1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
#ifndef CRYPTO_H
#define CRYPTO_H
#include "common.h"
uint32_t rand32();
uint64_t rand64();
#ifdef VMP_GNU
inline uint8_t _rotl8(uint8_t value, int shift)
{
__asm__ __volatile__ ("rolb %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint16_t _rotl16(uint16_t value, int shift)
{
__asm__ __volatile__ ("rolw %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint32_t _rotl32(uint32_t value, int shift)
{
__asm__ __volatile__ ("roll %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint64_t _rotl64(uint64_t value, int shift)
{
return (value << shift) | (value >> (sizeof(value) * 8 - shift));
}
inline uint8_t _rotr8(uint8_t value, int shift)
{
__asm__ __volatile__ ("rorb %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint16_t _rotr16(uint16_t value, int shift)
{
__asm__ __volatile__ ("rorw %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint32_t _rotr32(uint32_t value, int shift)
{
__asm__ __volatile__ ("rorl %%cl, %0"
: "=r"(value)
: "0"(value), "c"(shift)
);
return value;
}
inline uint64_t _rotr64(uint64_t value, int shift)
{
return (value >> shift) | (value << (sizeof(value) * 8 - shift));
}
inline uint64_t __rdtsc()
{
uint32_t hi, lo;
__asm__ __volatile__ ("rdtsc"
: "=a"(lo), "=d"(hi)
);
return static_cast<uint64_t>(lo) | static_cast<uint64_t>(hi) << 32;
}
inline void __cpuid(int regs[4], uint32_t value)
{
__asm__ __volatile__ ("cpuid"
: "=a"(regs[0]), "=b"(regs[1]), "=c"(regs[2]), "=d"(regs[3])
: "a"(value)
);
}
inline void __movsb(void *d, const void *s, size_t n) {
asm volatile ("rep movsb"
: "=D" (d),
"=S" (s),
"=c" (n)
: "0" (d),
"1" (s),
"2" (n)
: "memory");
}
#ifdef __APPLE__
inline uint16_t __builtin_bswap16(uint16_t value)
{
__asm__ __volatile__ ("rorw $8, %0"
: "+r"(value)
);
return value;
}
#endif
#else
#define _rotl32 _lrotl
#define _rotr32 _lrotr
#define __builtin_bswap16 _byteswap_ushort
#define __builtin_bswap32 _byteswap_ulong
#define __builtin_bswap64 _byteswap_uint64
inline unsigned long __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; }
#if defined(WIN_DRIVER) && (WDK_NTDDI_VERSION <= NTDDI_WIN7)
#ifndef WIN64
#ifdef __cplusplus
extern "C" {
#endif
VOID
__movsb(
__out_ecount_full(Count) PUCHAR Destination,
__in_ecount(Count) UCHAR const *Source,
__in SIZE_T Count
);
#ifdef __cplusplus
}
#endif
#endif
#endif
#endif
inline uint64_t ByteToInt64(uint8_t value)
{
return static_cast<int64_t>(static_cast<int8_t>(value));
}
inline uint64_t WordToInt64(uint16_t value)
{
return static_cast<int64_t>(static_cast<int16_t>(value));
}
inline uint64_t DWordToInt64(uint32_t value)
{
return static_cast<int64_t>(static_cast<int32_t>(value));
}
struct RC5Key {
uint8_t Value[8];
#ifndef RUNTIME
uint32_t P;
uint32_t Q;
#endif
RC5Key() {} //-V730 мусор тоже годится
#ifdef RUNTIME
RC5Key(const uint8_t *key)
{
memcpy(Value, key, sizeof(Value));
}
#endif
void Create();
};
class CipherRC5
{
public:
CipherRC5(const RC5Key &key);
void Encrypt(uint8_t *buff, size_t count) const;
void Decrypt(const uint8_t *in, uint8_t *out, size_t count) const;
void Encrypt(const uint32_t *in, uint32_t *out) const;
void Decrypt(const uint32_t *in, uint32_t *out) const;
private:
enum {
w = 32, // u32 size in bits
r = 15, // number of rounds
b = 8, // number of bytes in key
c = 8 * b / w, // 16 - number u32s in key = ceil(8*b/w)
t = 2 * (r + 1), // 34 - size of table S = 2*(r+1) u32s
};
uint32_t S[t]; // expanded key table
#ifdef RUNTIME
enum {
P = FACE_RC5_P,
Q = FACE_RC5_Q
};
#else
uint32_t P;
uint32_t Q;
#endif
};
class CryptoContainer;
typedef unsigned short BignumInt;
typedef unsigned long BignumDblInt;
typedef BignumInt *Bignum;
class BigNumber
{
public:
BigNumber();
BigNumber(const BigNumber &src);
BigNumber(const uint8_t *data, size_t size, bool inverse_order = false);
~BigNumber();
BigNumber modpow(const BigNumber &exp, const BigNumber &mod) const;
CryptoContainer *modpow(const CryptoContainer &source, size_t exp_offset, size_t exp_size, size_t mod_offset, size_t mod_size) const;
size_t size() const;
bool operator < (const BigNumber &b) const;
uint8_t operator [] (size_t index) const;
BignumInt data(size_t index) const { return bignum_get_word(data_ + index); }
private:
// no assignment op
BigNumber &operator =(const BigNumber &);
BigNumber(Bignum data, const BignumInt *salt);
BignumInt bignum_get_word(Bignum b) const;
void bignum_set_word(Bignum b, BignumInt value) const;
void init(size_t length);
void internal_mul(BignumInt *a, BignumInt *b, BignumInt *c, int len) const;
void internal_add_shifted(BignumInt *number, unsigned n, int shift) const;
void internal_mod(BignumInt *a, int alen, BignumInt *m, int mlen, BignumInt *quot, int qshift) const;
uint8_t bignum_byte(Bignum bn, size_t i) const;
int bignum_cmp(const BigNumber &b) const;
enum {
BIGNUM_INT_MASK = 0xFFFFU,
BIGNUM_TOP_BIT = 0x8000U,
BIGNUM_INT_BITS = 16,
BIGNUM_INT_BYTES = (BIGNUM_INT_BITS / 8)
};
Bignum data_;
#ifdef RUNTIME
BignumInt salt_[20 / BIGNUM_INT_BYTES];
#endif
};
enum {
ATL_BASE64_FLAG_NONE = 0,
ATL_BASE64_FLAG_NOPAD,
ATL_BASE64_FLAG_NOCRLF
};
bool Base64Encode(const uint8_t *src, size_t src_len, char *dst, size_t &dst_len);
bool Base64Decode(const char *src, size_t src_len, uint8_t *dst, size_t &dst_len);
size_t Base64EncodeGetRequiredLength(size_t src_len);
class CryptoContainer
{
public:
CryptoContainer(uint8_t *data, size_t size, const RC5Key &key);
CryptoContainer(size_t size, const RC5Key &key);
CryptoContainer(const BigNumber &bn);
~CryptoContainer();
const uint8_t *data() const { return reinterpret_cast<const uint8_t *>(data_); }
size_t size() const { return size_; }
uint32_t GetDWord(size_t pos) const;
uint16_t GetWord(size_t pos) const;
uint8_t GetByte(size_t pos) const;
uint64_t GetQWord(size_t pos) const;
bool SetDWord(size_t pos, uint32_t value) const;
bool SetWord(size_t pos, uint16_t value) const;
bool SetByte(size_t pos, uint8_t value) const;
void UTF8ToUnicode(size_t offset, size_t len, VMP_WCHAR *dest, size_t dest_size) const;
private:
#define RC5_BLOCK_SIZE 8
bool EncryptValue(size_t pos, uint8_t *value, size_t value_size) const;
bool DecryptValue(size_t pos, uint8_t *value, size_t value_size) const;
bool is_own_data_;
uint32_t *data_;
size_t size_;
CipherRC5 *cipher_;
// no copy ctr or assignment op
CryptoContainer(const CryptoContainer &);
CryptoContainer &operator =(const CryptoContainer &);
};
class SHA1
{
public:
SHA1();
void Reset();
void Input(const uint8_t *data, size_t size);
void Input(const CryptoContainer &data, size_t offset, size_t size);
const uint8_t *Result();
size_t ResultSize() const { return sizeof(digest_); }
bool operator ==(SHA1 &other) { return memcmp(Result(), other.Result(), ResultSize()) == 0; }
private:
void ProcessMessageBlock();
void PadMessage();
bool computed_;
size_t message_block_index_;
uint8_t message_block_[64];
uint32_t length_high_;
uint32_t length_low_;
uint32_t hash_[5];
uint32_t digest_[5];
};
static uint32_t crc32_table[] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
#ifdef RUNTIME
#ifdef VMP_GNU
EXPORT_API uint32_t WINAPI CalcCRC(const void * key, size_t len) __asm__ ("CalcCRC");
#else
EXPORT_API uint32_t WINAPI CalcCRC(const void * key, size_t len);
#endif
#else
uint32_t CalcCRC(const void * key, size_t len);
#endif
class CRCValueCryptor
{
public:
#ifdef RUNTIME
FORCE_INLINE CRCValueCryptor() : key_(FACE_CRC_INFO_SALT) {}
FORCE_INLINE uint32_t Decrypt(uint32_t value)
{
uint32_t res = value ^ key_;
key_ = _rotl32(key_, 7) ^ res;
return res;
}
#else
CRCValueCryptor(uint32_t key) : key_(key) {}
uint32_t Encrypt(uint32_t value)
{
uint32_t old_key = key_;
key_ = _rotl32(key_, 7) ^ value;
return value ^ old_key;
}
#endif
private:
uint32_t key_;
};
#endif
|