1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
|
.file "tgammal.s"
// Copyright (c) 2002 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 01/16/02 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
// 03/17/03 Moved tgammal_libm_err label into .proc region
// 04/10/03 Changed error codes for overflow and negative integers
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// long double tgammal(long double)
//
// Resources Used:
//
// Floating-Point Registers: f8-f15
// f32-f127
//
// General Purpose Registers: r32-r67
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// tgammal(+inf) = +inf
// tgammal(-inf) = QNaN
// tgammal(+/-0) = +/-inf
// tgammal(x<0, x - integer) = QNaN
// tgammal(SNaN) = QNaN
// tgammal(QNaN) = QNaN
//
//*********************************************************************
// Overview of operation
//==============================================================
//
// Algorithm description
// ---------------------
//
// There are 3 main paths in the implementation
// (and additional special values branches)
//
// 1) |X| >= 13 - Stirling formula computation
// a) Positive arguments:
// TGAMMAL(X) = exp((X-0.5)*ln(X) - X + C + S(Z)),
// where C = 0.5*ln(2*Pi) , Z = 1/Z, S(Z) - Bernulli polynomial
// (up to 'B18' term).
// Some of these calculation done in multiprecision.
// Ln returns multiprecision result too
// and exp also accepts and returns pair of values.
//
// b) Negative arguments
// TGAMMAL(-X) = PI/(X*TGAMMAL(X)*sin(PI*X)).
// (X*sin(PI*X))/PI calculated in parallel with TGAMMAL.
// Here we use polynomial of 9th degree with 2 multiprecision steps.
// Argument range reduction is:
// N = [x] with round to nearest, r = x - N, -0.5 <= r < 0.5
// After ((X-0.5)*ln(X) - X + C + S(Z)) completed we just invert
// its result and compute exp with negative argument (1/exp(x)=exp(-x))
// Then we multiply exp result to PI/(X*sin(PI*X)).
//
// 2) 1 <= |X| < 13 - Polynomial part
// a) Positive arguments:
// All values are splitted to such intervals as:
// #0->[2;3], #1->[3,4], #2->[5,6]...
// For even intervals we just use polynomial computation with degree 20
// and first 6 multiprecision computations.
// Range reduction looks like
// N = [x] with truncate, r = x - N - 0.5, -0.5 <= r < 0.5
// For odd intervals we use reccurent formula:
// TGAMMAL(X) = TGAMMA(X-1)*(X-1)
// [1;2] interval is splitted to 3 subranges:
// [1;1.25], [1.25;1.75], [1.75;2] with the same polynomial forms
//
// b) Negative arguments
// TGAMMAL(-X) = PI/(X*TGAMMAL(X)*sin(PI*X)).
// (X*sin(PI*X))/PI calculated in parallel with TGAMMAL.
// After multiplication by TGAMMAL(X) result we calculate reciprocal
// and get final result.
//
// 3) 0 < |X| < 1 - Near 0 part
// a) Here we use reccurent formula TGAMMAL(X) = TGAMMAL(X+1)/X
// TGAMMAL(X+1) calculated as shown above,
// 1/X result obtained in parallel. Then we just multiply these values.
// There is only additional separated subrange: [0;0.125] with specific
// polynomial constants set.
//
// b) Negative arguments
// TGAMMAL(-X) = PI/(TGAMMAL(X+1)*sin(PI*X)).
// There is no need to compute 1/X.
RODATA
.align 16
LOCAL_OBJECT_START(Constants_Tgammal_log_80_Q)
// log2_hi, log2_lo, Q_6, Q_5, Q_4, Q_3, Q_2, Q_1
data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
data4 0xA51BE0AF,0x92492453,0x00003FFC,0x00000000
data4 0xA0CFD29F,0xAAAAAB73,0x0000BFFC,0x00000000
data4 0xCCCE3872,0xCCCCCCCC,0x00003FFC,0x00000000
data4 0xFFFFB4FB,0xFFFFFFFF,0x0000BFFC,0x00000000
data4 0xAAAAAAAB,0xAAAAAAAA,0x00003FFD,0x00000000
data4 0x00000000,0x80000000,0x0000BFFE,0x00000000
LOCAL_OBJECT_END(Constants_Tgammal_log_80_Q)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_log_80_Z_G_H_h1)
// Z1 - 16 bit fixed, G1 and H1 IEEE single, h1 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007879,0x3F70F0F0,0x3D785196,0x00000000
data4 0xEBA0E0D1,0x8B1D330B,0x00003FDA,0x00000000
data4 0x000071C8,0x3F638E38,0x3DF13843,0x00000000
data4 0x9EADD553,0xE2AF365E,0x00003FE2,0x00000000
data4 0x00006BCB,0x3F579430,0x3E2FF9A0,0x00000000
data4 0x752F34A2,0xF585FEC3,0x0000BFE3,0x00000000
data4 0x00006667,0x3F4CCCC8,0x3E647FD6,0x00000000
data4 0x893B03F3,0xF3546435,0x00003FE2,0x00000000
data4 0x00006187,0x3F430C30,0x3E8B3AE7,0x00000000
data4 0x39CDD2AC,0xBABA62E0,0x00003FE4,0x00000000
data4 0x00005D18,0x3F3A2E88,0x3EA30C68,0x00000000
data4 0x457978A1,0x8718789F,0x00003FE2,0x00000000
data4 0x0000590C,0x3F321640,0x3EB9CEC8,0x00000000
data4 0x3185E56A,0x9442DF96,0x0000BFE4,0x00000000
data4 0x00005556,0x3F2AAAA8,0x3ECF9927,0x00000000
data4 0x2BBE2CBD,0xCBF9A4BF,0x00003FE4,0x00000000
data4 0x000051EC,0x3F23D708,0x3EE47FC5,0x00000000
data4 0x852D5935,0xF3537535,0x00003FE3,0x00000000
data4 0x00004EC5,0x3F1D89D8,0x3EF8947D,0x00000000
data4 0x46CDF32F,0xA1F1E699,0x0000BFDF,0x00000000
data4 0x00004BDB,0x3F17B420,0x3F05F3A1,0x00000000
data4 0xD8484CE3,0x84A61856,0x00003FE4,0x00000000
data4 0x00004925,0x3F124920,0x3F0F4303,0x00000000
data4 0xFF28821B,0xC7DD97E0,0x0000BFE2,0x00000000
data4 0x0000469F,0x3F0D3DC8,0x3F183EBF,0x00000000
data4 0xEF1FD32F,0xD3C4A887,0x00003FE3,0x00000000
data4 0x00004445,0x3F088888,0x3F20EC80,0x00000000
data4 0x464C76DA,0x84672BE6,0x00003FE5,0x00000000
data4 0x00004211,0x3F042108,0x3F29516A,0x00000000
data4 0x18835FB9,0x9A43A511,0x0000BFE5,0x00000000
LOCAL_OBJECT_END(Constants_Tgammal_log_80_Z_G_H_h1)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_log_80_Z_G_H_h2)
// Z2 - 16 bit fixed, G2 and H2 IEEE single, h2 IEEE double
data4 0x00008000,0x3F800000,0x00000000,0x00000000
data4 0x00000000,0x00000000,0x00000000,0x00000000
data4 0x00007F81,0x3F7F00F8,0x3B7F875D,0x00000000
data4 0x211398BF,0xAD08B116,0x00003FDB,0x00000000
data4 0x00007F02,0x3F7E03F8,0x3BFF015B,0x00000000
data4 0xC376958E,0xB106790F,0x00003FDE,0x00000000
data4 0x00007E85,0x3F7D08E0,0x3C3EE393,0x00000000
data4 0x79A7679A,0xFD03F242,0x0000BFDA,0x00000000
data4 0x00007E08,0x3F7C0FC0,0x3C7E0586,0x00000000
data4 0x05E7AE08,0xF03F81C3,0x0000BFDF,0x00000000
data4 0x00007D8D,0x3F7B1880,0x3C9E75D2,0x00000000
data4 0x049EB22F,0xD1B87D3C,0x00003FDE,0x00000000
data4 0x00007D12,0x3F7A2328,0x3CBDC97A,0x00000000
data4 0x3A9E81E0,0xFABC8B95,0x00003FDF,0x00000000
data4 0x00007C98,0x3F792FB0,0x3CDCFE47,0x00000000
data4 0x7C4B5443,0xF5F3653F,0x00003FDF,0x00000000
data4 0x00007C20,0x3F783E08,0x3CFC15D0,0x00000000
data4 0xF65A1773,0xE78AB204,0x00003FE0,0x00000000
data4 0x00007BA8,0x3F774E38,0x3D0D874D,0x00000000
data4 0x7B8EF695,0xDB7CBFFF,0x0000BFE0,0x00000000
data4 0x00007B31,0x3F766038,0x3D1CF49B,0x00000000
data4 0xCF773FB3,0xC0241AEA,0x0000BFE0,0x00000000
data4 0x00007ABB,0x3F757400,0x3D2C531D,0x00000000
data4 0xC9539FDF,0xFC8F4D48,0x00003FE1,0x00000000
data4 0x00007A45,0x3F748988,0x3D3BA322,0x00000000
data4 0x954665C2,0x9CD035FB,0x0000BFE1,0x00000000
data4 0x000079D1,0x3F73A0D0,0x3D4AE46F,0x00000000
data4 0xDD367A30,0xEC9017C7,0x00003FE1,0x00000000
data4 0x0000795D,0x3F72B9D0,0x3D5A1756,0x00000000
data4 0xCB11189C,0xEE6625D3,0x0000BFE1,0x00000000
data4 0x000078EB,0x3F71D488,0x3D693B9D,0x00000000
data4 0xBE11C424,0xA49C8DB5,0x0000BFE0,0x00000000
LOCAL_OBJECT_END(Constants_Tgammal_log_80_Z_G_H_h2)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_log_80_h3_G_H)
// h3 IEEE double extended, H3 and G3 IEEE single
data4 0x112666B0,0xAAACAAB1,0x00003FD3,0x3F7FFC00
data4 0x9B7FAD21,0x90051030,0x00003FD8,0x3F7FF400
data4 0xF4D783C4,0xA6B46F46,0x00003FDA,0x3F7FEC00
data4 0x11C6DDCA,0xDA148D88,0x0000BFD8,0x3F7FE400
data4 0xCA964D95,0xCE65C1D8,0x0000BFD8,0x3F7FDC00
data4 0x23412D13,0x883838EE,0x0000BFDB,0x3F7FD400
data4 0x983ED687,0xB7E5CFA1,0x00003FDB,0x3F7FCC08
data4 0xE3C3930B,0xDBE23B16,0x0000BFD9,0x3F7FC408
data4 0x48AA4DFC,0x9B92F1FC,0x0000BFDC,0x3F7FBC10
data4 0xCE9C8F7E,0x9A8CEB15,0x0000BFD9,0x3F7FB410
data4 0x0DECE74A,0x8C220879,0x00003FDC,0x3F7FAC18
data4 0x2F053150,0xB25CA912,0x0000BFDA,0x3F7FA420
data4 0xD9A5BE20,0xA5876555,0x00003FDB,0x3F7F9C20
data4 0x2053F087,0xC919BB6E,0x00003FD9,0x3F7F9428
data4 0x041E9A77,0xB70BDA79,0x00003FDC,0x3F7F8C30
data4 0xEA1C9C30,0xF18A5C08,0x00003FDA,0x3F7F8438
data4 0x796D89E5,0xA3790D84,0x0000BFDD,0x3F7F7C40
data4 0xA2915A3A,0xE1852369,0x0000BFDD,0x3F7F7448
data4 0xA39ED868,0xD803858F,0x00003FDC,0x3F7F6C50
data4 0x9417EBB7,0xB2EEE356,0x0000BFDD,0x3F7F6458
data4 0x9BB0D07F,0xED5C1F8A,0x0000BFDC,0x3F7F5C68
data4 0xE87C740A,0xD6D201A0,0x0000BFDD,0x3F7F5470
data4 0x1CA74025,0xE8DEBF5E,0x00003FDC,0x3F7F4C78
data4 0x1F34A7EB,0x9A995A97,0x0000BFDC,0x3F7F4488
data4 0x359EED97,0x9CB0F742,0x0000BFDA,0x3F7F3C90
data4 0xBBC6A1C8,0xD6F833C2,0x0000BFDD,0x3F7F34A0
data4 0xE71090EC,0xE1F68F2A,0x00003FDC,0x3F7F2CA8
data4 0xC160A74F,0xD1881CF1,0x0000BFDB,0x3F7F24B8
data4 0xD78CB5A4,0x9AD05AE2,0x00003FD6,0x3F7F1CC8
data4 0x9A77DC4B,0xE658CB8E,0x0000BFDD,0x3F7F14D8
data4 0x6BD6D312,0xBA281296,0x00003FDC,0x3F7F0CE0
data4 0xF95210D0,0xB478BBEB,0x0000BFDB,0x3F7F04F0
data4 0x38800100,0x39400480,0x39A00640,0x39E00C41 // H's start here
data4 0x3A100A21,0x3A300F22,0x3A4FF51C,0x3A6FFC1D
data4 0x3A87F20B,0x3A97F68B,0x3AA7EB86,0x3AB7E101
data4 0x3AC7E701,0x3AD7DD7B,0x3AE7D474,0x3AF7CBED
data4 0x3B03E1F3,0x3B0BDE2F,0x3B13DAAA,0x3B1BD766
data4 0x3B23CC5C,0x3B2BC997,0x3B33C711,0x3B3BBCC6
data4 0x3B43BAC0,0x3B4BB0F4,0x3B53AF6D,0x3B5BA620
data4 0x3B639D12,0x3B6B9444,0x3B7393BC,0x3B7B8B6D
LOCAL_OBJECT_END(Constants_Tgammal_log_80_h3_G_H)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_stirling)
//0.5*ln(2*Pi)=9.1893853320467266954096885e-01 + 7.2239360881843238220057778e-17
data8 0x3FED67F1C864BEB4, 0x3C94D252F2400510
// Bernulli numbers
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFB //B2 = 8.3333333333333333333333333333e-02
data8 0xBF66C16C16C16C17 //B4 = -2.7777777777777777777777777778e-03
data8 0x3F4A01A01A01A01A //B6 = 7.9365079365079365079365079365e-04
data8 0xBF43813813813814 //B8 = -5.9523809523809523809523809524e-04
data8 0x3F4B951E2B18FF23 //B10 = 8.4175084175084175084175084175e-04
data8 0xBF5F6AB0D9993C7D //B12 = -1.9175269175269175269175269175e-03
data8 0x3F7A41A41A41A41A //B14 = 6.4102564102564102564102564103e-03
data8 0xBF9E4286CB0F5398 //B16 = -2.9550653594771241830065359477e-02
data8 0x3FC6FE96381E0680 //B18 = 1.7964437236883057316493849002e-01
data8 0x3FE0000000000000 // 0.5
LOCAL_OBJECT_END(Constants_Tgammal_stirling)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_sin)
// Polynomial coefficients for the sin(Pi*x)/Pi, 0 <= |x| < 0.5
//A2 = 8.1174242528335360802316245099e-01 + 5.1302254650266899774269946201e-18
data8 0x3FE9F9CB402BC46C, 0x3C57A8B3819B7CEC
//A1 = -1.6449340668482264060656916627e+00 + -3.0210280454695477893051351574e-17
data8 0xBFFA51A6625307D3, 0xBC816A402079D0EF
data8 0xF3AEF1FFCCE6C813, 0x0000BFE3 //A9 = -7.0921197799923779127089910470e-09
data8 0x87D54408E6D4BB9D, 0x00003FE9 //A8 = 2.5300880778252693946712766029e-07
data8 0xEA12033DCE7B8ED9, 0x0000BFED //A7 = -6.9758403885461690048189307819e-06
data8 0x9BA38C952A59D1A8, 0x00003FF2 //A6 = 1.4842878710882320255092707181e-04
data8 0x99C0B55178FF0E38, 0x0000BFF6 //A5 = -2.3460810348048124421268761990e-03
data8 0xD63402E798FEC896, 0x00003FF9 //A4 = 2.6147847817611456327417812320e-02
data8 0xC354723906D95E92, 0x0000BFFC //A3 = -1.9075182412208257558294507774e-01
LOCAL_OBJECT_END(Constants_Tgammal_sin)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_Arg)
data4 0x00000000,0xB17217F4,0x00003FF2,0x00000000 // L_hi = hi part log(2)/2^12
data4 0xF278ECE6,0xF473DE6A,0x00003FD4,0x00000000 // L_lo = lo part log(2)/2^12
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_Arg)
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_A)
data4 0xB1B736A0,0xAAAAAAAB,0x00003FFA,0x00000000 // A3
data4 0x90CD6327,0xAAAAAAAB,0x00003FFC,0x00000000 // A2
data4 0xFFFFFFFF,0xFFFFFFFF,0x00003FFD,0x00000000 // A1
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_A)
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_T1)
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_T1)
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_T2)
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_T2)
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_W1)
data8 0x0000000000000000, 0xBE384454171EC4B4
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_W1)
LOCAL_OBJECT_START(Constants_Tgammal_exp_64_W2)
data8 0x0000000000000000, 0xBE641F2537A3D7A2
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
LOCAL_OBJECT_END(Constants_Tgammal_exp_64_W2)
LOCAL_OBJECT_START(Constants_Tgammal_poly)
// Polynomial coefficients for the tgammal(x), 2 <= |x| < 3
//A5 = 2.8360780594841213109180699803e-02 + 2.2504152891014320704380000000e-19
data8 0x3F9D0A9BC49353D2, 0x3C109AEA0F23CE2D
//A4 = 1.0967323400216015538699565468e-01 + 9.9225166000430644587276000000e-18
data8 0x3FBC138B89492C5B, 0x3C66E138506D5652
//A3 = 2.5387124684114281691904579930e-01 + 2.2667777637607113205546600000e-17
data8 0x3FD03F6D2FA4F4F8, 0x3C7A2258DA8CD8B1
data8 0xC5866457328BC39B, 0x00003FE3 //A20 = 5.7487331964156762795056629138e-09
data8 0xE93D9F1ACD59C929, 0x0000BFE4 //A19= -1.3576396100397317396956445658e-08
data8 0xE33389C8F6CBA813, 0x00003FE5 //A18 = 2.6449714924964597501721434271e-08
data8 0x8FE7B25B9CD26D2A, 0x0000BFE7 //A17= -6.7011017946055513660266853311e-08
data8 0xB89F4721BFBC15B0, 0x00003FE8 //A16 = 1.7194280320370423615174419192e-07
data8 0xE49CBDC1874EBABA, 0x0000BFE9 //A15= -4.2582353660153782928729466776e-07
data8 0x913AF50A336129CA, 0x00003FEB //A14 = 1.0820500665257088283172211622e-06
data8 0xABCF0F7313B3B332, 0x0000BFEC //A13= -2.5601510627710417669568115706e-06
//A2 = 6.5455857798133676439533701341e-01 + 1.3292075193155190798867000000e-18
data8 0x3FE4F224D4B7E01C, 0x3C3885014A2B8319
//A1 = 9.3473452162608550164435428087e-01 + 3.2785154201417136611642400000e-17
data8 0x3FEDE9585F1A7093, 0x3C82E63C1B5028BF
//A0 = 1.3293403881791368004172682049e+00 + 2.2005689328949279282607500000e-16
data8 0x3FF544FA6D47B38F, 0x3CAFB6AA9829E81F
data8 0xF3668F799997C76D, 0x00003FED //A12 = 7.2539039479124273660331538367e-06
data8 0xD6C6BBD54CDEAEB1, 0x0000BFEE //A11= -1.2801665282681088568639378920e-05
data8 0x809E4763B06F6883, 0x00003FF1 //A10 = 6.1329973609906572700697893187e-05
data8 0x8443B000F8F9A71A, 0x00003FED //A9 = 3.9417864189995544394564413428e-06
data8 0xC5C7E6D62A6991D8, 0x00003FF4 //A8 = 7.5447412886334708803357581519e-04
data8 0xD2AF690725C62D88, 0x00003FF5 //A7 = 1.6074004848394703022110823298e-03
data8 0xAA44E635D4B7B682, 0x00003FF8 //A6 = 1.0392403425906843901680697839e-02
//
// Polynomial coefficients for the tgammal(x), 4 <= |x| < 5
//A5 = 1.1600674810589555185913468449e+00 + 3.0229979112715124660731000000e-17
data8 0x3FF28FA2EB44D22E, 0x3C816D285234C815
//A4 = 3.1374268565470946334983182169e+00 + 1.3694868953995008497659600000e-16
data8 0x400919734073B1E1, 0x3CA3BC83CD7E9565
//A3 = 7.0834593993741057360580271052e+00 + 3.3899702569039156457249800000e-16
data8 0x401C5576617B6C1F, 0x3CB86D6431213296
data8 0xA4A5FB49C094966B, 0x00003FDA //A20 = 9.3591760106637809309720130828e-12
data8 0xA9260DA0F51D7ED8, 0x00003FDD //A19 = 7.6919898428091669411809372180e-11
data8 0xA16441DFB14BD6E1, 0x00003FE0 //A18 = 5.8713933014370867331213494535e-10
data8 0x95F098D9C2234849, 0x00003FE3 //A17 = 4.3638234584169302324461091035e-09
data8 0x8581817400E5AD2B, 0x00003FE6 //A16 = 3.1084260332429955234755367839e-08
data8 0xE272940E373EBE15, 0x00003FE8 //A15 = 2.1089573544273993580820317236e-07
data8 0xB6B3391145D226FB, 0x00003FEB //A14 = 1.3612217421122787182942706259e-06
data8 0x8B9428C4DF95FCD5, 0x00003FEE //A13 = 8.3195416382628990683949003789e-06
//A2 = 1.2665135075272345943631080445e+01 + 9.8721896915973874255877000000e-16
data8 0x4029548C95A76F38, 0x3CD1C8BE715B8E13
//A1 = 1.6154969393303069580269948347e+01 + 9.6850518810678379641029000000e-16
data8 0x403027AC12FC1E1E, 0x3CD172711C15501B
//A0 = 1.1631728396567448058362970187e+01 + 8.7078125362814179268673000000e-16
data8 0x40274371E7866C65, 0x3CCF5F8A1A5FACA0
data8 0xC94A903114272C03, 0x00003FF0 //A12 = 4.7991576836334427243159066630e-05
data8 0x8844262960E04BE6, 0x00003FF3 //A11 = 2.5990716419283017929486175141e-04
data8 0xAC5418A76767678D, 0x00003FF5 //A10 = 1.3147621245497801180184809726e-03
data8 0xCA231B6EFE959132, 0x00003FF7 //A9 = 6.1687358811367989146517222415e-03
data8 0xDA38E39C13819D2A, 0x00003FF9 //A8 = 2.6638454961912040754759086920e-02
data8 0xD696DF8D8389FE53, 0x00003FFB //A7 = 1.0477995539298934056097943975e-01
data8 0xBDD5C153048BC435, 0x00003FFD //A6 = 3.7077144754791605130056406006e-01
//
// Polynomial coefficients for the tgammal(x), 6 <= |x| < 7
//A5 = 6.7169398121054200601065531373e+01 + 2.9481001527213915901489600000e-15
data8 0x4050CAD76B377BA0, 0x3CEA8DDB2B2DE93E
//A4 = 1.6115104376855398982115730178e+02 + 1.3422421925418824418257300000e-14
data8 0x406424D559BDC687, 0x3D0E397FDB5B33DC
//A3 = 3.1812194028053562533386866562e+02 + 3.9881709875858650942409600000e-14
data8 0x4073E1F377A6CF73, 0x3D26738F63FE9C4C
data8 0xD6E1B5FF90CAABD3, 0x00003FE1 //A20 = 1.5634700199277480081025480635e-09
data8 0xD451987B925DD37E, 0x00003FE4 //A19 = 1.2358576813211397717382327174e-08
data8 0xBFC151B67FA58E6B, 0x00003FE7 //A18 = 8.9292951435632759686382657901e-08
data8 0xA9034C5E1D67572E, 0x00003FEA //A17 = 6.2962205718327848327368724720e-07
data8 0x8E40F6EAA30A71EC, 0x00003FED //A16 = 4.2394926442967995119170095258e-06
data8 0xE3C3541B03A1C350, 0x00003FEF //A15 = 2.7151465666109594512258841637e-05
data8 0xACE2E58436B2DDCE, 0x00003FF2 //A14 = 1.6487723793339152877117376243e-04
data8 0xF7EAF8D8D1CAA3D1, 0x00003FF4 //A13 = 9.4573158112768812533636022369e-04
//A2 = 4.8664351544258869353143381886e+02 + 4.7424047995944376868895400000e-14
data8 0x407E6A4BD6D9463B, 0x3D2AB2868D79E192
//A1 = 5.1615277644992545447166776285e+02 + 3.0901956935588717379242200000e-14
data8 0x40802138E2DC003B, 0x3D216570FB601AEA
//A0 = 2.8788527781504433278314536437e+02 + 2.8213174117085164944959600000e-14
data8 0x4071FE2A1911F7D6, 0x3D1FC3E4CF4DB5AF
data8 0xA72B88E48D3D1BAB, 0x00003FF7 //A12 = 5.1016252919939028020562237471e-03
data8 0xD2EFB1067DB4FFB2, 0x00003FF9 //A11 = 2.5749059441230515023024615917e-02
data8 0xF788AF9522205C24, 0x00003FFB //A10 = 1.2086617635601742290221382521e-01
data8 0x861A6CE06CB29EAF, 0x00003FFE //A9 = 5.2384071807018493367136112163e-01
data8 0x84FBDE0947718B58, 0x00004000 //A8 = 2.0778727617851237754568261869e+00
data8 0xEEC1371E265A2C3A, 0x00004001 //A7 = 7.4610858525146049022238037342e+00
data8 0xBF514B9BE68ED59D, 0x00004003 //A6 = 2.3914694993947572859629197920e+01
//
// Polynomial coefficients for the tgammal(x), 8 <= |x| < 9
//A5 = 5.8487447114416836484451778233e+03 + 4.7365465221455983144182900000e-13
data8 0x40B6D8BEA568B6FD, 0x3D60AA4D44C2589B
//A4 = 1.2796464063087094473303295672e+04 + 1.2373341702514898266244200000e-12
data8 0x40C8FE3B666B532D, 0x3D75C4752C5B4783
//A3 = 2.2837606581322281272150576115e+04 + 2.6598064610627891398831000000e-13
data8 0x40D64D66D23A7764, 0x3D52B77B3A10EA5C
data8 0xB23418F75B0BE22A, 0x00003FE9 //A20 = 3.3192989594206801808678663868e-07
data8 0xA984A7BC8B856ED2, 0x00003FEC //A19 = 2.5260177918662350066375115788e-06
data8 0x921A49729416372C, 0x00003FEF //A18 = 1.7416797068239475136398213598e-05
data8 0xF5BB9415CC399CA4, 0x00003FF1 //A17 = 1.1717449586392814601938207599e-04
data8 0xC50B91A40B81F9DF, 0x00003FF4 //A16 = 7.5166775151159345732094429036e-04
data8 0x96002572326DB203, 0x00003FF7 //A15 = 4.5776541559407384162139204300e-03
data8 0xD81A1A595E4157BA, 0x00003FF9 //A14 = 2.6379634345126284099420760736e-02
data8 0x92B700D0CFECADD8, 0x00003FFC //A13 = 1.4327622675407940907282658100e-01
//A2 = 3.1237895525940199149772524834e+04 + 3.1280450505163186432331700000e-12
data8 0x40DE8179504C0878, 0x3D8B83BB33FBB766
//A1 = 2.9192841741344487672904506326e+04 + 7.9300780509779689630767000000e-13
data8 0x40DC8235DF171691, 0x3D6BE6C780EE54DF
//A0 = 1.4034407293483411194756627083e+04 + 1.4038139346291543309253700000e-12
data8 0x40CB693422315F90, 0x3D78B23746113FCE
data8 0xBAE50807548BC711, 0x00003FFE //A12 = 7.3005724123917935346868107005e-01
data8 0xDE28B1F57E68CFB6, 0x00004000 //A11 = 3.4712338349724065462763671443e+00
data8 0xF4DCA5A5FF901118, 0x00004002 //A10 = 1.5303868912154033908205911714e+01
data8 0xF85AAA1AD5E84E5E, 0x00004004 //A9 = 6.2088539523416399361048051373e+01
data8 0xE5AA8BB1BF02934D, 0x00004006 //A8 = 2.2966619406617480799195651466e+02
data8 0xBF6CFEFD67F59845, 0x00004008 //A7 = 7.6570306334640770654588802417e+02
data8 0x8DB5D2F001635C29, 0x0000400A //A6 = 2.2673639984182571062068713002e+03
//
// Polynomial coefficients for the tgammal(x), 10 <= |x| < 11
//A5 = 7.2546009516580589115619659424e+05 + 1.0343348865365065212891728822e-10
data8 0x412623A830B99290, 0x3DDC6E7C157611C4
//A4 = 1.4756292870840241666883230209e+06 + 8.1516565365333844166705674775e-11
data8 0x4136842D497E56AF, 0x3DD66837E4C3F9EE
//A3 = 2.4356116926500420086085796356e+06 + 3.5508860076560925641351069404e-10
data8 0x4142950DD8A8C1AF, 0x3DF866C8E3DD0980
data8 0xB7FD0D1EEAC38EB4, 0x00003FF1 //A20 = 8.7732544640091602721643775932e-05
data8 0xA9345C64AC750AE9, 0x00003FF4 //A19 = 6.4546407626804942279126469603e-04
data8 0x8BEABC81BE1E93C9, 0x00003FF7 //A18 = 4.2699261134524096128048819443e-03
data8 0xE1CD281EDD7315F8, 0x00003FF9 //A17 = 2.7563646660310313164706189622e-02
data8 0xAD8A5BA6D0FD9758, 0x00003FFC //A16 = 1.6947310643831556048460963841e-01
data8 0xFCDDA464AD3F182E, 0x00003FFE //A15 = 9.8775699098518676937088606052e-01
data8 0xAE0DCE2F7B60D1AE, 0x00004001 //A14 = 5.4391852309591064073782104822e+00
data8 0xE1745D9ABEB8D1A7, 0x00004003 //A13 = 2.8181819161363002758615770457e+01
//A2 = 3.0619656223573554307222366333e+06 + 1.0819940302945474471259520006e-10
data8 0x41475C66CFA967E4, 0x3DDDBDDB2A27334B
//A1 = 2.6099413018962685018777847290e+06 + 3.6851882860056025385268615240e-10
data8 0x4143E98AA6A48974, 0x3DF9530D42589AB6
//A0 = 1.1332783889487853739410638809e+06 + 1.9339350553312096248591829758e-10
data8 0x41314ADE639225C9, 0x3DEA946DD6C2C8D3
data8 0x88BCFAAE71812A1C, 0x00004006 //A12 = 1.3673820009490115307300592012e+02
data8 0x9A770F5AB540A326, 0x00004008 //A11 = 6.1786031215382040427126476507e+02
data8 0xA170C1D2C6B413FC, 0x0000400A //A10 = 2.5830473201524594051391525170e+03
data8 0x9AE56061CB02EB55, 0x0000400C //A9 = 9.9133441230507404119297200255e+03
data8 0x872390769650FBE2, 0x0000400E //A8 = 3.4595564309496661629764193479e+04
data8 0xD3E5E8D6923910C1, 0x0000400F //A7 = 1.0849181904819284819615140521e+05
data8 0x930D70602F50B754, 0x00004011 //A6 = 3.0116351174131169193070583741e+05
//
// Polynomial coefficients for the tgammal(x), 12 <= |x| < 13
//A5 = 1.2249876249976964294910430908e+08 + 6.0051348061679753770848000000e-09
data8 0x419D34BB29FFC39D, 0x3E39CAB72E01818D
//A4 = 2.3482765927605420351028442383e+08 + 1.1874729051592862323641700000e-08
data8 0x41ABFE5F168D56FA, 0x3E4980338AA7B04B
//A3 = 3.6407329688125067949295043945e+08 + 2.6657200942150363994658700000e-08
data8 0x41B5B35150E199A5, 0x3E5C9F79C0EB5300
data8 0xE89AE0F8D726329D, 0x00003FF9 //A20 = 2.8394164465429105626588451540e-02
data8 0xCF90981F86E38013, 0x00003FFC //A19 = 2.0270002071785908652476845915e-01
data8 0xA56C658079CA8C4A, 0x00003FFF //A18 = 1.2923704984019263122675412350e+00
data8 0x80AEF96A67C5615A, 0x00004002 //A17 = 8.0427183300456238315262463506e+00
data8 0xBE886D7529678931, 0x00004004 //A16 = 4.7633230047847868242503413461e+01
data8 0x858EDBA4CE2F7508, 0x00004007 //A15 = 2.6711607799594541057655957154e+02
data8 0xB0B0A3AF388274F0, 0x00004009 //A14 = 1.4135199810126975119809102782e+03
data8 0xDBA87137988751EF, 0x0000400B //A13 = 7.0290552818218513870879313985e+03
//A2 = 4.2828433593031734228134155273e+08 + 3.9760422293645854535247300000e-08
data8 0x41B98719AFEE2947, 0x3E6558A17E0D3007
//A1 = 3.4008253676084774732589721680e+08 + 1.2558352335001093116071000000e-09
data8 0x41B4453F68C2C6EB, 0x3E159338C5BC7EC3
//A0 = 1.3684336546556583046913146973e+08 + 2.6786516700381562934240300000e-08
data8 0x41A05020CAEE5EA5, 0x3E5CC3058A858579
data8 0xFF5E3940FB4BA576, 0x0000400D //A12 = 3.2687111823895439312116108631e+04
data8 0x8A08C124C7F74B6C, 0x00004010 //A11 = 1.4134701786994123329786229006e+05
data8 0x89D701953540BFFB, 0x00004012 //A10 = 5.6459209892773907605385652281e+05
data8 0xFC46344B3116C3AD, 0x00004013 //A9 = 2.0666305367147234406757715163e+06
data8 0xD183EBD7A400151F, 0x00004015 //A8 = 6.8653979211730981618367536737e+06
data8 0x9C083A40742112F4, 0x00004017 //A7 = 2.0451444503543981795037456447e+07
data8 0xCD3C475B1A8B6662, 0x00004018 //A6 = 5.3801245423495149598177886823e+07
LOCAL_OBJECT_END(Constants_Tgammal_poly)
LOCAL_OBJECT_START(Constants_Tgammal_poly_splitted)
// Polynomial coefficients for the tgammal(x), 1 <= |x| < 1.25
//A5 = -9.8199506890310417350775651357e-01+ -3.2546247786122976510752200000e-17
data8 0xBFEF6C80EC38B509, 0xBC82C2FA7A3DE3BD
//A4 = 9.8172808683439960475425323239e-01 + 4.4847611775298520359811400000e-17
data8 0x3FEF6A51055096B0, 0x3C89DA56DE95EFE4
//A3 = -9.0747907608088618225394839101e-01 +-1.0244057366544064435443970000e-16
data8 0xBFED0A118F324B62, 0xBC9D86C7B9EBCFFF
data8 0xB8E3FDAA66CC738E, 0x00003FFB //A20 = 9.0278608095877488976217714815e-02
data8 0xA76067AE1738699C, 0x0000BFFD //A19 =-3.2690738678103132837070881737e-01
data8 0x9D66B13718408C44, 0x00003FFE //A18 = 6.1484820933424283818320582920e-01
data8 0xD4AC67BBB4AE5599, 0x0000BFFE //A17 =-8.3075569470082063491389474937e-01
data8 0xF1426ED1C1488DB3, 0x00003FFE //A16 = 9.4241993542644505594957058785e-01
data8 0xFC12EB07AA6F4B6B, 0x0000BFFE //A15 =-9.8466366707947121954333549690e-01
data8 0xFF2B32CFE5B0DDC8, 0x00003FFE //A14 = 9.9675290656677214804168895915e-01
data8 0xFFD8E7E6FF3662EA, 0x0000BFFE //A13 =-9.9940347089360552383472582319e-01
//A2 = 9.8905599532797250361682017683e-01 + 5.1760162410376024240867300000e-17
data8 0x3FEFA658C23B1578, 0x3C8DD673A61F6FE7
//A1 = -5.7721566490153275452712478000e-01+ -1.0607935612223465065923310000e-16
data8 0xBFE2788CFC6FB618, 0xBC9E9346622D53B7
//A0 = 9.9999999999999988897769753748e-01 + 1.1102230245372554544790880000e-16
data8 0x3FEFFFFFFFFFFFFF, 0x3C9FFFFFFFF51E4E
data8 0xFFF360DF628F0BC9, 0x00003FFE //A12 = 9.9980740979895815468216470840e-01
data8 0xFFEF8F9A72B40480, 0x0000BFFE //A11 = -9.9974916001038145045939523470e-01
data8 0xFFE037B8C7E39952, 0x00003FFE //A10 = 9.9951504002809911822597567307e-01
data8 0xFFC01E08F348BED2, 0x0000BFFE //A9 = -9.9902522772325406705059517941e-01
data8 0xFF83DAC83119B52C, 0x00003FFE //A8 = 9.9810569179053383842734164901e-01
data8 0xFEF9F8AB891ABB24, 0x0000BFFE //A7 = -9.9600176036720260345608796766e-01
data8 0xFE3F0537573C8235, 0x00003FFE //A6 = 9.9314911461918778676646301341e-01
//
// Polynomial coefficients for the tgammal(x), 1.25 <= |x| < 1.75
//A5 = -7.7523052299853054125655660300e-02+ -1.2693512521686721504433600000e-17
data8 0xBFB3D88CFE50601B, 0xBC6D44ED60EE2170
//A4 = 1.4464535904462152982041800442e-01 + 2.5426820829345729856648800000e-17
data8 0x3FC283BD374EB2A9, 0x3C7D50AC436187C3
//A3 = -1.0729480456477220873257039102e-01+ -6.2429894945456418196551000000e-18
data8 0xBFBB77AC1CA2EBA5, 0xBC5CCA6BCC422D41
data8 0xF732D2689F323283, 0x00003FF2 //A20 = 2.3574688251652899567587145422e-04
data8 0xB6B00E23DE89D13A, 0x0000BFF3 //A19 =-3.4844916488842618776630058875e-04
data8 0xE98396FE4A1B2799, 0x00003FF3 //A18 =4.4539265198744452020440735977e-04
data8 0xAF8D235A640DB1A2, 0x0000BFF4 //A17 =-6.6967514303333563295261178346e-04
data8 0x8513B736C918B261, 0x00003FF5 //A16 = 1.0152970456990865810615917715e-03
data8 0xC790A1A2C78D8E17, 0x0000BFF5 //A15 =-1.5225598630329403515321688394e-03
data8 0x959706CFA638CDE2, 0x00003FF6 //A14 = 2.2825614575133879623648932383e-03
data8 0xE050A6021E129860, 0x0000BFF6 //A13 =-3.4227757733947066666295285936e-03
//A2 = 4.1481345368830113695679528973e-01 + 3.1252439808354284892632100000e-17
data8 0x3FDA8C4DBA620D56, 0x3C82040BCB483C76
//A1 = 3.2338397448885010387886751460e-02 + 3.4437825798552300531443100000e-18
data8 0x3FA08EA88EE561B1, 0x3C4FC366D6C64806
//A0 = 8.8622692545275794095971377828e-01 + 7.2689375867553992399219000000e-17
data8 0x3FEC5BF891B4EF6A, 0x3C94F3877D311C0C
data8 0xA8275AADC09D16FC, 0x00003FF7 //A12 = 5.1316445128621071486146117136e-03
data8 0xFBFE2CE9215267A2, 0x0000BFF7 //A11= -7.6902121820788373000579382408e-03
data8 0xBCC8EEAB67ECD91D, 0x00003FF8 //A10 = 1.1522515369164312742737727262e-02
data8 0x8D1614BB97E5E8C2, 0x0000BFF9 //A9 = -1.7222443097804730395560633583e-02
data8 0xD3A963578BE291E3, 0x00003FF9 //A8 = 2.5837606456090186343624210891e-02
data8 0x9BA7EAE64C42FDF7, 0x0000BFFA //A7 = -3.8001935555045161419575037512e-02
data8 0xF0115BA1A77607E7, 0x00003FFA //A6 = 5.8610303817173477119764956736e-02
//
// Polynomial coefficients for the tgammal(x), 1.75 <= |x| < 2.0
//A5 = 2.6698206874501426502654943818e-04 + 3.4033756836921062797887300000e-20
data8 0x3F317F3740FE2A68, 0x3BE417093234B06E
//A4 = 7.4249010753513894345090307070e-02 + 3.9810018444482764697014200000e-18
data8 0x3FB301FBB0F25A92, 0x3C525BEFFABB622F
//A3 = -8.1576919247086265851720554565e-02+ -5.2716624487804746360745000000e-19
data8 0xBFB4E239984650AC, 0xBC2372F1C4F276FF
data8 0xFEF3AEE71038E9A3, 0x00003FEB //A20 = 1.8995395865421509009969188571e-06
data8 0xA11CFA2672BF876A, 0x0000BFEB //A19 =-1.2003868221414015771269244270e-06
data8 0xF8E107215DAE2164, 0x00003FEC //A18 = 3.7085863210303833432006027217e-06
data8 0xBCDDD3FC011EF7D6, 0x00003FEC //A17 = 2.8143303971756051015245433043e-06
data8 0x8683C4687FA22E68, 0x00003FEE //A16 = 8.0177018464360416764308252462e-06
data8 0xFDA09E5D33E32968, 0x00003FEE //A15 = 1.5117372062443781157389064848e-05
data8 0xFFB00D0CFF4089B4, 0x00003FEF //A14 = 3.0480348961227424242198174995e-05
data8 0xFEF6C39566785085, 0x00003FF0 //A13 = 6.0788135974125244644334004947e-05
//A2 = 4.1184033042643969357854416558e-01 + 1.2103396182129232634761000000e-18
data8 0x3FDA5B978B96BEBF, 0x3C3653AAD0A139E4
//A1 = -4.2278433509846713445057275749e-01+ -4.9429151528135657430413000000e-18
data8 0xBFDB0EE6072093CE, 0xBC56CB907027554F
//A0 = 1.0000000000000000000000000000e+00 + 1.0969171200000000000000000000e-31
data8 0x3FF0000000000000, 0x3981CC6A5B20B4D5
data8 0xFF2B7BA9A8D68C37, 0x00003FF1 //A12 = 1.2167446884801403650547161615e-04
data8 0xFCA53468E3692EF1, 0x00003FF2 //A11 = 2.4094136329542400976250900707e-04
data8 0x808D698A9C993615, 0x00003FF4 //A10 = 4.9038845704938303659791698883e-04
data8 0xF10F8E3FB8BB4AFB, 0x00003FF4 //A9 = 9.1957383840999861214472423976e-04
data8 0x89E224E42F93F005, 0x00003FF6 //A8 = 2.1039333407187324139473634747e-03
data8 0xBAF374824937A323, 0x00003FF6 //A7 = 2.8526458211545152218493600470e-03
data8 0xB6BF7564F52140C6, 0x00003FF8 //A6 = 1.1154045718131014476684982178e-02
//
// Polynomial coefficients for the tgammal(x), 0.0 <= |x| < 0.125
//A5 = -9.8199506890314514073736518185e-01+ -5.9363811993837985890950900000e-17
data8 0xBFEF6C80EC38B67A, 0xBC911C46B447C81F
//A4 = 9.8172808683440015986576554496e-01 + 2.7457414262802803699834200000e-17
data8 0x3FEF6A51055096B5, 0x3C7FA7FF90ACAD1F
//A3 = -9.0747907608088618225394839101e-01 + -1.0676255850934306734701780000e-16
data8 0xBFED0A118F324B62, 0xBC9EC5AFB633438D
data8 0x9217E83FA207CB80, 0x00003FFD //A20 = 2.8533864762086088781083621561e-01
data8 0xA8DABFA52FDF03EC, 0x0000BFFE //A19= -6.5958783896337186303285832783e-01
data8 0xE331ED293AF39F9B, 0x00003FFE //A18 = 8.8748056656454687449654731184e-01
data8 0xF9163C5DDB52419D, 0x0000BFFE //A17= -9.7299554149078295602977718525e-01
data8 0xFEC0A1C672CB9265, 0x00003FFE //A16 = 9.9512683005268190987854104489e-01
data8 0xFFD2D65B8EA7B5F4, 0x0000BFFE //A15= -9.9931087241443958201592847861e-01
data8 0xFFF93AA39EE53445, 0x00003FFE //A14 = 9.9989668364186884793382816496e-01
data8 0xFFFB99A9A3F5F480, 0x0000BFFE //A13= -9.9993286506283835663204999212e-01
//A2 = 9.8905599532797250361682017683e-01 + 5.1778575360788420716540100000e-17
data8 0x3FEFA658C23B1578, 0x3C8DD92B45408D07
//A1 = -5.7721566490153275452712478000e-01+ -1.0607938730998824663273110000e-16
data8 0xBFE2788CFC6FB618, 0xBC9E9346F8FDE55B
//A0 = 9.9999999999999988897769753748e-01 + 1.1102230246251564036631420000e-16
data8 0x3FEFFFFFFFFFFFFF, 0x3C9FFFFFFFFFFFFF
data8 0xFFF7FEBB545812C1, 0x00003FFE //A12 = 9.9987785409425126648628395084e-01
data8 0xFFF00C02E943A3F2, 0x0000BFFE //A11= -9.9975657530855116454438747397e-01
data8 0xFFE0420AADC53820, 0x00003FFE //A10 = 9.9951565514290485919027183699e-01
data8 0xFFC01EB42EF27EEB, 0x0000BFFE //A9 = -9.9902526759155739377365522320e-01
data8 0xFF83DAD0BF23FF12, 0x00003FFE //A8 = 9.9810569378236378800364235948e-01
data8 0xFEF9F8ABDBCDB2F3, 0x0000BFFE //A7 = -9.9600176044241699109053158187e-01
data8 0xFE3F05375988491D, 0x00003FFE //A6 = 9.9314911462127599008937257662e-01
LOCAL_OBJECT_END(Constants_Tgammal_poly_splitted)
.align 64
LOCAL_OBJECT_START(Constants_Tgammal_common)
// Positive overflow value
data8 0x3FE0000000000000 // 0.5
data8 0x3FF8000000000000 // 1.5
data8 0x3FD0000000000000 // 0.25
data8 0x0000000000000000 // 0
data8 0xDB718C066B352E21, 0x00004009 // Positive overflow value
LOCAL_OBJECT_END(Constants_Tgammal_common)
//=======================================================
// Lgamma registers
// General Purpose Registers
GR_l_Log_Table = r33
GR_l_Log_Table1 = r34
GR_l_BIAS = r34
GR_l_Index1 = r35
GR_l_Index2 = r36
GR_l_signif_Z = r37
GR_l_X_0 = r38
GR_l_X_1 = r39
GR_l_X_2 = r40
GR_l_Z_1 = r41
GR_l_Z_2 = r42
GR_l_N = r43
GR_l_Index3 = r44
GR_l_Stirling_Table = r45
GR_l_N_Unbiased = r46
// Floating Point Registers
FR_l_logl_X = f8
FR_l_h_3 = f10
FR_l_poly_hi = f10
FR_l_W = f11
FR_l_S = f12
FR_l_GS_hi = f13
FR_l_Y_lo = f13
FR_l_r_cor = f14
FR_l_G_1 = f15
FR_l_G = f15
FR_l_H_1 = f32
FR_l_H = f32
FR_l_h = f33
FR_l_h_1 = f33
FR_l_N = f33
FR_l_G_2 = f34
FR_l_H_2 = f35
FR_l_h_2 = f36
FR_l_G_3 = f37
FR_l_log2_hi = f38
FR_l_GS_lo = f39
FR_l_H_3 = f40
FR_l_float_N = f41
FR_l_Q_4 = f42
FR_l_Q_3 = f43
FR_l_Q_2 = f44
FR_l_Q_1 = f45
FR_l_Q_5 = f46
FR_l_Q_6 = f47
FR_l_log2_lo = f48
FR_l_r = f49
FR_l_poly_lo = f50
FR_l_poly = f51
FR_l_rsq = f52
FR_l_Y_lo_res = f53
FR_l_Y0 = f55
FR_l_Q0 = f56
FR_l_E0 = f57
FR_l_E2 = f58
FR_l_E1 = f59
FR_l_Y1 = f60
FR_l_E3 = f61
FR_l_Y2 = f62
FR_l_Z = f63
FR_l_Z2 = f64
FR_l_Z4 = f65
FR_l_Z8 = f66
FR_l_CH = f67
FR_l_CL = f68
FR_l_B2 = f69
FR_l_B4 = f70
FR_l_B6 = f71
FR_l_B8 = f72
FR_l_B10 = f73
FR_l_B12 = f74
FR_l_B14 = f75
FR_l_B16 = f76
FR_l_B18 = f77
FR_l_Half = f78
FR_l_SS = f79
FR_l_AbsX_m_Half = f80
FR_l_CXH = f81
FR_l_CXL = f82
FR_l_SSCXH = f83
FR_l_SSCXL = f84
FR_l_XYH = f85
FR_l_XYL = f86
FR_l_Temp = f87
FR_l_logl_YHi = f88
FR_l_logl_YLo = f89
FR_l_SignedXYH = f123
FR_l_AbsX = f127
//=======================================================
// Negative part registers
// General Purpose Registers
GR_n_sin_Table = r47
GR_n_XN = r48
// Float point registers
FR_n_IXNS = f125
FR_n_IXN = f126
FR_n_XNS = f90
FR_n_XS = f91
FR_n_XS2 = f92
FR_n_XS2L = f93
FR_n_XS4 = f94
FR_n_XS7 = f95
FR_n_XS8 = f96
FR_n_TT = f97
FR_n_TH = f98
FR_n_TL = f99
FR_n_A2H = f100
FR_n_A2L = f101
FR_n_A1H = f102
FR_n_A1L = f103
FR_n_A9 = f104
FR_n_A8 = f105
FR_n_A7 = f106
FR_n_A6 = f107
FR_n_A5 = f108
FR_n_A4 = f109
FR_n_A3 = f110
FR_n_PolyH = f111
FR_n_PolyL = f112
FR_n_Poly1H = f113
FR_n_SinxH = f113 // the same as FR_n_Poly1H
FR_n_Poly1L = f114
FR_n_SinxL = f114 // the same as FR_n_Poly1L
FR_n_Tail = f115
FR_n_NegOne = f116
FR_n_Y0 = f117
FR_n_Q0 = f118
FR_n_E0 = f119
FR_n_E2 = f120
FR_n_E1 = f121
FR_n_Y1 = f55
FR_n_E3 = f56
FR_n_Y2 = f57
FR_n_R0 = f58
FR_n_E4 = f59
FR_n_RcpResH = f60
FR_n_Y3 = f61
FR_n_R1 = f62
FR_n_Temp = f63
FR_n_RcpResL = f64
FR_n_ResH = f65
FR_n_ResL = f66
//=======================================================
// Exp registers
// General Purpose Registers
GR_e_ad_Arg = r33
GR_e_ad_A = r34
GR_e_signexp_x = r35
GR_e_exp_x = r35
GR_e_exp_mask = r36
GR_e_ad_W1 = r37
GR_e_ad_W2 = r38
GR_e_M2 = r39
GR_e_M1 = r40
GR_e_K = r41
GR_e_exp_2_mk = r42
GR_e_exp_2_k = r43
GR_e_ad_T1 = r44
GR_e_ad_T2 = r45
GR_e_N_fix = r46
GR_e_one = r47
GR_e_exp_bias = r48
GR_e_sig_inv_ln2 = r49
GR_e_rshf_2to51 = r50
GR_e_exp_2tom51 = r51
GR_e_rshf = r52
// Floating Point Registers
FR_e_RSHF_2TO51 = f10
FR_e_INV_LN2_2TO63 = f11
FR_e_W_2TO51_RSH = f12
FR_e_2TOM51 = f13
FR_e_RSHF = f14
FR_e_Y_hi = f15
FR_e_Y_lo = f32
FR_e_scale = f33
FR_e_float_N = f34
FR_e_N_signif = f35
FR_e_L_hi = f36
FR_e_L_lo = f37
FR_e_r = f38
FR_e_W1 = f39
FR_e_T1 = f40
FR_e_W2 = f41
FR_e_T2 = f42
FR_e_W1_p1 = f43
FR_e_rsq = f44
FR_e_A2 = f45
FR_e_r4 = f46
FR_e_A3 = f47
FR_e_poly = f48
FR_e_T = f49
FR_e_W = f50
FR_e_Wp1 = f51
FR_e_r6 = f52
FR_e_2_mk = f53
FR_e_A1 = f54
FR_e_T_scale = f55
FR_e_result_lo = f56
FR_e_W_T_scale = f57
FR_e_Wp1_T_scale = f58
FR_e_expl_Input_X = f123
FR_e_expl_Input_Y = f124
FR_e_expl_Output_X = f123
FR_e_expl_Output_Y = f124
FR_e_expl_Input_AbsX = f122
//=======================================================
// Common registers
// General Purpose Registers
GR_c_Table = r53
GR_c_NegUnderflow = r54
GR_c_NegSingularity = r55
GR_c_X = r56
GR_c_SignBit = r57
GR_c_13 = r58
// Floating Point Registers
FR_c_PosOverflow = f123
FR_c_XN = f124
//=======================================================
// Polynomial part registers
// General Purpose Registers
GR_p_Table = r59
GR_p_XN = r33
GR_p_Table2 = r34
GR_p_Int = r35
GR_p_Offset = r36
GR_p_Offset2 = r38
GR_p_X_Sgnd = GR_l_signif_Z // = r37
GR_p_Exp = r61
GR_p_Bias = r62
GR_p_0p75 = r63
// Floating Point Registers
FR_p_AbsX = FR_l_AbsX // = f127
FR_p_IXN = FR_n_IXN // = f126
FR_p_XN = f32
FR_p_0p5 = f33
FR_p_1p5 = f34
FR_p_AbsXM1 = f35
FR_p_2 = f36
FR_p_A20 = f37
FR_p_A19 = f38
FR_p_A18 = f39
FR_p_A17 = f40
FR_p_A16 = f41
FR_p_A15 = f42
FR_p_A14 = f43
FR_p_A13 = f44
FR_p_A12 = f45
FR_p_A11 = f46
FR_p_A10 = f47
FR_p_A9 = f48
FR_p_A8 = f49
FR_p_A7 = f50
FR_p_A6 = f51
FR_p_A5H = f52
FR_p_A5L = f53
FR_p_A4H = f54
FR_p_A4L = f55
FR_p_A3H = f56
FR_p_A3L = f57
FR_p_A2H = f58
FR_p_A2L = f59
FR_p_A1H = f60
FR_p_A1L = f61
FR_p_A0H = f62
FR_p_A0L = f63
FR_p_XR = f64
FR_p_XR2 = f65
FR_p_XR2L = f52
FR_p_XR3 = f58
FR_p_XR3L = f38
FR_p_XR4 = f42
FR_p_XR6 = f40
FR_p_XR8 = f37
FR_p_Poly5H = f66
FR_p_Poly5L = f67
FR_p_Poly4H = f53
FR_p_Poly4L = f44
FR_p_Poly3H = f41
FR_p_Poly3L = f47
FR_p_Poly2H = f68
FR_p_Poly2L = f54
FR_p_Poly1H = f55
FR_p_Poly1L = f46
FR_p_Poly0H = f39
FR_p_Poly0L = f43
FR_p_Temp5H = f69
FR_p_Temp5L = f70
FR_p_Temp4H = f71
FR_p_Temp4L = f60
FR_p_Temp2H = f72
FR_p_Temp2L = f73
FR_p_Temp1H = f59
FR_p_Temp1L = f61
FR_p_Temp0H = f49
FR_p_Temp0L = f48
FR_p_PolyTail = f45
FR_p_OddPoly0H = f56
FR_p_OddPoly0L = f51
FR_p_0p25 = f73
//=======================================================
// Negative polynomial part registers
// General Purpose Registers
GR_r_sin_Table = r47
GR_r_sin_Table2 = r60
// Floating Point Registers
FR_r_IXNS = FR_n_IXNS
FR_r_IXN = FR_n_IXN
FR_r_AbsX = FR_l_AbsX
FR_r_A9 = f74
FR_r_A8 = f75
FR_r_A7 = f76
FR_r_A6 = f77
FR_r_A5 = f78
FR_r_A4 = f79
FR_r_A3 = f80
FR_r_A2H = f81
FR_r_A2L = f82
FR_r_A1H = f83
FR_r_A1L = f84
FR_r_XNS = f85
FR_r_XS = f86
FR_r_XS2 = f87
FR_r_XS2L = f88
FR_r_XS4 = f89
FR_r_XS7 = f90
FR_r_XS8 = f91
FR_r_Tail = f92
FR_r_TT = f93
FR_r_TH = f94
FR_r_TL = f95
FR_r_ResH = f96
FR_r_ResL = f97
FR_r_Res3H = f98
FR_r_Res3L = f99
FR_r_Res1H = f100
FR_r_Res1L = f101
FR_r_Y0 = f102
FR_r_Q0 = f103
FR_r_E0 = f104
FR_r_E2 = f105
FR_r_E1 = f106
FR_r_Y1 = f107
FR_r_E3 = f108
FR_r_Y2 = f109
FR_r_R0 = f110
FR_r_E4 = f111
FR_r_ZH = f112
FR_r_Y3 = f113
FR_r_R1 = f114
FR_r_ZHN = f115
FR_r_ZL = f115
FR_r_NegOne = f116
FR_z_Y0 = f102
FR_z_Q0 = f103
FR_z_E0 = f104
FR_z_E2 = f105
FR_z_E1 = f106
FR_z_Y1 = f107
FR_z_E3 = f108
FR_z_Y2 = f109
FR_z_R0 = f110
FR_z_E4 = f111
FR_z_ZH = f112
FR_z_Y3 = f113
FR_z_R1 = f114
FR_z_ZL = f115
// General Purpose Registers
GR_SAVE_PFS = r32
GR_DenOverflow = r33
GR_u_XN = r34
GR_SAVE_B0 = r35
GR_SAVE_GP = r36
GR_SAVE_SP = r37
// Floating Point Registers
FR_u_IXN = f34
// ERROR HANDLER REGISTERS
GR_Parameter_X = r64
GR_Parameter_Y = r65
GR_Parameter_RESULT = r66
GR_Parameter_TAG = r67
FR_RESULT = f8
FR_X = f32
FR_Y = f1
.section .text
GLOBAL_LIBM_ENTRY(tgammal)
{ .mfi
alloc r32 = ar.pfs,0,32,4,0
fabs FR_l_AbsX = f8 // Get absolute value of X
addl GR_n_sin_Table = @ltoff(Constants_Tgammal_sin), gp
}
{ .mfi
addl GR_l_Log_Table=@ltoff(Constants_Tgammal_log_80_Z_G_H_h1#),gp
nop.f 0
addl GR_l_Stirling_Table = @ltoff(Constants_Tgammal_stirling), gp
};;
{ .mfi
getf.sig GR_l_signif_Z = f8 // Significand of X
fcvt.fx.s1 FR_n_IXNS = f8 // Convert to fixed point
addl GR_c_Table = @ltoff(Constants_Tgammal_common), gp
}
{ .mfi
ld8 GR_l_Log_Table = [GR_l_Log_Table]
nop.f 0
addl GR_p_Table = @ltoff(Constants_Tgammal_poly), gp
};;
{ .mfi
ld8 GR_n_sin_Table = [GR_n_sin_Table]
fclass.m p6,p0 = f8,0x1EF // Check x for NaN, 0, INF, denorm
// NatVal.
addl GR_c_NegSingularity = 0x1003E, r0
}
{ .mlx
ld8 GR_l_Stirling_Table = [GR_l_Stirling_Table]
movl GR_c_13 = 0x402A000000000000 // 13.0
};;
{ .mfi
getf.d GR_c_X = f8 // Double prec. X to general register
frcpa.s1 FR_z_Y0,p0 = f1,f8 // y = frcpa(x) (for negatives)
extr.u GR_l_Index1 = GR_l_signif_Z, 59, 4 // = High 4 bits of Z
}
{ .mlx
ld8 GR_c_Table = [GR_c_Table]
movl GR_c_SignBit = 0x8000000000000000 // High bit (sign)
};;
{ .mfi
ld8 GR_p_Table = [GR_p_Table]
fcmp.lt.s1 p15, p14 = f8,f0 // p14 - positive arg, p15 - negative
shl GR_l_Index1 = GR_l_Index1,5 // Adjust Index1 ptr (x32)
}
{ .mfb
adds GR_c_NegUnderflow = 1765, r0
nop.f 0
(p6) br.cond.spnt tgammal_spec // Spec. values processing branch ////////////
// (0s, INFs, NANs, NatVals, denormals) //////
};;
{ .mfi
ldfpd FR_l_CH,FR_l_CL= [GR_l_Stirling_Table], 16 // Load CH, CL
fcvt.fx.trunc.s1 FR_n_IXN = FR_l_AbsX // Abs arg to int by trunc
extr.u GR_l_X_0 = GR_l_signif_Z, 49, 15 // High 15 bit of Z
}
{ .mfi
add GR_l_Index1 = GR_l_Index1,GR_l_Log_Table // Add offset
fma.s1 FR_p_2 = f1, f1, f1 // 2.0
andcm GR_c_X = GR_c_X, GR_c_SignBit // Remove sign
};;
{ .mfi
addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_Z_G_H_h2#), gp
fcmp.lt.s1 p10, p0 = FR_l_AbsX, f1 // If |X|<1 then p10 = 1
nop.i 0
}
{ .mlx
ld2 GR_l_Z_1 = [GR_l_Index1],4 // load Z_1 from Index1
movl GR_l_BIAS = 0x000000000000FFFF // Bias for exponent
};;
{ .mfi
ld8 GR_l_Log_Table = [GR_l_Log_Table]
frcpa.s1 FR_l_Y0, p0 = f1, FR_l_AbsX // y = frcpa(x)
nop.i 0
}
{ .mfi
ldfs FR_l_G_1 = [GR_l_Index1],4 // Load G_1
fsub.s1 FR_l_W = FR_l_AbsX, f1 // W = |X|-1
nop.i 0
};;
{ .mfi
getf.exp GR_l_N_Unbiased= FR_l_AbsX // exponent of |X|
fmerge.se FR_l_S = f1, FR_l_AbsX // S = merging of X and 1.0
cmp.gtu p11, p0 = GR_c_13, GR_c_X // If 1 <= |X| < 13
// then p11 = 1
}
{ .mfb
ldfs FR_l_H_1 = [GR_l_Index1],8 // Load H_1
fcvt.xf FR_n_XNS = FR_n_IXNS // Convert to FP repr. of int X
(p10) br.cond.spnt tgamma_lt_1 // Branch to |X| < 1 path ///////////////////
};;
{ .mfi
ldfpd FR_n_A2H, FR_n_A2L = [GR_n_sin_Table], 16
nop.f 0
pmpyshr2.u GR_l_X_1 = GR_l_X_0,GR_l_Z_1,15 // Adjust Index2 (x32)
}
{ .mfb
ldfe FR_l_B2 = [GR_l_Stirling_Table], 16
nop.f 0
(p11) br.cond.spnt tgamma_lt_13 // Branch to 1 <= |X| < 13 path ///////////////
};;
{ .mfi
ldfe FR_l_h_1 = [GR_l_Index1],0
nop.f 0
sub GR_l_N = GR_l_N_Unbiased, GR_l_BIAS // N - BIAS
}
{ .mib
ldfpd FR_l_B4,FR_l_B6= [GR_l_Stirling_Table], 16 // Load C
(p15) cmp.geu.unc p8,p0 = GR_l_N_Unbiased, GR_c_NegSingularity
(p8) br.cond.spnt tgammal_singularity // Singularity for arg < to -2^63 //////
};;
{ .mmi
(p15) ldfpd FR_n_A1H, FR_n_A1L = [GR_n_sin_Table], 16
ldfpd FR_l_B8, FR_l_B10 = [GR_l_Stirling_Table], 16
add GR_c_Table = 0x20, GR_c_Table
};;
{ .mfi
(p15) ldfe FR_n_A9 = [GR_n_sin_Table], 16
fma.s1 FR_l_Q0 = f1,FR_l_Y0,f0 // Q0 = Y0
nop.i 0
}
{ .mfi
ldfpd FR_l_B12, FR_l_B14 = [GR_l_Stirling_Table], 16
fnma.s1 FR_l_E0 = FR_l_Y0,FR_l_AbsX,f1 // e = 1-b*y
nop.i 0
};;
{ .mfi
(p15) ldfe FR_n_A8 = [GR_n_sin_Table], 16
fcvt.xf FR_c_XN = FR_n_IXN // Convert to FP repr. of int X
extr.u GR_l_Index2 = GR_l_X_1, 6, 4 // Extract Index2
}
{ .mfi
ldfpd FR_l_B16, FR_l_B18 = [GR_l_Stirling_Table], 16
nop.f 0
nop.i 0
};;
{ .mfi
(p15) ldfe FR_n_A7 = [GR_n_sin_Table], 16
fms.s1 FR_l_CXH = FR_l_CH, f1, FR_l_AbsX // CXH = CH+|X|
shl GR_l_Index2 = GR_l_Index2,5
}
{ .mfi
ldfd FR_l_Half = [GR_l_Stirling_Table] // Load 0.5
nop.f 0
nop.i 0
};;
{ .mfi
add GR_l_Index2 = GR_l_Index2, GR_l_Log_Table // Add offset
nop.f 0
nop.i 0
}
{ .mfi
(p15) ldfe FR_n_A6 = [GR_n_sin_Table], 16
(p15) fma.s1 FR_n_XS = FR_l_AbsX , f1, FR_n_XNS // xs = x - int(x)
nop.i 0
};;
{ .mmi
ld2 GR_l_Z_2 = [GR_l_Index2],4
addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_h3_G_H#),gp
nop.i 0
};;
{ .mfi
ld8 GR_l_Log_Table = [GR_l_Log_Table]
fma.s1 FR_l_E2 = FR_l_E0,FR_l_E0,FR_l_E0 // e2 = e+e^2
nop.i 0
}
{ .mfi
ldfs FR_l_G_2 = [GR_l_Index2],4
fma.s1 FR_l_E1 = FR_l_E0,FR_l_E0,f0 // e1 = e^2
nop.i 0
};;
{ .mmi
ldfs FR_l_H_2 = [GR_l_Index2],8
(p15) ldfe FR_n_A5 = [GR_n_sin_Table], 16
nop.i 0
};;
{ .mfi
setf.sig FR_l_float_N = GR_l_N // float_N = Make N a fp number
nop.f 0
pmpyshr2.u GR_l_X_2 = GR_l_X_1,GR_l_Z_2,15 // X_2 = X_1 * Z_2
}
{ .mfi
ldfe FR_l_h_2 = [GR_l_Index2],0
fma.s1 FR_l_CXL = FR_l_AbsX, f1, FR_l_CXH // CXL = |X|+CXH
add GR_l_Log_Table1= 0x200, GR_l_Log_Table
};;
{ .mfi
(p15) ldfe FR_n_A4 = [GR_n_sin_Table], 16
(p15) fcmp.eq.unc.s1 p9,p0 = FR_l_AbsX, FR_c_XN //if argument is integer
// and negative
nop.i 0
}
{ .mfi
ldfe FR_c_PosOverflow = [GR_c_Table],16 //Load pos overflow value
(p15) fma.s1 FR_n_XS2 = FR_n_XS, FR_n_XS, f0 // xs^2 = xs*xs
nop.i 0
};;
{ .mfi
(p15) ldfe FR_n_A3 = [GR_n_sin_Table], 16
nop.f 0
nop.i 0
};;
{ .mfi
(p15) getf.sig GR_n_XN = FR_n_IXN // int(x) to general reg
fma.s1 FR_l_Y1 = FR_l_Y0,FR_l_E2,FR_l_Y0 // y1 = y+y*e2
nop.i 0
}
{ .mfb
nop.m 0
fma.s1 FR_l_E3 = FR_l_E1,FR_l_E1,FR_l_E0 // e3 = e+e1^2
(p9) br.cond.spnt tgammal_singularity // Singularity for integer /////////////
// and negative arguments //////////////
};;
{ .mfi
nop.m 0
fms.s1 FR_l_AbsX_m_Half = FR_l_AbsX, f1, FR_l_Half // |x|-0.5
extr.u GR_l_Index2 = GR_l_X_2, 1, 5 // Get Index3
};;
{ .mfi
shladd GR_l_Log_Table1= GR_l_Index2, 2, GR_l_Log_Table1
nop.f 0
shladd GR_l_Index3 = GR_l_Index2,4, GR_l_Log_Table // Index3
}
{ .mfb
(p15) cmp.gtu.unc p11, p0 = GR_n_XN, GR_c_NegUnderflow // X < -1765
fms.s1 FR_l_CXL = FR_l_CH, f1, FR_l_CXL // CXL = CH - CXL
(p11) br.cond.spnt tgammal_underflow // Singularity for negative argument //////
// at underflow domain (X < -1765) //////
};;
{ .mfi
addl GR_l_Log_Table = @ltoff(Constants_Tgammal_log_80_Q#), gp
(p15) fma.s1 FR_n_TT = FR_n_A2L, FR_n_XS2, f0 // T=A2L*x^2
tbit.nz.unc p13, p12 = GR_n_XN, 0x0 // whether [X] odd or even
}
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_XS2L = FR_n_XS, FR_n_XS, FR_n_XS2 // xs^2 Low part
nop.i 0
};;
{ .mfi
ld8 GR_l_Log_Table = [GR_l_Log_Table]
(p15) fma.s1 FR_n_A7 = FR_n_A8, FR_n_XS2, FR_n_A7 // poly tail
nop.i 0
}
{ .mfi
ldfe FR_l_h_3 = [GR_l_Index3],12
(p15) fma.s1 FR_n_XS4 = FR_n_XS2, FR_n_XS2, f0 // xs^4 = xs^2*xs^2
nop.i 0
};;
{ .mfi
ldfs FR_l_H_3 = [GR_l_Log_Table1], 0
fma.s1 FR_l_Y2 = FR_l_Y1, FR_l_E3, FR_l_Y0 // y2 = y+y1*e3
nop.i 0
}
{ .mfi
ldfs FR_l_G_3 = [GR_l_Index3], 0
fnma.s1 FR_l_Z = FR_l_AbsX,FR_l_Q0,f1 // r = a-b*q
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_l_G = FR_l_G_1, FR_l_G_2 // G = G1 * G_2
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_l_H = FR_l_H_1, FR_l_H_2 // H = H_1 + H_2
nop.i 0
};;
{ .mfi
ldfe FR_l_log2_hi = [GR_l_Log_Table],16 // load log2_hi part
fadd.s1 FR_l_h = FR_l_h_1, FR_l_h_2 // h = h_1 + h_2
nop.i 0
}
{ .mfi
nop.m 0
fcvt.xf FR_l_float_N = FR_l_float_N // int(N)
nop.i 0
};;
{ .mfi
ldfe FR_l_log2_lo = [GR_l_Log_Table],16 // Load log2_lo part
fma.s1 FR_l_CXL = FR_l_CXL, f1, FR_l_CL
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TT = FR_n_A2H, FR_n_XS2L, FR_n_TT // T=A2H*x2L+T
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_6 = [GR_l_Log_Table],16
(p15) fma.s1 FR_n_A3 = FR_n_A4, FR_n_XS2, FR_n_A3 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_A5 = FR_n_A6, FR_n_XS2, FR_n_A5 // poly tail
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_5 = [GR_l_Log_Table],16
(p15) fabs FR_n_XS = FR_n_XS // abs(xs)
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_Z = FR_l_Z,FR_l_Y2,FR_l_Q0 // x_hi = q+r*y2
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_4 = [GR_l_Log_Table],16
(p15) fma.s1 FR_n_A7 = FR_n_A9, FR_n_XS4, FR_n_A7 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_XS7 = FR_n_XS4, FR_n_XS2, f0 // = x^4*x^2
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_3 = [GR_l_Log_Table],16
fneg FR_n_NegOne = f1 // -1.0
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_XS8 = FR_n_XS4, FR_n_XS4, f0 // xs^8 = xs^4*xs^4
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_2 = [GR_l_Log_Table],16
fadd.s1 FR_l_h = FR_l_h, FR_l_h_3 // h = h_1 + h_2 + h_3
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TH = FR_n_A2H, FR_n_XS2, FR_n_TT // A2H*xs2+T
nop.i 0
};;
{ .mfi
ldfe FR_l_Q_1 = [GR_l_Log_Table],16
fmpy.s1 FR_l_G = FR_l_G, FR_l_G_3 // G = G_1 * G_2 * G_3
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_l_H = FR_l_H, FR_l_H_3 // H = H_1 + H_2 + H_3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_Z2 = FR_l_Z, FR_l_Z, f0 // Z^2
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_A3 = FR_n_A5, FR_n_XS4, FR_n_A3 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
(p14) fcmp.gt.unc.s1 p7,p0 = FR_l_AbsX, FR_c_PosOverflow //X > 1755.5483
// (overflow domain, result cannot be represented by normal value)
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_XS7 = FR_n_XS7, FR_n_XS, f0 // x^7 construction
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_TL = FR_n_A2H, FR_n_XS2, FR_n_TH // A2H*xs2+TH
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_PolyH = FR_n_TH, f1, FR_n_A1H // PolyH=TH+A1H
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_l_GS_hi = FR_l_G, FR_l_S // GS_hi = G*S
nop.i 0
}
{ .mfb
nop.m 0
fms.s1 FR_l_r = FR_l_G, FR_l_S, f1 // r = G*S -1
(p7) br.cond.spnt tgammal_overflow // Overflow path for arg > 1755.5483 //////
};;
{ .mfi
nop.m 0
fma.s1 FR_l_B14 = FR_l_B16, FR_l_Z2, FR_l_B14// Bernoulli tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_Z4 = FR_l_Z2, FR_l_Z2, f0 // Z^4 = Z^2*Z^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_B2 = FR_l_B4, FR_l_Z2, FR_l_B2 // Bernoulli tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_B6 = FR_l_B8, FR_l_Z2, FR_l_B6 // Bernoulli tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_B10 = FR_l_B12, FR_l_Z2, FR_l_B10// Bernoulli tail
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_Tail = FR_n_A7, FR_n_XS8, FR_n_A3 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TL = FR_n_TL, f1, FR_n_TT // TL = TL+T
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_PolyL = FR_n_A1H, f1, FR_n_PolyH // polyH+A1H
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_poly_lo = FR_l_r, FR_l_Q_6, FR_l_Q_5 // Q_5+r*Q_6
nop.i 0
}
{ .mfi
nop.m 0
fsub.s1 FR_l_r_cor = FR_l_GS_hi, f1 // r_cor = GS_hi -1
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_l_GS_lo = FR_l_G, FR_l_S, FR_l_GS_hi // G*S-GS_hi
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_poly = FR_l_r, FR_l_Q_2, FR_l_Q_1 //poly=r*Q2+Q1
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_l_rsq = FR_l_r, FR_l_r // rsq = r * r
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_G = FR_l_float_N, FR_l_log2_hi, FR_l_H // Tbl =
// float_N*log2_hi + H
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_Y_lo = FR_l_float_N, FR_l_log2_lo, FR_l_h // Y_lo=
// float_N*log2_lo + h
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_B14 = FR_l_B18, FR_l_Z4, FR_l_B14 //bernulli tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_B2 = FR_l_B6, FR_l_Z4, FR_l_B2 //bernulli tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_Z8 = FR_l_Z4, FR_l_Z4, f0 //bernulli tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_poly_lo = FR_l_r, FR_l_poly_lo, FR_l_Q_4 // poly_lo =
// Q_4 + r * poly_lo
nop.i 0
}
{ .mfi
nop.m 0
fsub.s1 FR_l_r_cor = FR_l_r_cor, FR_l_r // r_cor = r_cor - r
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_PolyL = FR_n_PolyL, f1, FR_n_TH // polyL+TH
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TT = FR_n_TL, f1, FR_n_A1L // TL+A1L
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_l_logl_YHi = FR_l_G, FR_l_r // Y_hi = Tbl + r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_B10 = FR_l_B14, FR_l_Z4, FR_l_B10 //bernulli tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_poly_lo = FR_l_r, FR_l_poly_lo, FR_l_Q_3 // poly_lo =
// Q_3 + r * poly_lo
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_l_r_cor = FR_l_r_cor, FR_l_GS_lo // r_cor=r_cor+GS_lo
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_PolyL = FR_n_PolyL, f1, FR_n_TT // polyL+TT
nop.i 0
};;
{ .mfi
nop.m 0
fsub.s1 FR_l_Y_lo_res = FR_l_G, FR_l_logl_YHi // Y_lo = Tbl - Y_hi
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_XYH = FR_l_logl_YHi, FR_l_AbsX_m_Half, f0 // XYH=
// YHi*|x-0.5|
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_SS = FR_l_B10, FR_l_Z8, FR_l_B2 // Bernoulli tail
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_l_r_cor = FR_l_r_cor, FR_l_Y_lo // r_cor = r_cor+Y_lo
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_l_poly = FR_l_rsq, FR_l_poly_lo, FR_l_poly //poly=
// r^2*polyLo+poly
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TT = FR_n_PolyL, FR_n_XS2, f0 // T=polyL*xs^2
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_l_Y_lo = FR_l_Y_lo_res, FR_l_r // Y_lo = Y_lo + r
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_l_XYL = FR_l_logl_YHi, FR_l_AbsX_m_Half, FR_l_XYH
// XYL = YHi*|x-0.5|-XYH
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_SSCXH = FR_l_SS, FR_l_Z, FR_l_CXH // SS*Z+CXH
nop.i 0
}
{ .mfi
mov GR_e_exp_2tom51= 0xffff-51 // 2^-51
(p15) fma.s1 FR_l_SignedXYH = FR_l_XYH, FR_n_NegOne, f0 // XYH = -XYH
// for negatives
nop.i 0
};;
{ .mlx
nop.m 0
movl GR_e_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
}
{ .mlx
nop.m 0
movl GR_e_sig_inv_ln2 = 0xb8aa3b295c17f0bc //significand of 1/ln2
};;
{ .mfi
nop.m 0
fma.s1 FR_l_poly = FR_l_rsq, FR_l_poly, FR_l_r_cor // poly =
// rsq * poly + r_cor
nop.i 0
};;
{ .mfi
addl GR_e_ad_Arg = @ltoff(Constants_Tgammal_exp_64_Arg#),gp
(p15) fma.s1 FR_n_TT = FR_n_PolyH, FR_n_XS2L, FR_n_TT
mov GR_e_exp_mask = 0x1FFFF // Form exponent mask
}
{ .mlx
nop.m 0
movl GR_e_rshf = 0x43e8000000000000 // 1.10000 2^63 rshift
};;
{ .mmi
setf.sig FR_e_INV_LN2_2TO63 = GR_e_sig_inv_ln2 // form 1/ln2 * 2^63
setf.d FR_e_RSHF_2TO51 = GR_e_rshf_2to51 // 1.1000 * 2^(63+51)
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_l_SSCXL = FR_l_CXH, f1, FR_l_SSCXH // CXH+SS*CXH
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_e_expl_Input_AbsX = FR_l_XYH, f1, FR_l_SSCXH // HI EXP
nop.i 0
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p14) fma.s1 FR_e_expl_Input_X = FR_l_XYH, f1, FR_l_SSCXH // HI EXP
mov GR_e_exp_bias = 0x0FFFF // Set exponent bias
}
{ .mfi
ld8 GR_e_ad_Arg = [GR_e_ad_Arg] // Point to Arg table
(p15) fms.s1 FR_e_expl_Input_X = FR_l_SignedXYH, f1, FR_l_SSCXH // HI EXP
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_l_logl_YLo = FR_l_Y_lo, FR_l_poly // YLo = YLo+poly
nop.i 0
};;
{ .mfi
setf.exp FR_e_2TOM51 = GR_e_exp_2tom51 //2^-51 for scaling float_N
(p15) fma.s1 FR_n_TH = FR_n_PolyH, FR_n_XS2, FR_n_TT // TH=
// polyH*xs^2+T
nop.i 0
}
{ .mib
setf.d FR_e_RSHF = GR_e_rshf // Right shift const 1.1000*2^63
nop.i 0
nop.b 0
};;
{ .mfi
add GR_e_ad_A = 0x20, GR_e_ad_Arg // Point to A table
nop.f 0
add GR_e_ad_T1 = 0x50, GR_e_ad_Arg // Point to T1 table
}
{ .mfi
add GR_e_ad_T2 = 0x150, GR_e_ad_Arg // Point to T2 table
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_SSCXL = FR_l_SS, FR_l_Z, FR_l_SSCXL
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_e_expl_Input_Y = FR_l_XYH, f1, FR_e_expl_Input_AbsX
nop.i 0
};;
{ .mfi
ldfe FR_e_L_hi = [GR_e_ad_Arg],16 // Get L_hi
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_XYL = FR_l_logl_YLo, FR_l_AbsX_m_Half, FR_l_XYL
// XYL = YLo*|x-0.5|+XYL
nop.i 0
};;
{ .mfi
ldfe FR_e_L_lo = [GR_e_ad_Arg],16 // Get L_lo
(p15) fms.s1 FR_n_TL = FR_n_PolyH, FR_n_XS2, FR_n_TH // TL =
// = polyH*xs^2-TH
add GR_e_ad_W1 = 0x100, GR_e_ad_T2 // Point to W1 table
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_Poly1H = FR_n_TH, f1, f1 // poly1H = TH+1
add GR_e_ad_W2 = 0x300, GR_e_ad_T2 // Point to W2 table
};;
{ .mmi
getf.exp GR_e_signexp_x = FR_e_expl_Input_X // Extract sign and exp
ldfe FR_e_A3 = [GR_e_ad_A],16 // Get A3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_SSCXL = FR_l_SSCXL, f1, FR_l_CXL
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_SSCXH
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_N_signif=FR_e_expl_Input_X,FR_e_INV_LN2_2TO63,FR_e_RSHF_2TO51
and GR_e_exp_x = GR_e_signexp_x, GR_e_exp_mask
};;
{ .mmi
sub GR_e_exp_x = GR_e_exp_x, GR_e_exp_bias // Get exponent
ldfe FR_e_A2 = [GR_e_ad_A],16 // Get A2 for main path
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_PolyH = FR_n_Poly1H, FR_n_XS, f0//sin(Pi*x) poly
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_Poly1L = f1, f1, FR_n_Poly1H//sin(Pi*x) poly
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TL = FR_n_TL, f1, FR_n_TT//sin(Pi*x) poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_l_Temp = FR_l_XYL, f1, FR_l_SSCXL // XYL+SS*CXL
nop.i 0
}
{ .mfi
nop.m 0
(p15) fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, FR_n_NegOne, f0
// Negate lo part of exp argument for negative input values
nop.i 0
};;
{ .mfi
ldfe FR_e_A1 = [GR_e_ad_A],16 // Get A1
nop.f 0
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_e_float_N = FR_e_N_signif, FR_e_2TOM51, FR_e_RSHF
// Get float N = signd*2^51-RSHIFTER
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_Poly1L = FR_n_Poly1L, f1, FR_n_TH //sin(Pi*x) poly
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_PolyL = FR_n_Poly1H, FR_n_XS, FR_n_PolyH//sin(Pi*x)
nop.i 0
};;
{ .mfi
getf.sig GR_e_N_fix = FR_e_N_signif // Get N from significand
nop.f 0
nop.i 0
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p14) fma.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_Temp
nop.i 0
}
{ .mfi
nop.m 0
(p15) fms.s1 FR_e_expl_Input_Y = FR_e_expl_Input_Y, f1, FR_l_Temp
// arguments for exp computation
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_e_r = FR_e_L_hi, FR_e_float_N, FR_e_expl_Input_X
// r = -L_hi * float_N + x
extr.u GR_e_M1 = GR_e_N_fix, 6, 6 // Extract index M_1
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_Poly1L = FR_n_Poly1L, f1, FR_n_TL //sin(Pi*x) poly
nop.i 0
};;
{ .mmf
nop.m 0
nop.m 0
fma.s1 FR_e_r = FR_e_r, f1, FR_e_expl_Input_Y
// r = r + FR_e_expl_Input_Y
};;
{ .mmi
shladd GR_e_ad_W1 = GR_e_M1,3,GR_e_ad_W1 // Point to W1
shladd GR_e_ad_T1 = GR_e_M1,2,GR_e_ad_T1 // Point to T1
extr.u GR_e_M2 = GR_e_N_fix, 0, 6 // Extract index M_2
};;
{ .mfi
ldfs FR_e_T1 = [GR_e_ad_T1],0 // Get T1
nop.f 0
extr GR_e_K = GR_e_N_fix, 12, 32 //Extract limit range K
}
{ .mfi
shladd GR_e_ad_T2 = GR_e_M2,2,GR_e_ad_T2 // Point to T2
(p15) fma.s1 FR_n_PolyL = FR_n_Poly1L, FR_n_XS, FR_n_PolyL
//sin(Pi*x) poly
shladd GR_e_ad_W2 = GR_e_M2,3,GR_e_ad_W2 // Point to W2
};;
{ .mfi
ldfs FR_e_T2 = [GR_e_ad_T2],0 // Get T2
nop.f 0
add GR_e_exp_2_k = GR_e_exp_bias, GR_e_K // exp of 2^k
}
{ .mfi
ldfd FR_e_W1 = [GR_e_ad_W1],0 // Get W1
nop.f 0
sub GR_e_exp_2_mk = GR_e_exp_bias, GR_e_K // exp of 2^-k
};;
{ .mmi
ldfd FR_e_W2 = [GR_e_ad_W2],0 // Get W2
nop.m 0
nop.i 0
};;
{ .mmf
setf.exp FR_e_scale = GR_e_exp_2_k // Set scale = 2^k
setf.exp FR_e_2_mk = GR_e_exp_2_mk // Form 2^-k
fnma.s1 FR_e_r = FR_e_L_lo, FR_e_float_N, FR_e_r
// r = -L_lo * float_N + r
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_PolyL = FR_n_Tail, FR_n_XS7, FR_n_PolyL
//sin(Pi*x) poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_poly = FR_e_r, FR_e_A3, FR_e_A2 // poly=r*A3+A2
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s1 FR_e_rsq = FR_e_r, FR_e_r // rsq = r * r
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_e_T = FR_e_T1, FR_e_T2 // T = T1 * T2
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_e_W1_p1 = FR_e_W1, f1 // W1_p1 = W1 + 1.0
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_TT = FR_n_PolyL, FR_l_AbsX, f0 //sin(Pi*x) poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_poly = FR_e_r, FR_e_poly, FR_e_A1
// poly = r * poly + A1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_T_scale = FR_e_T, FR_e_scale, f0 // T_scale=T*scale
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_e_W = FR_e_W2, FR_e_W1_p1, FR_e_W1
// W = W2 * (W1+1.0) + W1
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_SinxH = FR_n_PolyH, FR_l_AbsX, FR_n_TT
// sin(Pi*x) poly
nop.i 0
};;
{ .mfi
nop.m 0
mov FR_e_Y_hi = FR_e_T // Assume Y_hi = T
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_poly = FR_e_rsq, FR_e_poly, FR_e_r
// poly = rsq * poly + r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_Wp1_T_scale = FR_e_W, FR_e_T_scale, FR_e_T_scale
// (W+1)*T*scale
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_e_W_T_scale = FR_e_W, FR_e_T_scale, f0 // W*T*scale
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fms.s1 FR_n_SinxL = FR_n_PolyH, FR_l_AbsX, FR_n_SinxH
// Low part of sin
nop.i 0
};;
{ .mfi
nop.m 0
(p15) frcpa.s1 FR_n_Y0, p0 = f1, FR_n_SinxH // y = frcpa(b)
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_e_result_lo = FR_e_Wp1_T_scale, FR_e_poly, FR_e_W_T_scale
// Low part of exp result
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_SinxL = FR_n_SinxL, f1, FR_n_TT // sin low result
nop.i 0
};;
{ .mfi
nop.m 0
(p15) fma.s1 FR_n_Q0 = f1,FR_n_Y0,f0 // q = y
nop.i 0
}
{ .mfi
nop.m 0
(p15) fnma.s1 FR_n_E0 = FR_n_Y0, FR_n_SinxH, f1 // e = 1-b*y
nop.i 0
};;
{ .mfb
nop.m 0
(p14) fma.s0 f8 = FR_e_Y_hi, FR_e_scale, FR_e_result_lo
(p14) br.ret.spnt b0 // Exit for positive Stirling path //////////////////////
};;
{ .mfi
nop.m 0
fma.s1 FR_e_expl_Output_X = FR_e_Y_hi, FR_e_scale, f0 // exp result
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_e_expl_Output_Y = FR_e_result_lo, f1, f0// exp lo result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_E2 = FR_n_E0,FR_n_E0,FR_n_E0 // e2 = e+e^2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_n_E1 = FR_n_E0,FR_n_E0,f0 // e1 = e^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_Y1 = FR_n_Y0,FR_n_E2,FR_n_Y0 // y1 = y+y*e2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_n_E3 = FR_n_E1,FR_n_E1,FR_n_E0 // e3 = e+e1^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_Y2 = FR_n_Y1,FR_n_E3,FR_n_Y0 // y2 = y+y1*e3
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_n_R0 = FR_n_SinxH,FR_n_Q0,f1 // r = a-b*q
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_n_E4 = FR_n_SinxH,FR_n_Y2,f1 // e4 = 1-b*y2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_n_RcpResH = FR_n_R0,FR_n_Y2,FR_n_Q0 // x = q+r*y2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_Y3 = FR_n_Y2,FR_n_E4,FR_n_Y2 // y3 = y2+y2*e4
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_n_R1 = FR_n_SinxH,FR_n_RcpResH,f1 // r1 = a-b*x
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_n_R1 = FR_n_SinxL,FR_n_RcpResH,FR_n_R1
// r1 = r1 - b_lo*X
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_RcpResL = FR_n_R1,FR_n_Y3,f0 // x_lo = r1*y3
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_n_Temp = FR_n_RcpResH, FR_e_expl_Output_Y, f0
// Multiplying exp and sin result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_Temp = FR_n_RcpResL, FR_e_expl_Output_X, FR_n_Temp
// Multiplying exp and sin result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_ResH = FR_n_RcpResH, FR_e_expl_Output_X, FR_n_Temp
// Multiplying exp and sin result
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_n_ResL = FR_n_RcpResH, FR_e_expl_Output_X, FR_n_ResH
// Multiplying exp and sin result
nop.i 0
}
{ .mfi
nop.m 0
(p12) fma.s1 FR_n_ResH = FR_n_ResH, FR_n_NegOne, f0 // Negate
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_n_ResL = FR_n_ResL, f1, FR_n_Temp
// Multiplying exp and sin result - low result obtained
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
nop.m 0
(p13) fma.s0 f8 = FR_n_ResH, f1, FR_n_ResL // For odd
nop.i 0
}
{ .mfb
nop.m 0
(p12) fms.s0 f8 = FR_n_ResH, f1, FR_n_ResL // For even
br.ret.sptk b0 // Exit for negative Stirling path //////////////////////
};;
//////////// 1 <= |X| < 13 path ////////////////////////////////////////////////
//------------------------------------------------------------------------------
.align 64
tgamma_lt_13:
{ .mfi
getf.sig GR_p_XN = FR_p_IXN // Get significand
fcvt.xf FR_p_XN = FR_p_IXN // xn = [x]
add GR_r_sin_Table2= 0x40, GR_r_sin_Table // Shifted table addr.
}
{ .mfi
ldfpd FR_p_0p5, FR_p_1p5 = [GR_c_Table], 16 // 0.5 & 1.5
fms.s1 FR_p_AbsXM1 = FR_p_AbsX, f1, f1 // X-1
add GR_p_Table2 = 0xB0, GR_p_Table
};;
{ .mfi
add GR_r_sin_Table = -16, GR_r_sin_Table // For compensation
fcvt.xf FR_r_XNS = FR_r_IXNS // Convert int repr to float
shr.u GR_p_X_Sgnd = GR_p_X_Sgnd, 59 // Get only 5 bit of signd
};;
{ .mfi
ldfpd FR_r_A2H,FR_r_A2L = [GR_r_sin_Table], 16 // Load A2
nop.f 0
add GR_p_Int = -2, GR_p_XN // int = int - 2
}
{ .mfi
ldfe FR_r_A6 = [GR_r_sin_Table2], 16
nop.f 0
cmp.gtu p11, p12 = 0x2, GR_p_XN // p11: x < 2 (splitted intervals),
// p12: x > 2 (base intervals)
};;
{ .mfi
ldfpd FR_r_A1H, FR_r_A1L = [GR_r_sin_Table], 16
nop.f 0
shr GR_p_Int = GR_p_Int, 1 // int/2
}
{ .mfi
ldfe FR_r_A5 = [GR_r_sin_Table2], 16
nop.f 0
(p11) cmp.gtu.unc p10, p11 = 0x1C, GR_p_X_Sgnd // sgnd(x) < 0.75
};;
{ .mfi
ldfe FR_r_A9 = [GR_r_sin_Table], 16
nop.f 0
shl GR_p_Offset = GR_p_Int, 4 // offset = int*16
}
{ .mfi
ldfe FR_r_A4 = [GR_r_sin_Table2], 16
nop.f 0
(p10) cmp.gtu.unc p9, p10 = 0x14, GR_p_X_Sgnd // sgnd(x) < 0.25
};;
{ .mfi
ldfe FR_r_A8 = [GR_r_sin_Table], 16
nop.f 0
(p12) tbit.nz.unc p13, p12 = GR_p_XN, 0x0 // p13: reccurent computations
// X is at [3;4], [5;6], [7;8]... interval
}
{ .mfi
ldfe FR_r_A3 = [GR_r_sin_Table2], 16
nop.f 0
shladd GR_p_Offset = GR_p_Int, 2, GR_p_Offset // +int*4
};;
.pred.rel "mutex",p9,p11
{ .mfi
add GR_p_Offset = GR_p_Int, GR_p_Offset
// +int, so offset = int*21
(p9) fms.s1 FR_p_XR = FR_p_AbsX, f1, f1 // r = x-1
nop.i 0
}
{ .mfi
ldfe FR_r_A7 = [GR_r_sin_Table], 16
(p11) fms.s1 FR_p_XR = FR_p_2, f1, FR_p_AbsX
// r = 2-x for 1.75 < x < 2
nop.i 0
};;
.pred.rel "mutex",p9,p10
.pred.rel "mutex",p10,p11
.pred.rel "mutex",p9,p11
{ .mfi
(p9) add GR_p_Offset = 126, r0 // 1.0 < x < 1.25 table
(p15) fcmp.eq.unc.s1 p7,p0 = FR_p_AbsX, FR_p_XN
// If arg is integer and negative - singularity branch
nop.i 0
}
{ .mfi
(p10) add GR_p_Offset = 147, r0 // 1.25 < x < 1.75 table
nop.f 0
(p11) add GR_p_Offset = 168, r0 // 1.75 < x < 2.0 table
};;
{ .mmf
shladd GR_p_Table = GR_p_Offset, 4, GR_p_Table
shladd GR_p_Table2 = GR_p_Offset, 4, GR_p_Table2
fma.s1 FR_r_XS = FR_r_AbsX , f1, FR_r_XNS // xs = x - [x]
};;
{ .mmb
ldfpd FR_p_A5H, FR_p_A5L = [GR_p_Table], 16
ldfpd FR_p_A2H, FR_p_A2L = [GR_p_Table2], 16
(p7) br.cond.spnt tgammal_singularity // Singularity for integer /////////////
// and negative argument ///////////////
};;
{ .mfi
ldfpd FR_p_A4H, FR_p_A4L = [GR_p_Table], 16
fma.s1 FR_p_XN = FR_p_XN, f1, FR_p_0p5 // xn = xn+0.5
nop.i 0
}
{ .mfi
ldfpd FR_p_A1H, FR_p_A1L = [GR_p_Table2], 16
(p10) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_1p5 // r = x - 1.5
nop.i 0
};;
{ .mmi
ldfpd FR_p_A3H, FR_p_A3L = [GR_p_Table], 16
ldfpd FR_p_A0H, FR_p_A0L = [GR_p_Table2], 16
nop.i 0
};;
{ .mmi
ldfe FR_p_A20 = [GR_p_Table], 16
ldfe FR_p_A12 = [GR_p_Table2], 16
nop.i 0
};;
{ .mmf
ldfe FR_p_A19 = [GR_p_Table], 16
ldfe FR_p_A11 = [GR_p_Table2], 16
fma.s1 FR_r_XS2 = FR_r_XS, FR_r_XS, f0 // xs2 = xs*xs
};;
{ .mmi
ldfe FR_p_A18 = [GR_p_Table], 16
ldfe FR_p_A10 = [GR_p_Table2], 16
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
ldfe FR_p_A17 = [GR_p_Table], 16
(p12) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_XN // r = x - xn
nop.i 0
}
{ .mfi
ldfe FR_p_A9 = [GR_p_Table2], 16
(p13) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_XN
nop.i 0
};;
{ .mmi
ldfe FR_p_A16 = [GR_p_Table], 16
ldfe FR_p_A8 = [GR_p_Table2], 16
(p9) cmp.eq p12, p0 = r0, r0 // clear p12
};;
{ .mmi
ldfe FR_p_A15 = [GR_p_Table], 16
ldfe FR_p_A7 = [GR_p_Table2], 16
(p10) cmp.eq p12, p0 = r0, r0 // clear p12
};;
{ .mfi
ldfe FR_p_A14 = [GR_p_Table], 16
fma.s1 FR_r_TH = FR_r_A2H, FR_r_XS2, f0 // sin for neg
(p11) cmp.eq p12, p0 = r0, r0 // clear p12
}
{ .mfi
ldfe FR_p_A6 = [GR_p_Table2], 16
fma.s1 FR_r_TL = FR_r_A2L, FR_r_XS2, f0 // sin for neg
nop.i 0
};;
{ .mfi
ldfe FR_p_A13 = [GR_p_Table], 16
fms.s1 FR_r_XS2L = FR_r_XS, FR_r_XS, FR_r_XS2 // x2Lo part
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5H = FR_p_A5H, FR_p_XR, f0 // A5H*r
// 'Low poly'
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR2 = FR_p_XR, FR_p_XR, f0 // r^2 = r*r
nop.i 0
};;
{ .mfi
nop.m 0
fabs FR_r_XS = FR_r_XS // abs(xs)
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2H = FR_p_A2H, FR_p_XR, f0 // A2H*r
// 'High poly'
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_TT = FR_r_A2H, FR_r_XS2, FR_r_TH // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_r_TH, f1, FR_r_A1H // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_A2H, FR_r_XS2L, FR_r_TL // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp5L = FR_p_A5H,FR_p_XR,FR_p_Temp5H //A5H*r delta
// 'Low poly'
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5H = FR_p_Temp5H, f1, FR_p_A4H // A5H*r+A4H
// 'Low poly'
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp2L = FR_p_A2H, FR_p_XR, FR_p_Temp2H//A2H*r delta
//'High poly'
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2H = FR_p_Temp2H, f1, FR_p_A1H // A2H*r+A1H
//'High poly'
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_XR3 = FR_p_XR2, FR_p_XR, f0 // r^3 = r^2*r
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_XR2L = FR_p_XR, FR_p_XR, FR_p_XR2 // r^2 delta
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A18 = FR_p_A19, FR_p_XR, FR_p_A18 // Poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A15, FR_p_XR, FR_p_A14 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_XR4 = FR_p_XR2, FR_p_XR2, f0 // r^4 = r^2*r^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5L = FR_p_A5L, FR_p_XR, FR_p_Temp5L// Low part
// of A5*r+A4
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_Poly5L = FR_p_A4H, f1, FR_p_Poly5H // Low part
// of A5*r+A4
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4H = FR_p_Poly5H, FR_p_XR, f0 // (A5H*r+A4H)*r
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2L = FR_p_A2L, FR_p_XR, FR_p_Temp2L // A2*r low
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly2L = FR_p_A1H, f1, FR_p_Poly2H // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1H = FR_p_Poly2H, FR_p_XR, f0 // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_XR3L = FR_p_XR2, FR_p_XR, FR_p_XR3 // x^3 delta
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A16 = FR_p_A17, FR_p_XR, FR_p_A16 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_r_A1H, f1, FR_r_ResH // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5L = FR_p_Temp5L, f1, FR_p_A4L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5H // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp4L = FR_p_Poly5H,FR_p_XR,FR_p_Temp4H //Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4H = FR_p_Temp4H, f1, FR_p_A3H // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2L = FR_p_Temp2L, f1, FR_p_A1L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp1L = FR_p_Poly2H,FR_p_XR,FR_p_Temp1H //High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1H = FR_p_Temp1H, f1, FR_p_A0H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A12 = FR_p_A13, FR_p_XR, FR_p_A12 // Poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR3L = FR_p_XR2L, FR_p_XR, FR_p_XR3L // x^3 low
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A10 = FR_p_A11, FR_p_XR, FR_p_A10 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly4L = FR_p_A3H, f1, FR_p_Poly4H // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A7, FR_p_XR, FR_p_A6 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A8 = FR_p_A9, FR_p_XR, FR_p_A8 // Poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR6 = FR_p_XR4, FR_p_XR2, f0 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_Poly1L = FR_p_A0H, f1, FR_p_Poly1H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TH // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TT = FR_r_TL, f1, FR_r_A1L // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4L = FR_p_Poly5L,FR_p_XR,FR_p_Temp4L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A18 = FR_p_A20, FR_p_XR2, FR_p_A18 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4H // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A16, FR_p_XR2, FR_p_A14 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A8, FR_p_XR2, FR_p_A6 // Poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A10 = FR_p_A12, FR_p_XR2, FR_p_A10 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1L = FR_p_Poly2L,FR_p_XR,FR_p_Temp1L //High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TT // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TH = FR_r_ResH, FR_r_XS2, f0 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4L = FR_p_Temp4L, f1, FR_p_A3L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3H = FR_p_Poly4H, FR_p_XR3, f0 // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A18, FR_p_XR4, FR_p_A14 // Poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR8 = FR_p_XR4, FR_p_XR4, f0 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_ResH, FR_r_XS2L, f0 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_A0L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A10, FR_p_XR4, FR_p_A6 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_TT = FR_r_ResH, FR_r_XS2, FR_r_TH // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_Res3H = FR_r_TH, f1, f1 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly4H, FR_p_XR3L, f0 // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0H = FR_p_Poly3H,f1,FR_p_Poly1H //Low & High add
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A7 = FR_r_A8, FR_r_XS2, FR_r_A7 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_ResL, FR_r_XS2, FR_r_TL // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS4 = FR_r_XS2, FR_r_XS2, f0 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_PolyTail = FR_p_A14, FR_p_XR8, FR_p_A6 // Poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_Res3L = f1, f1, FR_r_Res3H // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_r_Res3H, FR_r_XS, f0 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp0L = FR_p_Poly4H,FR_p_XR3,FR_p_Poly3H //Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly4L,FR_p_XR3,FR_p_Poly3L //Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly0L = FR_p_Poly1H,f1,FR_p_Poly0H //Low & High add
nop.i 0
}
{ .mfi
nop.m 0
(p13) fma.s1 FR_p_OddPoly0H = FR_p_Poly0H, FR_p_AbsXM1, f0
// Reccurent computations - multiplying by X-1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A3 = FR_r_A4, FR_r_XS2, FR_r_A3 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_PolyTail,FR_p_XR6,FR_p_Poly1L//High
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A5 = FR_r_A6, FR_r_XS2, FR_r_A5 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TH // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_r_Res3H, FR_r_XS, FR_r_ResH//sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly3L, f1, FR_p_Temp0L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A7 = FR_r_A9, FR_r_XS4, FR_r_A7 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0L = FR_p_Poly0L,f1,FR_p_Poly3H //Low & High add
nop.i 0
}
{ .mfi
nop.m 0
(p13) fms.s1 FR_p_OddPoly0L = FR_p_Poly0H, FR_p_AbsXM1, FR_p_OddPoly0H
// Reccurent computations - multiplying by X-1 (low part)
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_A3 = FR_r_A5, FR_r_XS4, FR_r_A3 // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS7 = FR_r_XS4, FR_r_XS2, f0 // xs^6
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TL // sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS8 = FR_r_XS4, FR_r_XS4, f0 // sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp0H = FR_p_Poly3L,f1,FR_p_Poly1L //Low & High add
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_XS7 = FR_r_XS7, FR_r_XS, f0 // xs^7
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_Res3L, FR_r_XS, FR_r_ResL//sin for neg
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_Tail = FR_r_A7, FR_r_XS8, FR_r_A3 // sin tail res
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0L = FR_p_Poly0L,f1,FR_p_Temp0H //Low & High add
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_Tail,FR_r_XS7,FR_r_ResL //sin for neg
nop.i 0
};;
{ .mfi
nop.m 0
(p13) fma.s1 FR_p_OddPoly0L = FR_p_Poly0L, FR_p_AbsXM1, FR_p_OddPoly0L
// Reccurent computations - multiplying by X-1 (low part)
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TT = FR_r_ResL, FR_r_AbsX, f0 // X*sin
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
nop.m 0
(p12) fma.s0 f8 = FR_p_Poly0H, f1, FR_p_Poly0L // Even
nop.i 0
}
{ .mfb
nop.m 0
(p13) fma.s0 f8 = FR_p_OddPoly0H, f1, FR_p_OddPoly0L // Odd
(p14) br.ret.spnt b0 // Exit for 1 <= |X| < 13 path (positive arguments)/////
};;
{ .mfi
nop.m 0
(p13) fma.s1 FR_p_Poly0H = FR_p_OddPoly0H, f1, f0
// Reccurent computations
nop.i 0
}
{ .mfi
nop.m 0
(p13) fma.s1 FR_p_Poly0L = FR_p_OddPoly0L, f1, f0
// Reccurent computations
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res1H = FR_r_ResH, FR_r_AbsX, FR_r_TT // X*sin
(p11) cmp.eq p13, p12 = r0, r0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_Res1L = FR_r_ResH,FR_r_AbsX,FR_r_Res1H// X*sin
(p9) cmp.eq p13, p12 = r0, r0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res1L = FR_r_Res1L, f1, FR_r_TT // sin for neg
(p10) cmp.eq p13, p12 = r0, r0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_p_Poly0L, FR_r_Res1H, f0 // mult by sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_p_Poly0H,FR_r_Res1L,FR_r_TL//mult by sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_p_Poly0H,FR_r_Res1H,FR_r_TL//mult by sin
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_p_Poly0H,FR_r_Res1H,FR_r_ResH//sin mult
nop.i 0
};;
{ .mfi
nop.m 0
frcpa.s1 FR_r_Y0,p0 = f1,FR_r_ResH // y = frcpa(b)
nop.i 0
};;
{ .mfi
nop.m 0
fneg FR_r_NegOne = f1 // Form -1.0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TL //Low result of mult
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Q0 = f1,FR_r_Y0,f0 // q = a*y
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_E0 = FR_r_Y0,FR_r_ResH,f1 // e = 1-b*y
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_E2 = FR_r_E0,FR_r_E0,FR_r_E0 // e2 = e+e^2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_E1 = FR_r_E0,FR_r_E0,f0 // e1 = e^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y1 = FR_r_Y0,FR_r_E2,FR_r_Y0 // y1 = y+y*e2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_E3 = FR_r_E1,FR_r_E1,FR_r_E0 // e3 = e+e1^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y2 = FR_r_Y1,FR_r_E3,FR_r_Y0 // y2 = y+y1*e3
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_R0 = FR_r_ResH,FR_r_Q0,f1 // r = a-b*q
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_r_E4 = FR_r_ResH,FR_r_Y2,f1 // e4 = 1-b*y2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ZH = FR_r_R0,FR_r_Y2,FR_r_Q0 // x = q+r*y2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y3 = FR_r_Y2,FR_r_E4,FR_r_Y2 // y3 = y2+y2*e4
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_R1 = FR_r_ResH,FR_r_ZH,f1 // r1 = a-b*x
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_r_R1 = FR_r_ResL,FR_r_ZH,FR_r_R1 // r1=r1-b_lo*X
nop.i 0
}
{ .mfi
nop.m 0
(p12) fma.s1 FR_r_ZHN = FR_r_ZH,FR_r_NegOne, f0 // Negate for evens
nop.i 0
};;
.pred.rel "mutex",p13,p12
{ .mfi
nop.m 0
(p13) fma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZH // Final result
nop.i 0
}
{ .mfb
nop.m 0
(p12) fnma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZHN // Final result
br.ret.sptk b0 // Exit for 1 <= |X| < 13 path (negative arguments)//////
};;
//////////// |X| < 1 path /////////////////////////////////////////////////////
//------------------------------------------------------------------------------
.align 64
tgamma_lt_1:
{ .mfi
getf.exp GR_p_Exp = FR_p_AbsX // exp of abs X
fma.s1 FR_z_Q0 = f1,FR_z_Y0,f0 // q = a*y
add GR_r_sin_Table2= 0x50, GR_r_sin_Table
}
{ .mfi
ldfpd FR_p_0p5, FR_p_1p5 = [GR_c_Table], 16
fnma.s1 FR_z_E0 = FR_z_Y0,f8,f1 // e = 1-b*y
add GR_p_Table2 = 0xB0, GR_p_Table
};;
{ .mfi
ldfd FR_p_0p25 = [GR_c_Table]
fcvt.xf FR_r_XNS = FR_r_IXNS // Convert int repr to float
shr.u GR_p_X_Sgnd = GR_p_X_Sgnd, 60
// Obtain only 4 bits of significand
}
{ .mfi
nop.m 0
nop.f 0
add GR_p_Bias = 0xffff, r0 // Set bias
};;
{ .mfi
ldfpd FR_r_A2H, FR_r_A2L = [GR_r_sin_Table], 16
nop.f 0
shl GR_p_XN = GR_p_Exp, 4
// Shift exp to 4 bits left to set place for significand
}
{ .mlx
ldfe FR_r_A6 = [GR_r_sin_Table2], 16
movl GR_p_0p75 = 0xfffec // 0.75
};;
{ .mfi
ldfpd FR_r_A1H, FR_r_A1L = [GR_r_sin_Table], 16
nop.f 0
or GR_p_XN = GR_p_XN, GR_p_X_Sgnd
// Combine exp with 4 high bits of significand
}
{ .mfi
ldfe FR_r_A5 = [GR_r_sin_Table2], 16
nop.f 0
sub GR_p_Exp = GR_p_Exp, GR_p_Bias // Unbiased exp
};;
{ .mmi
ldfe FR_r_A9 = [GR_r_sin_Table], 16
ldfe FR_r_A4 = [GR_r_sin_Table2], 16
cmp.gtu.unc p10, p11 = GR_p_0p75, GR_p_XN // sgnd(x) < 0.75
};;
{ .mfi
ldfe FR_r_A8 = [GR_r_sin_Table], 16
fma.s1 FR_z_E2 = FR_z_E0,FR_z_E0,FR_z_E0 // e2 = e+e^2
(p10) cmp.gt.unc p9, p10 = -2, GR_p_Exp // x < 0.25
}
{ .mfi
ldfe FR_r_A3 = [GR_r_sin_Table2], 16
fma.s1 FR_z_E1 = FR_z_E0,FR_z_E0,f0 // e1 = e^2
(p11) add GR_p_Offset = 168, r0 // [0.75;1] interval
};;
{ .mmi
(p10) add GR_p_Offset = 147, r0 // [0.25;0.75] interval
ldfe FR_r_A7 = [GR_r_sin_Table], 16
(p9) cmp.gt.unc p8, p9 = -3, GR_p_Exp // x < 0.125
};;
.pred.rel "mutex",p9,p8
{ .mmi
(p9) add GR_p_Offset = 126, r0 // [0.125;0.25] interval
(p8) add GR_p_Offset = 189, r0 // [0.;0.125] interval
nop.i 0
};;
{ .mmf
shladd GR_p_Table = GR_p_Offset, 4, GR_p_Table //Make addresses
shladd GR_p_Table2 = GR_p_Offset, 4, GR_p_Table2
fma.s1 FR_r_XS = FR_r_AbsX , f1, FR_r_XNS // xs = |x|-[x]
};;
.pred.rel "mutex",p8,p11
{ .mfi
ldfpd FR_p_A5H, FR_p_A5L = [GR_p_Table], 16
(p11) fms.s1 FR_p_XR = f1, f1, FR_p_AbsX // r = 1 - |x|
// for [0.75;1] interval
nop.i 0
}
{ .mfi
ldfpd FR_p_A2H, FR_p_A2L = [GR_p_Table2], 16
(p8) fms.s1 FR_p_XR = FR_p_AbsX, f1, f0 // r = |x|
// for [0.;0.125] interval
nop.i 0
};;
{ .mfi
ldfpd FR_p_A4H, FR_p_A4L = [GR_p_Table], 16
fma.s1 FR_z_Y1 = FR_z_Y0,FR_z_E2,FR_z_Y0 // y1 = y+y*e2
nop.i 0
}
{ .mfi
ldfpd FR_p_A1H, FR_p_A1L = [GR_p_Table2], 16
fma.s1 FR_z_E3 = FR_z_E1,FR_z_E1,FR_z_E0 // e3 = e+e1^2
nop.i 0
};;
.pred.rel "mutex",p9,p10
{ .mfi
ldfpd FR_p_A3H, FR_p_A3L = [GR_p_Table], 16
(p9) fms.s1 FR_p_XR = FR_p_AbsX, f1, f0 // r = |x|
// for [0.125;0.25] interval
nop.i 0
}
{ .mfi
ldfpd FR_p_A0H, FR_p_A0L = [GR_p_Table2], 16
(p10) fms.s1 FR_p_XR = FR_p_AbsX, f1, FR_p_0p5 // r = |x| - 0.5
// for [0.25;0.75] interval
nop.i 0
};;
{ .mmi
ldfe FR_p_A20 = [GR_p_Table], 16
ldfe FR_p_A12 = [GR_p_Table2], 16
nop.i 0
};;
{ .mfi
ldfe FR_p_A19 = [GR_p_Table], 16
fma.s1 FR_r_XS2 = FR_r_XS, FR_r_XS, f0 // xs^2
nop.i 0
}
{ .mfi
ldfe FR_p_A11 = [GR_p_Table2], 16
nop.f 0
nop.i 0
};;
{ .mmi
ldfe FR_p_A18 = [GR_p_Table], 16
ldfe FR_p_A10 = [GR_p_Table2], 16
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
ldfe FR_p_A17 = [GR_p_Table], 16
fma.s1 FR_z_Y2 = FR_z_Y1,FR_z_E3,FR_z_Y0 // y2 = y+y1*e3
nop.i 0
}
{ .mfi
ldfe FR_p_A9 = [GR_p_Table2], 16
fnma.s1 FR_z_R0 = f8,FR_z_Q0,f1 // r = a-b*q
nop.i 0
};;
{ .mmi
ldfe FR_p_A16 = [GR_p_Table], 16
ldfe FR_p_A8 = [GR_p_Table2], 16
nop.i 0
};;
{ .mmi
ldfe FR_p_A15 = [GR_p_Table], 16
ldfe FR_p_A7 = [GR_p_Table2], 16
nop.i 0
};;
{ .mfi
ldfe FR_p_A14 = [GR_p_Table], 16
fma.s1 FR_r_TH = FR_r_A2H, FR_r_XS2, f0 // neg sin
nop.i 0
}
{ .mfi
ldfe FR_p_A6 = [GR_p_Table2], 16
fma.s1 FR_r_TL = FR_r_A2L, FR_r_XS2, f0 // neg sin
nop.i 0
};;
{ .mfi
ldfe FR_p_A13 = [GR_p_Table], 16
fms.s1 FR_r_XS2L = FR_r_XS, FR_r_XS, FR_r_XS2 // xs^2 delta
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5H = FR_p_A5H, FR_p_XR, f0 // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR2 = FR_p_XR, FR_p_XR, f0 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fabs FR_r_XS = FR_r_XS // Absolute value of xs
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2H = FR_p_A2H, FR_p_XR, f0 // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_z_E4 = f8,FR_z_Y2,f1 // e4 = 1-b*y2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_z_ZH = FR_z_R0,FR_z_Y2,FR_z_Q0 // 1/x = q+r*y2
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_TT = FR_r_A2H, FR_r_XS2, FR_r_TH // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_r_TH, f1, FR_r_A1H // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_A2H, FR_r_XS2L, FR_r_TL // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp5L = FR_p_A5H, FR_p_XR, FR_p_Temp5H // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5H = FR_p_Temp5H, f1, FR_p_A4H // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp2L = FR_p_A2H, FR_p_XR, FR_p_Temp2H // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2H = FR_p_Temp2H, f1, FR_p_A1H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_XR3 = FR_p_XR2, FR_p_XR, f0 // r^3
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_XR2L = FR_p_XR, FR_p_XR, FR_p_XR2 // r^2 delta
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A18 = FR_p_A19, FR_p_XR, FR_p_A18 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A15, FR_p_XR, FR_p_A14 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_XR4 = FR_p_XR2, FR_p_XR2, f0 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_z_Y3 = FR_z_Y2,FR_z_E4,FR_z_Y2 // y3 = y2+y2*e4
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5L = FR_p_A5L, FR_p_XR, FR_p_Temp5L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_Poly5L = FR_p_A4H, f1, FR_p_Poly5H // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4H = FR_p_Poly5H, FR_p_XR, f0 // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2L = FR_p_A2L, FR_p_XR, FR_p_Temp2L // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly2L = FR_p_A1H, f1, FR_p_Poly2H // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1H = FR_p_Poly2H, FR_p_XR, f0 // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_XR3L = FR_p_XR2, FR_p_XR, FR_p_XR3 // x^3 delta
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A16 = FR_p_A17, FR_p_XR, FR_p_A16 //poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_r_A1H, f1, FR_r_ResH // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp5L = FR_p_Temp5L, f1, FR_p_A4L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5H //Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp4L = FR_p_Poly5H, FR_p_XR, FR_p_Temp4H//Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4H = FR_p_Temp4H, f1, FR_p_A3H // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp2L = FR_p_Temp2L, f1, FR_p_A1L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp1L = FR_p_Poly2H,FR_p_XR,FR_p_Temp1H //High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1H = FR_p_Temp1H, f1, FR_p_A0H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A12 = FR_p_A13, FR_p_XR, FR_p_A12 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR3L = FR_p_XR2L, FR_p_XR, FR_p_XR3L // x^3 low
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly5L = FR_p_Poly5L, f1, FR_p_Temp5L //Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A10 = FR_p_A11, FR_p_XR, FR_p_A10 //poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly4L = FR_p_A3H, f1, FR_p_Poly4H /// Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A7, FR_p_XR, FR_p_A6 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A8 = FR_p_A9, FR_p_XR, FR_p_A8 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR6 = FR_p_XR4, FR_p_XR2, f0 // r^6
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly2L = FR_p_Poly2L, f1, FR_p_Temp2L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_p_Poly1L = FR_p_A0H, f1, FR_p_Poly1H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TH // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TT = FR_r_TL, f1, FR_r_A1L // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4L = FR_p_Poly5L,FR_p_XR,FR_p_Temp4L //Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A18 = FR_p_A20, FR_p_XR2, FR_p_A18 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4H // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A16, FR_p_XR2, FR_p_A14 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A8, FR_p_XR2, FR_p_A6 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A10 = FR_p_A12, FR_p_XR2, FR_p_A10 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1L = FR_p_Poly2L,FR_p_XR,FR_p_Temp1L //High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1H // High poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TT // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TH = FR_r_ResH, FR_r_XS2, f0 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp4L = FR_p_Temp4L, f1, FR_p_A3L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3H = FR_p_Poly4H, FR_p_XR3, f0 // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_A14 = FR_p_A18, FR_p_XR4, FR_p_A14 // poly tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_XR8 = FR_p_XR4, FR_p_XR4, f0 // r^8
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_ResH, FR_r_XS2L, f0 // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_z_R1 = f8,FR_z_ZH,f1 // r1 = a-b*x
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_A0L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_A6 = FR_p_A10, FR_p_XR4, FR_p_A6 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_TT = FR_r_ResH, FR_r_XS2, FR_r_TH // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_Res3H = FR_r_TH, f1, f1 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly4L = FR_p_Poly4L, f1, FR_p_Temp4L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly4H, FR_p_XR3L, f0 // Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0H = FR_p_Poly3H, f1, FR_p_Poly1H // Result
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A7 = FR_r_A8, FR_r_XS2, FR_r_A7 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_ResL, FR_r_XS2, FR_r_TL // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS4 = FR_r_XS2, FR_r_XS2, f0 // xs^4
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_Poly1L, f1, FR_p_Temp1L // High poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_PolyTail = FR_p_A14, FR_p_XR8, FR_p_A6 // poly tail
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_Res3L = f1, f1, FR_r_Res3H // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_r_Res3H, FR_r_XS, f0 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Temp0L = FR_p_Poly4H,FR_p_XR3,FR_p_Poly3H //Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly4L,FR_p_XR3,FR_p_Poly3L //Low poly
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_p_Poly0L = FR_p_Poly1H, f1, FR_p_Poly0H // Result
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_z_ZL = FR_z_R1,FR_z_Y3, f0 // x_lo = r1*y3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_r_TL, f1, FR_r_TT // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A3 = FR_r_A4, FR_r_XS2, FR_r_A3 /// neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly1L = FR_p_PolyTail,FR_p_XR6,FR_p_Poly1L // High
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A5 = FR_r_A6, FR_r_XS2, FR_r_A5 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TH // neg sin
nop.i 0
}
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_r_Res3H, FR_r_XS, FR_r_ResH // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly3L = FR_p_Poly3L, f1, FR_p_Temp0L // Low poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_A7 = FR_r_A9, FR_r_XS4, FR_r_A7 // neg sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0L = FR_p_Poly0L, f1, FR_p_Poly3H // result
nop.i 0
};;
{ .mfi
nop.m 0
(p14) fma.s1 f8 = FR_p_Poly0H, FR_z_ZH, f0 // z*poly
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_p_Temp1L = FR_p_Poly0H, FR_z_ZL, f0 // z*poly low
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_A3 = FR_r_A5, FR_r_XS4, FR_r_A3 // sin tail
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS7 = FR_r_XS4, FR_r_XS2, f0 // xs^6
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res3L = FR_r_Res3L, f1, FR_r_TL // sin low
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_XS8 = FR_r_XS4, FR_r_XS4, f0 // xs^8
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Temp0H = FR_p_Poly3L, f1, FR_p_Poly1L // result
nop.i 0
};;
{ .mfi
nop.m 0
(p14) fms.s1 FR_p_Temp1H = FR_p_Poly0H, FR_z_ZH, f8 // hi result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_XS7 = FR_r_XS7, FR_r_XS, f0 // xs^7
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_Res3L, FR_r_XS, FR_r_ResL // lo result
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_Tail = FR_r_A7, FR_r_XS8, FR_r_A3 // tail result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_p_Poly0L = FR_p_Poly0L, f1, FR_p_Temp0H // lo result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_Tail, FR_r_XS7, FR_r_ResL // lo result
nop.i 0
};;
{ .mfi
nop.m 0
(p14) fma.s1 FR_p_Temp1L = FR_p_Poly0L,FR_z_ZH,FR_p_Temp1L //hi result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TT = FR_r_ResL, f1, f0 // for low result
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
nop.m 0
(p14) fma.s1 FR_p_Temp1L = FR_p_Temp1L, f1, FR_p_Temp1H // for lo res
nop.i 0
};;
{ .mfi
(p10) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
fma.s1 FR_r_Res1H = FR_r_ResH, f1, FR_r_TT // hi res
nop.i 0
};;
{ .mfb
(p9) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
(p14) fma.s0 f8 = f8, f1, FR_p_Temp1L // Final result
(p14) br.ret.spnt b0 // Exit for 0 < |X| < 1 path (positive arguments)///////
};;
{ .mfi
(p11) cmp.eq p13, p12 = r0, r0 // set p13, clear p12
fms.s1 FR_r_Res1L = FR_r_ResH, f1, FR_r_Res1H // Low sin result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Res1L = FR_r_Res1L, f1, FR_r_TT // Low sin result
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_p_Poly0L,FR_r_Res1H,f0 //Low sin result
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_TL = FR_p_Poly0H, FR_r_Res1L, FR_r_TL //Low sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_ResH = FR_p_Poly0H, FR_r_Res1H, FR_r_TL //High sin
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r_ResL = FR_p_Poly0H,FR_r_Res1H,FR_r_ResH //Low res
nop.i 0
};;
{ .mfi
nop.m 0
frcpa.s1 FR_r_Y0,p0 = f1,FR_r_ResH // y = frcpa(b)
nop.i 0
};;
{ .mfi
nop.m 0
fneg FR_r_NegOne = f1 // Construct -1.0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ResL = FR_r_ResL, f1, FR_r_TL // low sin
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Q0 = f1,FR_r_Y0,f0 // q = a*y
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_E0 = FR_r_Y0,FR_r_ResH,f1 // e = 1-b*y
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_E2 = FR_r_E0,FR_r_E0,FR_r_E0 // e2 = e+e^2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_E1 = FR_r_E0,FR_r_E0,f0 // e1 = e^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y1 = FR_r_Y0,FR_r_E2,FR_r_Y0 // y1 = y+y*e2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_E3 = FR_r_E1,FR_r_E1,FR_r_E0 // e3 = e+e1^2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y2 = FR_r_Y1,FR_r_E3,FR_r_Y0 // y2 = y+y1*e3
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_R0 = FR_r_ResH,FR_r_Q0,f1 // r = a-b*q
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_r_E4 = FR_r_ResH,FR_r_Y2,f1 // e4 = 1-b*y2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ZH = FR_r_R0,FR_r_Y2,FR_r_Q0 // x = q+r*y2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r_Y3 = FR_r_Y2,FR_r_E4,FR_r_Y2 // y3 = y2+y2*e4
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_r_R1 = FR_r_ResH,FR_r_ZH,f1 // r1 = a-b*x
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_r_R1 = FR_r_ResL,FR_r_ZH,FR_r_R1 // r1=r1 - b_lo*X
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r_ZHN = FR_r_ZH,FR_r_NegOne, f0 // Negate
nop.i 0
};;
.pred.rel "mutex",p13,p12
{ .mfb
nop.m 0
fnma.s0 f8 = FR_r_R1,FR_r_Y3,FR_r_ZHN // Result for neg
br.ret.sptk b0 // Exit for 0 < |X| < 1 path (negative arguments)//////
};;
// SPECIALS (x for natval, nan, +/-inf or +/-0) ///////////////////////////////
//------------------------------------------------------------------------------
.align 32
tgammal_spec:
{ .mlx
nop.m 0
movl GR_DenOverflow = 0x2000000000000001
}
{ .mfi
nop.m 0
fclass.m p9,p0 = f8,0xB // +/-denormals
nop.i 0
};;
{ .mfi
nop.m 0
fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf
nop.i 0
};;
{ .mfi
nop.m 0
fclass.m p7,p8 = f8,0x7 // +/-0
nop.i 0
}
{ .mfi
(p9) cmp.ltu.unc p10,p11 = GR_l_signif_Z, GR_DenOverflow
(p9) fnorm.s0 f8 = f8
nop.i 0
};;
{ .mfb
nop.m 0
(p9) fcvt.fx.trunc.s1 FR_n_IXN = FR_l_AbsX // Round by truncate
(p11) br.cond.sptk tgamma_lt_1 // Return to gamma ('good' denormal)////////////
};;
{ .mfb
nop.m 0
nop.f 0
(p10) br.cond.spnt tgammal_overflow // "Bad" denormal - overflow! /////////////
};;
{ .mfi
nop.m 0
mov FR_X = f8 // for error handler
nop.i 0
}
{ .mfb
nop.m 0
(p6) fma.s0 f8 = f8,f1,f8 // res = x + x
(p6) br.ret.spnt b0 // Exit for NAN, INF and NatVals ////////////////////////
};;
.pred.rel "mutex",p7,p8
{ .mfi
(p7) mov GR_Parameter_TAG = 256 // negative
(p7) frcpa.s0 f8,p0 = f1,f8 // Raise V flag
nop.i 0
}
{ .mfb
nop.m 0
nop.f 0
(p8) br.cond.spnt tgammal_singularity // Branch for +ZERO ////////////////////
};;
{ .mfb
nop.m 0
nop.f 0
br.cond.spnt tgammal_libm_err // Branch for -ZERO ///////////////////////
};;
// SINGULARITY (x is negative integer or 0) ////////////////////////////////////
//------------------------------------------------------------------------------
.align 32
tgammal_singularity:
{ .mfi
nop.m 0
mov FR_X = f8 // For error handler
mov GR_Parameter_TAG = 256 // negative
}
{ .mfb
nop.m 0
frcpa.s0 f8,p0 = f0,f0 // Raise V flag
br.cond.sptk tgammal_libm_err // Call error handler /////////////////////
// with singularity error /////////////////
};;
// OVERFLOW (result is too big and cannot be represented by normal value) //////
// ( X > 1755.54 and for denormals with abs value less than 0x2000000000000001 )
//------------------------------------------------------------------------------
.align 32
tgammal_overflow:
{ .mfi
addl r8 = 0x1FFFE, r0 // Exp of INF
fcmp.lt.s1 p15,p14 = f8,f0 // p14 - pos arg, p15 - neg arg
nop.i 0
};;
{ .mfi
setf.exp f9 = r8
mov FR_X = f8 // For error handler
mov GR_Parameter_TAG = 255 // overflow
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p14) fma.s0 f8 = f9,f9,f0 // Set I,O and +INF result
nop.i 0
}
{ .mfb
nop.m 0
(p15) fnma.s0 f8 = f9,f9,f0 // Set I,O and -INF result
br.cond.sptk tgammal_libm_err // Call error handler /////////////////////
// with overflow error ////////////////////
};;
// UNDERFLOW (x is negative noninteger with big absolute value) ////////////////
//------------------------------------------------------------------------------
.align 32
tgammal_underflow:
{ .mfi
nop.m 0
fcvt.fx.trunc.s1 FR_u_IXN = f8 // Convert arg to int repres. in FR
nop.i 0
};;
{ .mmi
getf.sig GR_u_XN = FR_u_IXN
mov r11 = 0x00001
nop.i 0
};;
{ .mfi
setf.exp f9 = r11
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
tbit.z p6,p7 = GR_u_XN,0 // even or odd
};;
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fms.s0 f8 = f9,f9,f9 // for negatives
nop.i 0
}
{ .mfb
nop.m 0
(p7) fma.s0 f8 = f9,f9,f9 // for positives
br.ret.sptk b0 // Exit for underflow path //////////////////////////////
};;
GLOBAL_LIBM_END(tgammal)
libm_alias_ldouble_other (tgamma, tgamma)
////////////////// Tgammal error handler ///////////////////////////////////////
//------------------------------------------------------------------------------
LOCAL_LIBM_ENTRY(__libm_error_region)
tgammal_libm_err:
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 999
nop.m 999
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|