyld information only */
#define	LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */
#define LC_VERSION_MIN_MACOSX 0x24   /* build for MacOSX min OS version */
#define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */
#define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */
#define LC_DYLD_ENVIRONMENT 0x27 /* string for dyld to treat
				    like environment variable */
#define LC_MAIN (0x28|LC_REQ_DYLD) /* replacement for LC_UNIXTHREAD */
#define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
#define LC_SOURCE_VERSION 0x2A /* source version used to build binary */
#define LC_DYLIB_CODE_SIGN_DRS 0x2B /* Code signing DRs copied from linked dylibs */

/*
 *	Types defined:
 *
 *	vm_prot_t		VM protection values.
 */

typedef int		vm_prot_t;

/*
 *	Protection values, defined as bits within the vm_prot_t type
 */

#define	VM_PROT_NONE	((vm_prot_t) 0x00)

#define VM_PROT_READ	((vm_prot_t) 0x01)	/* read permission */
#define VM_PROT_WRITE	((vm_prot_t) 0x02)	/* write permission */
#define VM_PROT_EXECUTE	((vm_prot_t) 0x04)	/* execute permission */

/*
 *	The default protection for newly-created virtual memory
 */

#define VM_PROT_DEFAULT	(VM_PROT_READ|VM_PROT_WRITE)

/*
 *	The maximum privileges possible, for parameter checking.
 */

#define VM_PROT_ALL	(VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)

/*
 *	An invalid protection value.
 *	Used only by memory_object_lock_request to indicate no change
 *	to page locks.  Using -1 here is a bad idea because it
 *	looks like VM_PROT_ALL and then some.
 */

#define VM_PROT_NO_CHANGE	((vm_prot_t) 0x08)

/* 
 *      When a caller finds that he cannot obtain write permission on a
 *      mapped entry, the following flag can be used.  The entry will
 *      be made "needs copy" effectively copying the object (using COW),
 *      and write permission will be added to the maximum protections
 *      for the associated entry. 
 */        

#define VM_PROT_COPY            ((vm_prot_t) 0x10)


/*
 *	Another invalid protection value.
 *	Used only by memory_object_data_request upon an object
 *	which has specified a copy_call copy strategy. It is used
 *	when the kernel wants a page belonging to a copy of the
 *	object, and is only asking the object as a result of
 *	following a shadow chain. This solves the race between pages
 *	being pushed up by the memory manager and the kernel
 *	walking down the shadow chain.
 */

#define VM_PROT_WANTS_COPY	((vm_prot_t) 0x10)

#define PRIVATE
#ifdef PRIVATE
/*
 *	The caller wants this memory region treated as if it had a valid
 *	code signature.
 */

#define VM_PROT_TRUSTED		((vm_prot_t) 0x20)
#endif /* PRIVATE */

/*
 * 	Another invalid protection value.
 *	Indicates that the other protection bits are to be applied as a mask
 *	against the actual protection bits of the map entry.
 */
#define VM_PROT_IS_MASK		((vm_prot_t) 0x40)

/*
 * The segment load command indicates that a part of this file is to be
 * mapped into the task's address space.  The size of this segment in memory,
 * vmsize, maybe equal to or larger than the amount to map from this file,
 * filesize.  The file is mapped starting at fileoff to the beginning of
 * the segment in memory, vmaddr.  The rest of the memory of the segment,
 * if any, is allocated zero fill on demand.  The segment's maximum virtual
 * memory protection and initial virtual memory protection are specified
 * by the maxprot and initprot fields.  If the segment has sections then the
 * section structures directly follow the segment command and their size is
 * reflected in cmdsize.
 */
struct segment_command { /* for 32-bit architectures */
	uint32_t	cmd;		/* LC_SEGMENT */
	uint32_t	cmdsize;	/* includes sizeof section structs */
	char		segname[16];	/* segment name */
	uint32_t	vmaddr;		/* memory address of this segment */
	uint32_t	vmsize;		/* memory size of this segment */
	uint32_t	fileoff;	/* file offset of this segment */
	uint32_t	filesize;	/* amount to map from the file */
	vm_prot_t	maxprot;	/* maximum VM protection */
	vm_prot_t	initprot;	/* initial VM protection */
	uint32_t	nsects;		/* number of sections in segment */
	uint32_t	flags;		/* flags */
};

/*
 * The 64-bit segment load command indicates that a part of this file is to be
 * mapped into a 64-bit task's address space.  If the 64-bit segment has
 * sections then section_64 structures directly follow the 64-bit segment
 * command and their size is reflected in cmdsize.
 */
struct segment_command_64 { /* for 64-bit architectures */
	uint32_t	cmd;		/* LC_SEGMENT_64 */
	uint32_t	cmdsize;	/* includes sizeof section_64 structs */
	char		segname[16];	/* segment name */
	uint64_t	vmaddr;		/* memory address of this segment */
	uint64_t	vmsize;		/* memory size of this segment */
	uint64_t	fileoff;	/* file offset of this segment */
	uint64_t	filesize;	/* amount to map from the file */
	vm_prot_t	maxprot;	/* maximum VM protection */
	vm_prot_t	initprot;	/* initial VM protection */
	uint32_t	nsects;		/* number of sections in segment */
	uint32_t	flags;		/* flags */
};

/* Constants for the flags field of the segment_command */
#define	SG_HIGHVM	0x1	/* the file contents for this segment is for
				   the high part of the VM space, the low part
				   is zero filled (for stacks in core files) */
#define	SG_FVMLIB	0x2	/* this segment is the VM that is allocated by
				   a fixed VM library, for overlap checking in
				   the link editor */
#define	SG_NORELOC	0x4	/* this segment has nothing that was relocated
				   in it and nothing relocated to it, that is
				   it maybe safely replaced without relocation*/
#define SG_PROTECTED_VERSION_1	0x8 /* This segment is protected.  If the
				       segment starts at file offset 0, the
				       first page of the segment is not
				       protected.  All other pages of the
				       segment are protected. */

/*
 * A segment is made up of zero or more sections.  Non-MH_OBJECT files have
 * all of their segments with the proper sections in each, and padded to the
 * specified segment alignment when produced by the link editor.  The first
 * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
 * and load commands of the object file before its first section.  The zero
 * fill sections are always last in their segment (in all formats).  This
 * allows the zeroed segment padding to be mapped into memory where zero fill
 * sections might be. The gigabyte zero fill sections, those with the section
 * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
 * These segments are then placed after all other segments.
 *
 * The MH_OBJECT format has all of its sections in one segment for
 * compactness.  There is no padding to a specified segment boundary and the
 * mach_header and load commands are not part of the segment.
 *
 * Sections with the same section name, sectname, going into the same segment,
 * segname, are combined by the link editor.  The resulting section is aligned
 * to the maximum alignment of the combined sections and is the new section's
 * alignment.  The combined sections are aligned to their original alignment in
 * the combined section.  Any padded bytes to get the specified alignment are
 * zeroed.
 *
 * The format of the relocation entries referenced by the reloff and nreloc
 * fields of the section structure for mach object files is described in the
 * header file <reloc.h>.
 */
struct section { /* for 32-bit architectures */
	char		sectname[16];	/* name of this section */
	char		segname[16];	/* segment this section goes in */
	uint32_t	addr;		/* memory address of this section */
	uint32_t	size;		/* size in bytes of this section */
	uint32_t	offset;		/* file offset of this section */
	uint32_t	align;		/* section alignment (power of 2) */
	uint32_t	reloff;		/* file offset of relocation entries */
	uint32_t	nreloc;		/* number of relocation entries */
	uint32_t	flags;		/* flags (section type and attributes)*/
	uint32_t	reserved1;	/* reserved (for offset or index) */
	uint32_t	reserved2;	/* reserved (for count or sizeof) */
};

struct section_64 { /* for 64-bit architectures */
	char		sectname[16];	/* name of this section */
	char		segname[16];	/* segment this section goes in */
	uint64_t	addr;		/* memory address of this section */
	uint64_t	size;		/* size in bytes of this section */
	uint32_t	offset;		/* file offset of this section */
	uint32_t	align;		/* section alignment (power of 2) */
	uint32_t	reloff;		/* file offset of relocation entries */
	uint32_t	nreloc;		/* number of relocation entries */
	uint32_t	flags;		/* flags (section type and attributes)*/
	uint32_t	reserved1;	/* reserved (for offset or index) */
	uint32_t	reserved2;	/* reserved (for count or sizeof) */
	uint32_t	reserved3;	/* reserved */
};

/*
 * The flags field of a section structure is separated into two parts a section
 * type and section attributes.  The section types are mutually exclusive (it
 * can only have one type) but the section attributes are not (it may have more
 * than one attribute).
 */
#define SECTION_TYPE		 0x000000ff	/* 256 section types */
#define SECTION_ATTRIBUTES	 0xffffff00	/*  24 section attributes */

/* Constants for the type of a section */
#define	S_REGULAR		0x0	/* regular section */
#define	S_ZEROFILL		0x1	/* zero fill on demand section */
#define	S_CSTRING_LITERALS	0x2	/* section with only literal C strings*/
#define	S_4BYTE_LITERALS	0x3	/* section with only 4 byte literals */
#define	S_8BYTE_LITERALS	0x4	/* section with only 8 byte literals */
#define	S_LITERAL_POINTERS	0x5	/* section with only pointers to */
					/*  literals */
/*
 * For the two types of symbol pointers sections and the symbol stubs section
 * they have indirect symbol table entries.  For each of the entries in the
 * section the indirect symbol table entries, in corresponding order in the
 * indirect symbol table, start at the index stored in the reserved1 field
 * of the section structure.  Since the indirect symbol table entries
 * correspond to the entries in the section the number of indirect symbol table
 * entries is inferred from the size of the section divided by the size of the
 * entries in the section.  For symbol pointers sections the size of the entries
 * in the section is 4 bytes and for symbol stubs sections the byte size of the
 * stubs is stored in the reserved2 field of the section structure.
 */
#define	S_NON_LAZY_SYMBOL_POINTERS	0x6	/* section with only non-lazy
						   symbol pointers */
#define	S_LAZY_SYMBOL_POINTERS		0x7	/* section with only lazy symbol
						   pointers */
#define	S_SYMBOL_STUBS			0x8	/* section with only symbol
						   stubs, byte size of stub in
						   the reserved2 field */
#define	S_MOD_INIT_FUNC_POINTERS	0x9	/* section with only function
						   pointers for initialization*/
#define	S_MOD_TERM_FUNC_POINTERS	0xa	/* section with only function
						   pointers for termination */
#define	S_COALESCED			0xb	/* section contains symbols that
						   are to be coalesced */
#define	S_GB_ZEROFILL			0xc	/* zero fill on demand section
						   (that can be larger than 4
						   gigabytes) */
#define	S_INTERPOSING			0xd	/* section with only pairs of
						   function pointers for
						   interposing */
#define	S_16BYTE_LITERALS		0xe	/* section with only 16 byte
						   literals */
#define	S_DTRACE_DOF			0xf	/* section contains 
						   DTrace Object Format */
#define	S_LAZY_DYLIB_SYMBOL_POINTERS	0x10	/* section with only lazy
						   symbol pointers to lazy
						   loaded dylibs */
#define S_THREAD_LOCAL_REGULAR	0x11  /* template of initial
						   values for TLVs */
#define S_THREAD_LOCAL_ZEROFILL	0x12  /* template of initial
						   values for TLVs */
#define S_THREAD_LOCAL_VARIABLES	0x13  /* TLV descriptors */
#define S_THREAD_LOCAL_VARIABLE_POINTERS	0x14  /* pointers to TLV descriptors */
#define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS	0x15  /* functions to call to initialize TLV values */

#define SECTION_ATTRIBUTES_USR	 0xff000000	/* User setable attributes */
#define S_ATTR_PURE_INSTRUCTIONS 0x80000000	/* section contains only true
						   machine instructions */
#define S_ATTR_NO_TOC 		 0x40000000	/* section contains coalesced
						   symbols that are not to be
						   in a ranlib table of
						   contents */
#define S_ATTR_STRIP_STATIC_SYMS 0x20000000	/* ok to strip static symbols
						   in this section in files
						   with the MH_DYLDLINK flag */
#define S_ATTR_NO_DEAD_STRIP	 0x10000000	/* no dead stripping */
#define S_ATTR_LIVE_SUPPORT	 0x08000000	/* blocks are live if they
						   reference live blocks */
#define S_ATTR_SELF_MODIFYING_CODE 0x04000000	/* Used with i386 code stubs
						   written on by dyld */
/*
 * If a segment contains any sections marked with S_ATTR_DEBUG then all
 * sections in that segment must have this attribute.  No section other than
 * a section marked with this attribute may reference the contents of this
 * section.  A section with this attribute may contain no symbols and must have
 * a section type S_REGULAR.  The static linker will not copy section contents
 * from sections with this attribute into its output file.  These sections
 * generally contain DWARF debugging info.
 */ 
#define	S_ATTR_DEBUG		 0x02000000	/* a debug section */
#define SECTION_ATTRIBUTES_SYS	 0x00ffff00	/* system setable attributes */
#define S_ATTR_SOME_INSTRUCTIONS 0x00000400	/* section contains some
						   machine instructions */
#define S_ATTR_EXT_RELOC	 0x00000200	/* section has external
						   relocation entries */
#define S_ATTR_LOC_RELOC	 0x00000100	/* section has local
						   relocation entries */


/*
 * The names of segments and sections in them are mostly meaningless to the
 * link-editor.  But there are few things to support traditional UNIX
 * executables that require the link-editor and assembler to use some names
 * agreed upon by convention.
 *
 * The initial protection of the "__TEXT" segment has write protection turned
 * off (not writeable).
 *
 * The link-editor will allocate common symbols at the end of the "__common"
 * section in the "__DATA" segment.  It will create the section and segment
 * if needed.
 */

/* The currently known segment names and the section names in those segments */

#define	SEG_PAGEZERO	"__PAGEZERO"	/* the pagezero segment which has no */
					/* protections and catches NULL */
					/* references for MH_EXECUTE files */


#define	SEG_TEXT	"__TEXT"	/* the tradition UNIX text segment */
#define	SECT_TEXT	"__text"	/* the real text part of the text */
					/* section no headers, and no padding */
#define SECT_FVMLIB_INIT0 "__fvmlib_init0"	/* the fvmlib initialization */
						/*  section */
#define SECT_FVMLIB_INIT1 "__fvmlib_init1"	/* the section following the */
					        /*  fvmlib initialization */
						/*  section */

#define	SEG_DATA	"__DATA"	/* the tradition UNIX data segment */
#define	SECT_DATA	"__data"	/* the real initialized data section */
					/* no padding, no bss overlap */
#define	SECT_BSS	"__bss"		/* the real uninitialized data section*/
					/* no padding */
#define SECT_COMMON	"__common"	/* the section common symbols are */
					/* allocated in by the link editor */

#define	SEG_OBJC	"__OBJC"	/* objective-C runtime segment */
#define SECT_OBJC_SYMBOLS "__symbol_table"	/* symbol table */
#define SECT_OBJC_MODULES "__module_info"	/* module information */
#define SECT_OBJC_STRINGS "__selector_strs"	/* string table */
#define SECT_OBJC_REFS "__selector_refs"	/* string table */

#define	SEG_ICON	 "__ICON"	/* the icon segment */
#define	SECT_ICON_HEADER "__header"	/* the icon headers */
#define	SECT_ICON_TIFF   "__tiff"	/* the icons in tiff format */

#define	SEG_LINKEDIT	"__LINKEDIT"	/* the segment containing all structs */
					/* created and maintained by the link */
					/* editor.  Created with -seglinkedit */
					/* option to ld(1) for MH_EXECUTE and */
					/* FVMLIB file types only */

#define SEG_UNIXSTACK	"__UNIXSTACK"	/* the unix stack segment */

#define SEG_IMPORT	"__IMPORT"	/* the segment for the self (dyld) */
					/* modifying code stubs that has read, */
					/* write and execute permissions */

/*
 * Thread commands contain machine-specific data structures suitable for
 * use in the thread state primitives.  The machine specific data structures
 * follow the struct thread_command as follows.
 * Each flavor of machine specific data structure is preceded by an unsigned
 * long constant for the flavor of that data structure, an uint32_t
 * that is the count of longs of the size of the state data structure and then
 * the state data structure follows.  This triple may be repeated for many
 * flavors.  The constants for the flavors, counts and state data structure
 * definitions are expected to be in the header file <machine/thread_status.h>.
 * These machine specific data structures sizes must be multiples of
 * 4 bytes  The cmdsize reflects the total size of the thread_command
 * and all of the sizes of the constants for the flavors, counts and state
 * data structures.
 *
 * For executable objects that are unix processes there will be one
 * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor.
 * This is the same as a LC_THREAD, except that a stack is automatically
 * created (based on the shell's limit for the stack size).  Command arguments
 * and environment variables are copied onto that stack.
 */

struct thread_command {
	uint32_t	cmd;		/* LC_THREAD or  LC_UNIXTHREAD */
	uint32_t	cmdsize;	/* total size of this command */
	//uint32_t flavor;		/* flavor of thread state */
	//uint32_t count;			/* count of longs in thread state */
	/* struct XXX_thread_state state   thread state for this flavor */
	/* ... */
};

#define ARM_THREAD_STATE        1

/*
 * THREAD_STATE_FLAVOR_LIST 0
 * 	these are the supported flavors
 */
#define x86_THREAD_STATE32		1
#define x86_FLOAT_STATE32		2
#define x86_EXCEPTION_STATE32		3
#define x86_THREAD_STATE64		4
#define x86_FLOAT_STATE64		5
#define x86_EXCEPTION_STATE64		6
#define x86_THREAD_STATE		7
#define x86_FLOAT_STATE			8
#define x86_EXCEPTION_STATE		9
#define x86_DEBUG_STATE32		10
#define x86_DEBUG_STATE64		11
#define x86_DEBUG_STATE			12
#define THREAD_STATE_NONE		13
/* 15 and 16 are used for the internal x86_SAVED_STATE flavours */
#define x86_AVX_STATE32			16
#define x86_AVX_STATE64			17

struct x86_thread_state32_t {
	uint32_t __eax;
	uint32_t __ebx;
	uint32_t __ecx;
	uint32_t __edx;
	uint32_t __edi;
	uint32_t __esi;
	uint32_t __ebp;
	uint32_t __esp;
	uint32_t __ss;
	uint32_t __eflags;
	uint32_t __eip;
	uint32_t __cs;
	uint32_t __ds;
	uint32_t __es;
	uint32_t __fs;
	uint32_t __gs;
};

struct x86_thread_state64_t {
	uint64_t __rax;
	uint64_t __rbx;
	uint64_t __rcx;
	uint64_t __rdx;
	uint64_t __rdi;
	uint64_t __rsi;
	uint64_t __rbp;
	uint64_t __rsp;
	uint64_t __r8;
	uint64_t __r9;
	uint64_t __r10;
	uint64_t __r11;
	uint64_t __r12;
	uint64_t __r13;
	uint64_t __r14;
	uint64_t __r15;
	uint64_t __rip;
	uint64_t __rflags;
	uint64_t __cs;
	uint64_t __fs;
	uint64_t __gs;
};

struct x86_state_hdr_t {
	int	flavor;
	int	count;
};

/*
 * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
 * "stab" style symbol table information as described in the header files
 * <nlist.h> and <stab.h>.
 */
struct symtab_command {
	uint32_t	cmd;		/* LC_SYMTAB */
	uint32_t	cmdsize;	/* sizeof(struct symtab_command) */
	uint32_t	symoff;		/* symbol table offset */
	uint32_t	nsyms;		/* number of symbol table entries */
	uint32_t	stroff;		/* string table offset */
	uint32_t	strsize;	/* string table size in bytes */
};

/*
 * Format of a symbol table entry of a Mach-O file for 32-bit architectures.
 * Modified from the BSD format.  The modifications from the original format
 * were changing n_other (an unused field) to n_sect and the addition of the
 * N_SECT type.  These modifications are required to support symbols in a larger
 * number of sections not just the three sections (text, data and bss) in a BSD
 * file.
 */
struct nlist {
	union {
		int32_t n_strx;	/* index into the string table */
	} n_un;
	uint8_t n_type;		/* type flag, see below */
	uint8_t n_sect;		/* section number or NO_SECT */
	int16_t n_desc;		/* see <mach-o/stab.h> */
	uint32_t n_value;	/* value of this symbol (or stab offset) */
};

/*
 * This is the symbol table entry structure for 64-bit architectures.
 */
struct nlist_64 {
    union {
        uint32_t  n_strx; /* index into the string table */
    } n_un;
    uint8_t n_type;        /* type flag, see below */
    uint8_t n_sect;        /* section number or NO_SECT */
    uint16_t n_desc;       /* see <mach-o/stab.h> */
    uint64_t n_value;      /* value of this symbol (or stab offset) */
};

/*
 * Symbols with a index into the string table of zero (n_un.n_strx == 0) are
 * defined to have a null, "", name.  Therefore all string indexes to non null
 * names must not have a zero string index.  This is bit historical information
 * that has never been well documented.
 */

/*
 * The n_type field really contains four fields:
 *	unsigned char N_STAB:3,
 *		      N_PEXT:1,
 *		      N_TYPE:3,
 *		      N_EXT:1;
 * which are used via the following masks.
 */
#define	N_STAB	0xe0  /* if any of these bits set, a symbolic debugging entry */
#define	N_PEXT	0x10  /* private external symbol bit */
#define	N_TYPE	0x0e  /* mask for the type bits */
#define	N_EXT	0x01  /* external symbol bit, set for external symbols */

/*
 * Only symbolic debugging entries have some of the N_STAB bits set and if any
 * of these bits are set then it is a symbolic debugging entry (a stab).  In
 * which case then the values of the n_type field (the entire field) are given
 * in <mach-o/stab.h>
 */

/*
 * Values for N_TYPE bits of the n_type field.
 */
#define	N_UNDF	0x0		/* undefined, n_sect == NO_SECT */
#define	N_ABS	0x2		/* absolute, n_sect == NO_SECT */
#define	N_SECT	0xe		/* defined in section number n_sect */
#define	N_PBUD	0xc		/* prebound undefined (defined in a dylib) */
#define N_INDR	0xa		/* indirect */

/* 
 * If the type is N_INDR then the symbol is defined to be the same as another
 * symbol.  In this case the n_value field is an index into the string table
 * of the other symbol's name.  When the other symbol is defined then they both
 * take on the defined type and value.
 */

/*
 * If the type is N_SECT then the n_sect field contains an ordinal of the
 * section the symbol is defined in.  The sections are numbered from 1 and 
 * refer to sections in order they appear in the load commands for the file
 * they are in.  This means the same ordinal may very well refer to different
 * sections in different files.
 *
 * The n_value field for all symbol table entries (including N_STAB's) gets
 * updated by the link editor based on the value of it's n_sect field and where
 * the section n_sect references gets relocated.  If the value of the n_sect 
 * field is NO_SECT then it's n_value field is not changed by the link editor.
 */
#define	NO_SECT		0	/* symbol is not in any section */
#define MAX_SECT	255	/* 1 thru 255 inclusive */

/*
 * Common symbols are represented by undefined (N_UNDF) external (N_EXT) types
 * who's values (n_value) are non-zero.  In which case the value of the n_value
 * field is the size (in bytes) of the common symbol.  The n_sect field is set
 * to NO_SECT.  The alignment of a common symbol may be set as a power of 2
 * between 2^1 and 2^15 as part of the n_desc field using the macros below. If
 * the alignment is not set (a value of zero) then natural alignment based on
 * the size is used.
 */
#define GET_COMM_ALIGN(n_desc) (((n_desc) >> 8) & 0x0f)
#define SET_COMM_ALIGN(n_desc,align) \
    (n_desc) = (((n_desc) & 0xf0ff) | (((align) & 0x0f) << 8))

/*
 * To support the lazy binding of undefined symbols in the dynamic link-editor,
 * the undefined symbols in the symbol table (the nlist structures) are marked
 * with the indication if the undefined reference is a lazy reference or
 * non-lazy reference.  If both a non-lazy reference and a lazy reference is
 * made to the same symbol the non-lazy reference takes precedence.  A reference
 * is lazy only when all references to that symbol are made through a symbol
 * pointer in a lazy symbol pointer section.
 *
 * The implementation of marking nlist structures in the symbol table for
 * undefined symbols will be to use some of the bits of the n_desc field as a
 * reference type.  The mask REFERENCE_TYPE will be applied to the n_desc field
 * of an nlist structure for an undefined symbol to determine the type of
 * undefined reference (lazy or non-lazy).
 *
 * The constants for the REFERENCE FLAGS are propagated to the reference table
 * in a shared library file.  In that case the constant for a defined symbol,
 * REFERENCE_FLAG_DEFINED, is also used.
 */
/* Reference type bits of the n_desc field of undefined symbols */
#define REFERENCE_TYPE				0x7
/* types of references */
#define REFERENCE_FLAG_UNDEFINED_NON_LAZY		0
#define REFERENCE_FLAG_UNDEFINED_LAZY			1
#define REFERENCE_FLAG_DEFINED				2
#define REFERENCE_FLAG_PRIVATE_DEFINED			3
#define REFERENCE_FLAG_PRIVATE_UNDEFINED_NON_LAZY	4
#define REFERENCE_FLAG_PRIVATE_UNDEFINED_LAZY		5

/*
 * To simplify stripping of objects that use are used with the dynamic link
 * editor, the static link editor marks the symbols defined an object that are
 * referenced by a dynamicly bound object (dynamic shared libraries, bundles).
 * With this marking strip knows not to strip these symbols.
 */
#define REFERENCED_DYNAMICALLY	0x0010

/*
 * For images created by the static link editor with the -twolevel_namespace
 * option in effect the flags field of the mach header is marked with
 * MH_TWOLEVEL.  And the binding of the undefined references of the image are
 * determined by the static link editor.  Which library an undefined symbol is
 * bound to is recorded by the static linker in the high 8 bits of the n_desc
 * field using the SET_LIBRARY_ORDINAL macro below.  The ordinal recorded
 * references the libraries listed in the Mach-O's LC_LOAD_DYLIB load commands
 * in the order they appear in the headers.   The library ordinals start from 1.
 * For a dynamic library that is built as a two-level namespace image the
 * undefined references from module defined in another use the same nlist struct
 * an in that case SELF_LIBRARY_ORDINAL is used as the library ordinal.  For
 * defined symbols in all images they also must have the library ordinal set to
 * SELF_LIBRARY_ORDINAL.  The EXECUTABLE_ORDINAL refers to the executable
 * image for references from plugins that refer to the executable that loads
 * them.
 * 
 * The DYNAMIC_LOOKUP_ORDINAL is for undefined symbols in a two-level namespace
 * image that are looked up by the dynamic linker with flat namespace semantics.
 * This ordinal was added as a feature in Mac OS X 10.3 by reducing the
 * value of MAX_LIBRARY_ORDINAL by one.  So it is legal for existing binaries
 * or binaries built with older tools to have 0xfe (254) dynamic libraries.  In
 * this case the ordinal value 0xfe (254) must be treated as a library ordinal
 * for compatibility. 
 */
#define GET_LIBRARY_ORDINAL(n_desc) (((n_desc) >> 8) & 0xff)
#define SET_LIBRARY_ORDINAL(n_desc,ordinal) \
	(n_desc) = (((n_desc) & 0x00ff) | (((ordinal) & 0xff) << 8))
#define SELF_LIBRARY_ORDINAL 0x0
#define MAX_LIBRARY_ORDINAL 0xfd
#define DYNAMIC_LOOKUP_ORDINAL 0xfe
#define EXECUTABLE_ORDINAL 0xff

/*
 * The bit 0x0020 of the n_desc field is used for two non-overlapping purposes
 * and has two different symbolic names, N_NO_DEAD_STRIP and N_DESC_DISCARDED.
 */

/*
 * The N_NO_DEAD_STRIP bit of the n_desc field only ever appears in a 
 * relocatable .o file (MH_OBJECT filetype). And is used to indicate to the
 * static link editor it is never to dead strip the symbol.
 */
#define N_NO_DEAD_STRIP 0x0020 /* symbol is not to be dead stripped */

/*
 * The N_DESC_DISCARDED bit of the n_desc field never appears in linked image.
 * But is used in very rare cases by the dynamic link editor to mark an in
 * memory symbol as discared and longer used for linking.
 */
#define N_DESC_DISCARDED 0x0020	/* symbol is discarded */

/*
 * The N_WEAK_REF bit of the n_desc field indicates to the dynamic linker that
 * the undefined symbol is allowed to be missing and is to have the address of
 * zero when missing.
 */
#define N_WEAK_REF	0x0040 /* symbol is weak referenced */

/*
 * The N_WEAK_DEF bit of the n_desc field indicates to the static and dynamic
 * linkers that the symbol definition is weak, allowing a non-weak symbol to
 * also be used which causes the weak definition to be discared.  Currently this
 * is only supported for symbols in coalesed sections.
 */
#define N_WEAK_DEF	0x0080 /* coalesed symbol is a weak definition */

/*
 * The N_REF_TO_WEAK bit of the n_desc field indicates to the dynamic linker
 * that the undefined symbol should be resolved using flat namespace searching.
 */
#define	N_REF_TO_WEAK	0x0080 /* reference to a weak symbol */

/*
 * The N_ARM_THUMB_DEF bit of the n_desc field indicates that the symbol is
 * a defintion of a Thumb function.
 */
#define N_ARM_THUMB_DEF	0x0008 /* symbol is a Thumb function (ARM) */

/*
 * This is the second set of the symbolic information which is used to support
 * the data structures for the dynamically link editor.
 *
 * The original set of symbolic information in the symtab_command which contains
 * the symbol and string tables must also be present when this load command is
 * present.  When this load command is present the symbol table is organized
 * into three groups of symbols:
 *	local symbols (static and debugging symbols) - grouped by module
 *	defined external symbols - grouped by module (sorted by name if not lib)
 *	undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
 *	     			    and in order the were seen by the static
 *				    linker if MH_BINDATLOAD is set)
 * In this load command there are offsets and counts to each of the three groups
 * of symbols.
 *
 * This load command contains a the offsets and sizes of the following new
 * symbolic information tables:
 *	table of contents
 *	module table
 *	reference symbol table
 *	indirect symbol table
 * The first three tables above (the table of contents, module table and
 * reference symbol table) are only present if the file is a dynamically linked
 * shared library.  For executable and object modules, which are files
 * containing only one module, the information that would be in these three
 * tables is determined as follows:
 * 	table of contents - the defined external symbols are sorted by name
 *	module table - the file contains only one module so everything in the
 *		       file is part of the module.
 *	reference symbol table - is the defined and undefined external symbols
 *
 * For dynamically linked shared library files this load command also contains
 * offsets and sizes to the pool of relocation entries for all sections
 * separated into two groups:
 *	external relocation entries
 *	local relocation entries
 * For executable and object modules the relocation entries continue to hang
 * off the section structures.
 */
struct dysymtab_command {
    uint32_t cmd;	/* LC_DYSYMTAB */
    uint32_t cmdsize;	/* sizeof(struct dysymtab_command) */

    /*
     * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
     * are grouped into the following three groups:
     *    local symbols (further grouped by the module they are from)
     *    defined external symbols (further grouped by the module they are from)
     *    undefined symbols
     *
     * The local symbols are used only for debugging.  The dynamic binding
     * process may have to use them to indicate to the debugger the local
     * symbols for a module that is being bound.
     *
     * The last two groups are used by the dynamic binding process to do the
     * binding (indirectly through the module table and the reference symbol
     * table when this is a dynamically linked shared library file).
     */
    uint32_t ilocalsym;	/* index to local symbols */
    uint32_t nlocalsym;	/* number of local symbols */

    uint32_t iextdefsym;/* index to externally defined symbols */
    uint32_t nextdefsym;/* number of externally defined symbols */

    uint32_t iundefsym;	/* index to undefined symbols */
    uint32_t nundefsym;	/* number of undefined symbols */

    /*
     * For the for the dynamic binding process to find which module a symbol
     * is defined in the table of contents is used (analogous to the ranlib
     * structure in an archive) which maps defined external symbols to modules
     * they are defined in.  This exists only in a dynamically linked shared
     * library file.  For executable and object modules the defined external
     * symbols are sorted by name and is use as the table of contents.
     */
    uint32_t tocoff;	/* file offset to table of contents */
    uint32_t ntoc;	/* number of entries in table of contents */

    /*
     * To support dynamic binding of "modules" (whole object files) the symbol
     * table must reflect the modules that the file was created from.  This is
     * done by having a module table that has indexes and counts into the merged
     * tables for each module.  The module structure that these two entries
     * refer to is described below.  This exists only in a dynamically linked
     * shared library file.  For executable and object modules the file only
     * contains one module so everything in the file belongs to the module.
     */
    uint32_t modtaboff;	/* file offset to module table */
    uint32_t nmodtab;	/* number of module table entries */

    /*
     * To support dynamic module binding the module structure for each module
     * indicates the external references (defined and undefined) each module
     * makes.  For each module there is an offset and a count into the
     * reference symbol table for the symbols that the module references.
     * This exists only in a dynamically linked shared library file.  For
     * executable and object modules the defined external symbols and the
     * undefined external symbols indicates the external references.
     */
    uint32_t extrefsymoff;	/* offset to referenced symbol table */
    uint32_t nextrefsyms;	/* number of referenced symbol table entries */

    /*
     * The sections that contain "symbol pointers" and "routine stubs" have
     * indexes and (implied counts based on the size of the section and fixed
     * size of the entry) into the "indirect symbol" table for each pointer
     * and stub.  For every section of these two types the index into the
     * indirect symbol table is stored in the section header in the field
     * reserved1.  An indirect symbol table entry is simply a 32bit index into
     * the symbol table to the symbol that the pointer or stub is referring to.
     * The indirect symbol table is ordered to match the entries in the section.
     */
    uint32_t indirectsymoff; /* file offset to the indirect symbol table */
    uint32_t nindirectsyms;  /* number of indirect symbol table entries */

    /*
     * To support relocating an individual module in a library file quickly the
     * external relocation entries for each module in the library need to be
     * accessed efficiently.  Since the relocation entries can't be accessed
     * through the section headers for a library file they are separated into
     * groups of local and external entries further grouped by module.  In this
     * case the presents of this load command who's extreloff, nextrel,
     * locreloff and nlocrel fields are non-zero indicates that the relocation
     * entries of non-merged sections are not referenced through the section
     * structures (and the reloff and nreloc fields in the section headers are
     * set to zero).
     *
     * Since the relocation entries are not accessed through the section headers
     * this requires the r_address field to be something other than a section
     * offset to identify the item to be relocated.  In this case r_address is
     * set to the offset from the vmaddr of the first LC_SEGMENT command.
     * For MH_SPLIT_SEGS images r_address is set to the the offset from the
     * vmaddr of the first read-write LC_SEGMENT command.
     *
     * The relocation entries are grouped by module and the module table
     * entries have indexes and counts into them for the group of external
     * relocation entries for that the module.
     *
     * For sections that are merged across modules there must not be any
     * remaining external relocation entries for them (for merged sections
     * remaining relocation entries must be local).
     */
    uint32_t extreloff;	/* offset to external relocation entries */
    uint32_t nextrel;	/* number of external relocation entries */

    /*
     * All the local relocation entries are grouped together (they are not
     * grouped by their module since they are only used if the object is moved
     * from it staticly link edited address).
     */
    uint32_t locreloff;	/* offset to local relocation entries */
    uint32_t nlocrel;	/* number of local relocation entries */

};

/*
 * An indirect symbol table entry is simply a 32bit index into the symbol table 
 * to the symbol that the pointer or stub is refering to.  Unless it is for a
 * non-lazy symbol pointer section for a defined symbol which strip(1) as 
 * removed.  In which case it has the value INDIRECT_SYMBOL_LOCAL.  If the
 * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
 */
#define INDIRECT_SYMBOL_LOCAL	0x80000000
#define INDIRECT_SYMBOL_ABS	0x40000000

/*
 * The dyld_info_command contains the file offsets and sizes of 
 * the new compressed form of the information dyld needs to 
 * load the image.  This information is used by dyld on Mac OS X
 * 10.6 and later.  All information pointed to by this command
 * is encoded using byte streams, so no endian swapping is needed
 * to interpret it. 
 */
struct dyld_info_command {
   uint32_t   cmd;		/* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */
   uint32_t   cmdsize;		/* sizeof(struct dyld_info_command) */

    /*
     * Dyld rebases an image whenever dyld loads it at an address different
     * from its preferred address.  The rebase information is a stream
     * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
     * Conceptually the rebase information is a table of tuples:
     *    <seg-index, seg-offset, type>
     * The opcodes are a compressed way to encode the table by only
     * encoding when a column changes.  In addition simple patterns
     * like "every n'th offset for m times" can be encoded in a few
     * bytes.
     */
    uint32_t   rebase_off;	/* file offset to rebase info  */
    uint32_t   rebase_size;	/* size of rebase info   */
    
    /*
     * Dyld binds an image during the loading process, if the image
     * requires any pointers to be initialized to symbols in other images.  
     * The rebase information is a stream of byte sized 
     * opcodes whose symbolic names start with BIND_OPCODE_.
     * Conceptually the bind information is a table of tuples:
     *    <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
     * The opcodes are a compressed way to encode the table by only
     * encoding when a column changes.  In addition simple patterns
     * like for runs of pointers initialzed to the same value can be 
     * encoded in a few bytes.
     */
    uint32_t   bind_off;	/* file offset to binding info   */
    uint32_t   bind_size;	/* size of binding info  */
        
    /*
     * Some C++ programs require dyld to unique symbols so that all
     * images in the process use the same copy of some code/data.
     * This step is done after binding. The content of the weak_bind
     * info is an opcode stream like the bind_info.  But it is sorted
     * alphabetically by symbol name.  This enable dyld to walk 
     * all images with weak binding information in order and look
     * for collisions.  If there are no collisions, dyld does
     * no updating.  That means that some fixups are also encoded
     * in the bind_info.  For instance, all calls to "operator new"
     * are first bound to libstdc++.dylib using the information
     * in bind_info.  Then if some image overrides operator new
     * that is detected when the weak_bind information is processed
     * and the call to operator new is then rebound.
     */
    uint32_t   weak_bind_off;	/* file offset to weak binding info   */
    uint32_t   weak_bind_size;  /* size of weak binding info  */
    
    /*
     * Some uses of external symbols do not need to be bound immediately.
     * Instead they can be lazily bound on first use.  The lazy_bind
     * are contains a stream of BIND opcodes to bind all lazy symbols.
     * Normal use is that dyld ignores the lazy_bind section when
     * loading an image.  Instead the static linker arranged for the
     * lazy pointer to initially point to a helper function which 
     * pushes the offset into the lazy_bind area for the symbol
     * needing to be bound, then jumps to dyld which simply adds
     * the offset to lazy_bind_off to get the information on what 
     * to bind.  
     */
    uint32_t   lazy_bind_off;	/* file offset to lazy binding info */
    uint32_t   lazy_bind_size;  /* size of lazy binding infs */
    
    /*
     * The symbols exported by a dylib are encoded in a trie.  This
     * is a compact representation that factors out common prefixes.
     * It also reduces LINKEDIT pages in RAM because it encodes all  
     * information (name, address, flags) in one small, contiguous range.
     * The export area is a stream of nodes.  The first node sequentially
     * is the start node for the trie.  
     *
     * Nodes for a symbol start with a byte that is the length of
     * the exported symbol information for the string so far.
     * If there is no exported symbol, the byte is zero. If there
     * is exported info, it follows the length byte.  The exported
     * info normally consists of a flags and offset both encoded
     * in uleb128.  The offset is location of the content named
     * by the symbol.  It is the offset from the mach_header for
     * the image.  
     *
     * After the initial byte and optional exported symbol information
     * is a byte of how many edges (0-255) that this node has leaving
     * it, followed by each edge.
     * Each edge is a zero terminated cstring of the addition chars
     * in the symbol, followed by a uleb128 offset for the node that
     * edge points to.
     *  
     */
    uint32_t   export_off;	/* file offset to lazy binding info */
    uint32_t   export_size;	/* size of lazy binding infs */
};

/*
 * A variable length string in a load command is represented by an lc_str
 * union.  The strings are stored just after the load command structure and
 * the offset is from the start of the load command structure.  The size
 * of the string is reflected in the cmdsize field of the load command.
 * Once again any padded bytes to bring the cmdsize field to a multiple
 * of 4 bytes must be zero.
 */
union lc_str {
	uint32_t	offset;	/* offset to the string */
};

/*
 * Dynamicly linked shared libraries are identified by two things.  The
 * pathname (the name of the library as found for execution), and the
 * compatibility version number.  The pathname must match and the compatibility
 * number in the user of the library must be greater than or equal to the
 * library being used.  The time stamp is used to record the time a library was
 * built and copied into user so it can be use to determined if the library used
 * at runtime is exactly the same as used to built the program.
 */
struct dylib {
    union lc_str  name;			/* library's path name */
    uint32_t timestamp;			/* library's build time stamp */
    uint32_t current_version;		/* library's current version number */
    uint32_t compatibility_version;	/* library's compatibility vers number*/
};

/*
 * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
 * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library.
 * An object that uses a dynamically linked shared library also contains a
 * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
 * LC_REEXPORT_DYLIB) for each library it uses.
 */
struct dylib_command {
	uint32_t	cmd;		/* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB,
					   LC_REEXPORT_DYLIB */
	uint32_t	cmdsize;	/* includes pathname string */
	struct dylib	dylib;		/* the library identification */
};

/*
 * The following are used to encode rebasing information
 */
#define REBASE_TYPE_POINTER					1
#define REBASE_TYPE_TEXT_ABSOLUTE32				2
#define REBASE_TYPE_TEXT_PCREL32				3

#define REBASE_OPCODE_MASK					0xF0
#define REBASE_IMMEDIATE_MASK					0x0F
#define REBASE_OPCODE_DONE					0x00
#define REBASE_OPCODE_SET_TYPE_IMM				0x10
#define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB		0x20
#define REBASE_OPCODE_ADD_ADDR_ULEB				0x30
#define REBASE_OPCODE_ADD_ADDR_IMM_SCALED			0x40
#define REBASE_OPCODE_DO_REBASE_IMM_TIMES			0x50
#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES			0x60
#define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB			0x70
#define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB	0x80

/*
 * The following are used to encode binding information
 */
#define BIND_TYPE_POINTER					1
#define BIND_TYPE_TEXT_ABSOLUTE32				2
#define BIND_TYPE_TEXT_PCREL32					3

#define BIND_SPECIAL_DYLIB_SELF					 0
#define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE			-1
#define BIND_SPECIAL_DYLIB_FLAT_LOOKUP				-2

#define BIND_SYMBOL_FLAGS_WEAK_IMPORT				0x1
#define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION			0x8

#define BIND_OPCODE_MASK					0xF0
#define BIND_IMMEDIATE_MASK					0x0F
#define BIND_OPCODE_DONE					0x00
#define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM			0x10
#define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB			0x20
#define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM			0x30
#define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM		0x40
#define BIND_OPCODE_SET_TYPE_IMM				0x50
#define BIND_OPCODE_SET_ADDEND_SLEB				0x60
#define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB			0x70
#define BIND_OPCODE_ADD_ADDR_ULEB				0x80
#define BIND_OPCODE_DO_BIND					0x90
#define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB			0xA0
#define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED			0xB0
#define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB		0xC0

/*
 * The following are used on the flags byte of a terminal node
 * in the export information.
 */
#define EXPORT_SYMBOL_FLAGS_KIND_MASK				0x03
#define EXPORT_SYMBOL_FLAGS_KIND_REGULAR			0x00
#define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL			0x01
#define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION			0x04
#define EXPORT_SYMBOL_FLAGS_REEXPORT				0x08
#define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER			0x10

/*
 * Format of a relocation entry of a Mach-O file.  Modified from the 4.3BSD
 * format.  The modifications from the original format were changing the value
 * of the r_symbolnum field for "local" (r_extern == 0) relocation entries.
 * This modification is required to support symbols in an arbitrary number of
 * sections not just the three sections (text, data and bss) in a 4.3BSD file.
 * Also the last 4 bits have had the r_type tag added to them.
 */
struct relocation_info {
   int32_t	r_address;	/* offset in the section to what is being
				   relocated */
   uint32_t     r_symbolnum:24,	/* symbol index if r_extern == 1 or section
				   ordinal if r_extern == 0 */
		r_pcrel:1, 	/* was relocated pc relative already */
		r_length:2,	/* 0=byte, 1=word, 2=long, 3=quad */
		r_extern:1,	/* does not include value of sym referenced */
		r_type:4;	/* if not 0, machine specific relocation type */
};
#define	R_ABS	0		/* absolute relocation type for Mach-O files */

/*
 * Relocation types used in a generic implementation.  Relocation entries for
 * normal things use the generic relocation as discribed above and their r_type
 * is GENERIC_RELOC_VANILLA (a value of zero).
 *
 * Another type of generic relocation, GENERIC_RELOC_SECTDIFF, is to support
 * the difference of two symbols defined in different sections.  That is the
 * expression "symbol1 - symbol2 + constant" is a relocatable expression when
 * both symbols are defined in some section.  For this type of relocation the
 * both relocations entries are scattered relocation entries.  The value of
 * symbol1 is stored in the first relocation entry's r_value field and the
 * value of symbol2 is stored in the pair's r_value field.
 *
 * A special case for a prebound lazy pointer is needed to beable to set the
 * value of the lazy pointer back to its non-prebound state.  This is done
 * using the GENERIC_RELOC_PB_LA_PTR r_type.  This is a scattered relocation
 * entry where the r_value feild is the value of the lazy pointer not prebound.
 */
enum reloc_type_generic
{
    GENERIC_RELOC_VANILLA,	/* generic relocation as discribed above */
    GENERIC_RELOC_PAIR,		/* Only follows a GENERIC_RELOC_SECTDIFF */
    GENERIC_RELOC_SECTDIFF,
    GENERIC_RELOC_PB_LA_PTR,	/* prebound lazy pointer */
    GENERIC_RELOC_LOCAL_SECTDIFF
};

/* 
 * The entries in the reference symbol table are used when loading the module
 * (both by the static and dynamic link editors) and if the module is unloaded
 * or replaced.  Therefore all external symbols (defined and undefined) are
 * listed in the module's reference table.  The flags describe the type of
 * reference that is being made.  The constants for the flags are defined in
 * <mach-o/nlist.h> as they are also used for symbol table entries.
 */
struct dylib_reference {
    uint32_t isym:24,		/* index into the symbol table */
    		  flags:8;	/* flags to indicate the type of reference */
};

/*
 * The linkedit_data_command contains the offsets and sizes of a blob
 * of data in the __LINKEDIT segment.  
 */
struct linkedit_data_command {
    uint32_t	cmd;		/* LC_CODE_SIGNATURE or LC_SEGMENT_SPLIT_INFO */
    uint32_t	cmdsize;	/* sizeof(struct linkedit_data_command) */
    uint32_t	dataoff;	/* file offset of data in __LINKEDIT segment */
	uint32_t	datasize;	/* file size of data in __LINKEDIT segment  */
};

struct entry_point_command {
	uint32_t  cmd;	/* LC_MAIN only used in MH_EXECUTE filetypes */
	uint32_t  cmdsize;	/* 24 */
	uint64_t  entryoff;	/* file (__TEXT) offset of main() */
	uint64_t  stacksize;/* if not zero, initial stack size */
};

struct version_min_command {
	uint32_t	cmd;		/* LC_VERSION_MIN_MACOSX or
							LC_VERSION_MIN_IPHONEOS  */
	uint32_t	cmdsize;	/* sizeof(struct min_version_command) */
	uint32_t	version;	/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
	uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
};

#pragma pack(pop)

#endif // __APPLE__

/*
 * This header file describes the structures of the file format for "fat"
 * architecture specific file (wrapper design).  At the begining of the file
 * there is one fat_header structure followed by a number of fat_arch
 * structures.  For each architecture in the file, specified by a pair of
 * cputype and cpusubtype, the fat_header describes the file offset, file
 * size and alignment in the file of the architecture specific member.
 * The padded bytes in the file to place each member on it's specific alignment
 * are defined to be read as zeros and can be left as "holes" if the file system
 * can support them as long as they read as zeros.
 *
 * All structures defined here are always written and read to/from disk
 * in big-endian order.
 */

/*
 * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types
 * and contains the constants for the possible values of these types.
 */
#define FAT_MAGIC	0xcafebabe
#define FAT_CIGAM	0xbebafeca	/* NXSwapLong(FAT_MAGIC) */

struct fat_header {
	uint32_t	magic;		/* FAT_MAGIC */
	uint32_t	nfat_arch;	/* number of structs that follow */
};

struct fat_arch {
	cpu_type_t	cputype;	/* cpu specifier (int) */
	cpu_subtype_t	cpusubtype;	/* machine specifier (int) */
	uint32_t	offset;		/* file offset to this object file */
	uint32_t	size;		/* size of this object file */
	uint32_t	align;		/* alignment as a power of 2 */
};

#define BIND_TYPE_OVERRIDE_OF_WEAKDEF_IN_DYLIB 0

#define	SECT_NON_LAZY_SYMBOL_PTR "__nl_symbol_ptr"
#define	SECT_LAZY_SYMBOL_PTR "__la_symbol_ptr"
#define	SECT_JUMP_TABLE "__jump_table"
#define SECT_MOD_INIT_FUNC		"__mod_init_func"
#define SECT_MOD_TERM_FUNC		"__mod_term_func"
#define SECT_DYLD		"__dyld"
#define SECT_PROGRAM_VARS		"__program_vars"
#define SECT_EH_FRAME		"__eh_frame"
#define SECT_INIT_TEXT		"__inittext"
#define SECT_UNWIND_INFO		"__unwind_info"
#define SECT_THREAD_LOCAL_VARIABLES	"__thread_vars"
#define SECT_THREAD_LOCAL_REGULAR	"__thread_data"

#define CLS_CLASS		0x1L
#define CLS_META		0x2L
#define CLS_INITIALIZED		0x4L
#define CLS_POSING		0x8L
#define CLS_MAPPED		0x10L
#define CLS_FLUSH_CACHE		0x20L
#define CLS_GROW_CACHE		0x40L
#define CLS_NEED_BIND		0x80L
#define CLS_METHOD_ARRAY        0x100L
// the JavaBridge constructs classes with these markers
#define CLS_JAVA_HYBRID		0x200L
#define CLS_JAVA_CLASS		0x400L
// thread-safe +initialize
#define CLS_INITIALIZING	0x800
// bundle unloading
#define CLS_FROM_BUNDLE		0x1000L
// C++ ivar support
#define CLS_HAS_CXX_STRUCTORS	0x2000L
// Lazy method list arrays
#define CLS_NO_METHOD_ARRAY	0x4000L
// +load implementation
// #define CLS_HAS_LOAD_METHOD	0x8000L

struct dyld_image_info {
	const struct mach_header* imageLoadAddress;
	const char* imageFilePath;
	uintptr_t imageFileModDate;
};

struct dyld_all_image_infos {
	uint32_t version;
	uint32_t infoArrayCount;
	const struct dyld_image_info* infoArray;
};

#define DW_EH_PE_absptr		0x00
#define DW_EH_PE_omit     0xff

#define DW_EH_PE_uleb128	0x01
#define DW_EH_PE_udata2		0x02
#define DW_EH_PE_udata4		0x03
#define DW_EH_PE_udata8		0x04
#define DW_EH_PE_sleb128	0x09
#define DW_EH_PE_sdata2		0x0A
#define DW_EH_PE_sdata4		0x0B
#define DW_EH_PE_sdata8		0x0C
#define DW_EH_PE_signed		0x08

#define DW_EH_PE_pcrel		0x10
#define DW_EH_PE_textrel	0x20
#define DW_EH_PE_datarel	0x30
#define DW_EH_PE_funcrel	0x40
#define DW_EH_PE_aligned	0x50

#define DW_EH_PE_indirect	0x80

// dwarf unwind instructions
enum {
	DW_CFA_nop                 = 0x0,
	DW_CFA_set_loc             = 0x1,
	DW_CFA_advance_loc1        = 0x2,
	DW_CFA_advance_loc2        = 0x3,
	DW_CFA_advance_loc4        = 0x4,
	DW_CFA_offset_extended     = 0x5,
	DW_CFA_restore_extended    = 0x6,
	DW_CFA_undefined           = 0x7,
	DW_CFA_same_value          = 0x8,
	DW_CFA_register            = 0x9,
	DW_CFA_remember_state      = 0xA,
	DW_CFA_restore_state       = 0xB,
	DW_CFA_def_cfa             = 0xC,
	DW_CFA_def_cfa_register    = 0xD,
	DW_CFA_def_cfa_offset      = 0xE,
	DW_CFA_def_cfa_expression  = 0xF,
	DW_CFA_expression         = 0x10,
	DW_CFA_offset_extended_sf = 0x11,
	DW_CFA_def_cfa_sf         = 0x12,
	DW_CFA_def_cfa_offset_sf  = 0x13,
	DW_CFA_val_offset         = 0x14,
	DW_CFA_val_offset_sf      = 0x15,
	DW_CFA_val_expression     = 0x16,
	DW_CFA_advance_loc        = 0x40, // high 2 bits are 0x1, lower 6 bits are delta
	DW_CFA_offset             = 0x80, // high 2 bits are 0x2, lower 6 bits are register
	DW_CFA_restore            = 0xC0, // high 2 bits are 0x3, lower 6 bits are register

	// GNU extensions
	DW_CFA_GNU_window_save				= 0x2D,
	DW_CFA_GNU_args_size				= 0x2E,
	DW_CFA_GNU_negative_offset_extended = 0x2F
};

#define UNWIND_SECTION_VERSION 1
struct unwind_info_section_header
{
    uint32_t    version;            // UNWIND_SECTION_VERSION
    uint32_t    commonEncodingsArraySectionOffset;
    uint32_t    commonEncodingsArrayCount;
    uint32_t    personalityArraySectionOffset;
    uint32_t    personalityArrayCount;
    uint32_t    indexSectionOffset;
    uint32_t    indexCount;
    // compact_unwind_encoding_t[]
    // uintptr_t personalities[]
    // unwind_info_section_header_index_entry[]
    // unwind_info_section_header_lsda_index_entry[]
};

struct unwind_info_section_header_index_entry 
{
    uint32_t        functionOffset;
    uint32_t        secondLevelPagesSectionOffset;  // section offset to start of regular or compress page
    uint32_t        lsdaIndexArraySectionOffset;    // section offset to start of lsda_index array for this range
};

struct unwind_info_section_header_lsda_index_entry 
{
    uint32_t        functionOffset;
    uint32_t        lsdaOffset;
};

//
// There are two kinds of second level index pages: regular and compressed.
// A compressed page can hold up to 1021 entries, but it cannot be used
// if too many different encoding types are used.  The regular page holds
// 511 entries.  
//

struct unwind_info_regular_second_level_entry 
{
    uint32_t    functionOffset;
    uint32_t    encoding;
};

#define UNWIND_SECOND_LEVEL_REGULAR 2
struct unwind_info_regular_second_level_page_header
{
    uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
    uint16_t    entryPageOffset;
    uint16_t    entryCount;
    // entry array
};

#define UNWIND_SECOND_LEVEL_COMPRESSED 3
struct unwind_info_compressed_second_level_page_header
{
    uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
    uint16_t    entryPageOffset;
    uint16_t    entryCount;
    uint16_t    encodingsPageOffset;
    uint16_t    encodingsCount;
    // 32-bit entry array    
    // encodings array
};

#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            ((entry) & 0x00FFFFFF)
#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        (((entry) >> 24) & 0xFF)

// architecture independent bits
enum {
    UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
    UNWIND_HAS_LSDA                        = 0x40000000,
    UNWIND_PERSONALITY_MASK                = 0x30000000,
};

// x86_64
//
// 1-bit: start
// 1-bit: has lsda
// 2-bit: personality index
//
// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=dwarf
//  rbp based:
//        15-bits (5*3-bits per reg) register permutation
//        8-bits for stack offset
//  frameless:
//        8-bits stack size
//        3-bits stack adjust
//        3-bits register count
//        10-bits register permutation
//
enum {
    UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
    UNWIND_X86_64_MODE_COMPATIBILITY                = 0x00000000,
    UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
    UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
    UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
    UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
    
    UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
    UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,

    UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
    UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
    UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,

    UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
};

enum {
    UNWIND_X86_64_REG_NONE       = 0,
    UNWIND_X86_64_REG_RBX        = 1,
    UNWIND_X86_64_REG_R12        = 2,
    UNWIND_X86_64_REG_R13        = 3,
    UNWIND_X86_64_REG_R14        = 4,
    UNWIND_X86_64_REG_R15        = 5,
    UNWIND_X86_64_REG_RBP        = 6,
};

// x86
//
// 1-bit: start
// 1-bit: has lsda
// 2-bit: personality index
//
// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=dwarf
//  ebp based:
//        15-bits (5*3-bits per reg) register permutation
//        8-bits for stack offset
//  frameless:
//        8-bits stack size
//        3-bits stack adjust
//        3-bits register count
//        10-bits register permutation
//
enum {
    UNWIND_X86_MODE_MASK                         = 0x0F000000,
    UNWIND_X86_MODE_COMPATIBILITY                = 0x00000000,
    UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
    UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
    UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
    UNWIND_X86_MODE_DWARF                        = 0x04000000,
    
    UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
    UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
    
    UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
    UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
    UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
    
    UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
};

enum {
    UNWIND_X86_REG_NONE     = 0,
    UNWIND_X86_REG_EBX      = 1,
    UNWIND_X86_REG_ECX      = 2,
    UNWIND_X86_REG_EDX      = 3,
    UNWIND_X86_REG_EDI      = 4,
    UNWIND_X86_REG_ESI      = 5,
    UNWIND_X86_REG_EBP      = 6,
};

enum {
    UNW_X86_64_RAX,
    UNW_X86_64_RDX,
    UNW_X86_64_RCX,
    UNW_X86_64_RBX,
    UNW_X86_64_RSI,
    UNW_X86_64_RDI,
    UNW_X86_64_RBP,
    UNW_X86_64_RSP,
    UNW_X86_64_R8,
    UNW_X86_64_R9,
    UNW_X86_64_R10,
    UNW_X86_64_R11,
    UNW_X86_64_R12,
    UNW_X86_64_R13,
    UNW_X86_64_R14,
    UNW_X86_64_R15,
    UNW_X86_64_RIP
};

enum {
	DW_X86_64_RET_ADDR = 16
};

enum {
	UNW_X86_EAX,
	UNW_X86_EDX,
	UNW_X86_ECX,
	UNW_X86_EBX,
	UNW_X86_ESI,
	UNW_X86_EDI,
	UNW_X86_EBP,
	UNW_X86_ESP,
	UNW_X86_EIP
};

enum {
	DW_X86_RET_ADDR = 8
};

#define	LC_ENCRYPTION_INFO_64 0x2C /* 64-bit encrypted segment information */
#define LC_LINKER_OPTION 0x2D /* linker options in MH_OBJECT files */
#define LC_LINKER_OPTIMIZATION_HINT 0x2E /* optimization hints in MH_OBJECT files */
#define LC_VERSION_MIN_TVOS 0x2F /* build for AppleTV min OS version */
#define LC_VERSION_MIN_WATCHOS 0x30 /* build for Watch min OS version */
#define LC_NOTE 0x31 /* arbitrary data included within a Mach-O file */
#define LC_BUILD_VERSION 0x32 /* build for platform min OS version */

struct build_version_command {
	uint32_t	cmd;		/* LC_BUILD_VERSION */
	uint32_t	cmdsize;	/* sizeof(struct build_version_command) plus */
							/* ntools * sizeof(struct build_tool_version) */
	uint32_t	platform;	/* platform */
	uint32_t	minos;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
	uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
	uint32_t	ntools;		/* number of tool entries following this */
};

struct build_tool_version {
	uint32_t	tool;		/* enum for the tool */
	uint32_t	version;	/* version number of the tool */
};

#define DYLD_MACOSX_VERSION_10_12		0x000A0C00

#endif