aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754/flt-32/e_expf.c
blob: 6fda116cc55ff1c18fd25755d48b53462405171d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/* Single-precision e^x function.
   Copyright (C) 2017-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#ifdef __expf
# undef libm_hidden_proto
# define libm_hidden_proto(ignored)
#endif

#include <math.h>
#include <math-narrow-eval.h>
#include <stdint.h>
#include <libm-alias-finite.h>
#include <libm-alias-float.h>
#include "math_config.h"

/*
EXP2F_TABLE_BITS = 5
EXP2F_POLY_ORDER = 3

ULP error: 0.502 (nearest rounding.)
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
Wrong count: 170635 (all nearest rounding wrong results with fma.)
Non-nearest ULP error: 1 (rounded ULP error)
*/

#define N (1 << EXP2F_TABLE_BITS)
#define InvLn2N __exp2f_data.invln2_scaled
#define T __exp2f_data.tab
#define C __exp2f_data.poly_scaled

static inline uint32_t
top12 (float x)
{
  return asuint (x) >> 20;
}

float
__expf (float x)
{
  uint32_t abstop;
  uint64_t ki, t;
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t kd, xd, z, r, r2, y, s;

  xd = (double_t) x;
  abstop = top12 (x) & 0x7ff;
  if (__glibc_unlikely (abstop >= top12 (88.0f)))
    {
      /* |x| >= 88 or x is nan.  */
      if (asuint (x) == asuint (-INFINITY))
	return 0.0f;
      if (abstop >= top12 (INFINITY))
	return x + x;
      if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
	return __math_oflowf (0);
      if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
	return __math_uflowf (0);
#if WANT_ERRNO_UFLOW
      if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */
	return __math_may_uflowf (0);
#endif
    }

  /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k.  */
  z = InvLn2N * xd;

  /* Round and convert z to int, the result is in [-150*N, 128*N] and
     ideally ties-to-even rule is used, otherwise the magnitude of r
     can be bigger which gives larger approximation error.  */
#if TOINT_INTRINSICS
  kd = roundtoint (z);
  ki = converttoint (z);
#else
# define SHIFT __exp2f_data.shift
  kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double.  */
  ki = asuint64 (kd);
  kd -= SHIFT;
#endif
  r = z - kd;

  /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
  t = T[ki % N];
  t += ki << (52 - EXP2F_TABLE_BITS);
  s = asdouble (t);
  z = C[0] * r + C[1];
  r2 = r * r;
  y = C[2] * r + 1;
  y = z * r2 + y;
  y = y * s;
  return (float) y;
}

#ifndef __expf
hidden_def (__expf)
strong_alias (__expf, __ieee754_expf)
libm_alias_finite (__ieee754_expf, __expf)
versioned_symbol (libm, __expf, expf, GLIBC_2_27);
libm_alias_float_other (__exp, exp)
#endif