1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
.file "sincosf.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/02/00 Unwind support added.
// 06/16/00 Updated tables to enforce symmetry
// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
// 09/20/00 The updated tables regressed to an old version, so reinstated them
// 10/18/00 Changed one table entry to ensure symmetry
// 01/03/01 Improved speed, fixed flag settings for small arguments.
// 02/18/02 Large arguments processing routine excluded
// 05/20/02 Cleaned up namespace and sf0 syntax
// 06/03/02 Insure inexact flag set for large arg result
// 09/05/02 Single precision version is made using double precision one as base
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// float sinf( float x);
// float cosf( float x);
//
// Overview of operation
//==============================================================
//
// Step 1
// ======
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
// divide x by pi/2^k.
// Multiply by 2^k/pi.
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
// Do this as (x - nfloat * HIGH(pi/2^k)) - nfloat * LOW(pi/2^k)
// for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
// HIGH part is rounded to zero, LOW - to nearest
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
// and is referred to as the reduced argument.
//
// Step 3
// ======
// Take the unreduced part and remove the multiples of 2pi.
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
//
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
// N * 2^(k+1)
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N2pi + M * pi/2^k
//
//
// Sin(x) = Sin((nfloat * pi/2^k) + r)
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
//
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
// = Sin(Mpi/2^k)
//
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
// = Cos(Mpi/2^k)
//
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
//
// Step 4
// ======
// 0 <= M < 2^(k+1)
// There are 2^(k+1) Sin entries in a table.
// There are 2^(k+1) Cos entries in a table.
//
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
//
//
// Step 5
// ======
// Calculate Cos(r) and Sin(r) by polynomial approximation.
//
// Cos(r) = 1 + r^2 q1 + r^4 q2 = Series for Cos
// Sin(r) = r + r^3 p1 + r^5 p2 = Series for Sin
//
// and the coefficients q1, q2 and p1, p2 are stored in a table
//
//
// Calculate
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
// as follows
//
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
// rsq = r*r
//
//
// P = P1 + r^2*P2
// Q = Q1 + r^2*Q2
//
// rcub = r * rsq
// Sin(r) = r + rcub * P
// = r + r^3p1 + r^5p2 = Sin(r)
//
// The coefficients are not exactly these values, but almost.
//
// p1 = -1/6 = -1/3!
// p2 = 1/120 = 1/5!
// p3 = -1/5040 = -1/7!
// p4 = 1/362889 = 1/9!
//
// P = r + r^3 * P
//
// Answer = S[m] Cos(r) + C[m] P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2)
// Cos(r) = 1 + r^2q1 + r^4q2
//
// S[m] Cos(r) = S[m](1 + rsq Q)
// S[m] Cos(r) = S[m] + S[m] rsq Q
// S[m] Cos(r) = S[m] + s_rsq Q
// Q = S[m] + s_rsq Q
//
// Then,
//
// Answer = Q + C[m] P
// Registers used
//==============================================================
// general input registers:
// r14 -> r19
// r32 -> r45
// predicate registers used:
// p6 -> p14
// floating-point registers used
// f9 -> f15
// f32 -> f61
// Assembly macros
//==============================================================
sincosf_NORM_f8 = f9
sincosf_W = f10
sincosf_int_Nfloat = f11
sincosf_Nfloat = f12
sincosf_r = f13
sincosf_rsq = f14
sincosf_rcub = f15
sincosf_save_tmp = f15
sincosf_Inv_Pi_by_16 = f32
sincosf_Pi_by_16_1 = f33
sincosf_Pi_by_16_2 = f34
sincosf_Inv_Pi_by_64 = f35
sincosf_Pi_by_16_3 = f36
sincosf_r_exact = f37
sincosf_Sm = f38
sincosf_Cm = f39
sincosf_P1 = f40
sincosf_Q1 = f41
sincosf_P2 = f42
sincosf_Q2 = f43
sincosf_P3 = f44
sincosf_Q3 = f45
sincosf_P4 = f46
sincosf_Q4 = f47
sincosf_P_temp1 = f48
sincosf_P_temp2 = f49
sincosf_Q_temp1 = f50
sincosf_Q_temp2 = f51
sincosf_P = f52
sincosf_Q = f53
sincosf_srsq = f54
sincosf_SIG_INV_PI_BY_16_2TO61 = f55
sincosf_RSHF_2TO61 = f56
sincosf_RSHF = f57
sincosf_2TOM61 = f58
sincosf_NFLOAT = f59
sincosf_W_2TO61_RSH = f60
fp_tmp = f61
/////////////////////////////////////////////////////////////
sincosf_AD_1 = r33
sincosf_AD_2 = r34
sincosf_exp_limit = r35
sincosf_r_signexp = r36
sincosf_AD_beta_table = r37
sincosf_r_sincos = r38
sincosf_r_exp = r39
sincosf_r_17_ones = r40
sincosf_GR_sig_inv_pi_by_16 = r14
sincosf_GR_rshf_2to61 = r15
sincosf_GR_rshf = r16
sincosf_GR_exp_2tom61 = r17
sincosf_GR_n = r18
sincosf_GR_m = r19
sincosf_GR_32m = r19
sincosf_GR_all_ones = r19
gr_tmp = r41
GR_SAVE_PFS = r41
GR_SAVE_B0 = r42
GR_SAVE_GP = r43
RODATA
.align 16
// Pi/16 parts
LOCAL_OBJECT_START(double_sincosf_pi)
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
LOCAL_OBJECT_END(double_sincosf_pi)
// Coefficients for polynomials
LOCAL_OBJECT_START(double_sincosf_pq_k4)
data8 0x3F810FABB668E9A2 // P2
data8 0x3FA552E3D6DE75C9 // Q2
data8 0xBFC555554447BC7F // P1
data8 0xBFDFFFFFC447610A // Q1
LOCAL_OBJECT_END(double_sincosf_pq_k4)
// Sincos table (S[m], C[m])
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
data8 0x0000000000000000 // sin ( 0 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 0 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 1 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 1 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 2 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 2 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 3 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 3 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 4 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 4 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 5 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 5 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 6 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 6 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 7 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 7 Pi / 16 )
//
data8 0x3FF0000000000000 // sin ( 8 Pi / 16 )
data8 0x0000000000000000 // cos ( 8 Pi / 16 )
//
data8 0x3FEF6297CFF75CB0 // sin ( 9 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 9 Pi / 16 )
//
data8 0x3FED906BCF328D46 // sin ( 10 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 10 Pi / 16 )
//
data8 0x3FEA9B66290EA1A3 // sin ( 11 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 11 Pi / 16 )
//
data8 0x3FE6A09E667F3BCD // sin ( 12 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 12 Pi / 16 )
//
data8 0x3FE1C73B39AE68C8 // sin ( 13 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 13 Pi / 16 )
//
data8 0x3FD87DE2A6AEA963 // sin ( 14 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 14 Pi / 16 )
//
data8 0x3FC8F8B83C69A60B // sin ( 15 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 15 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 16 Pi / 16 )
data8 0xBFF0000000000000 // cos ( 16 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 17 Pi / 16 )
data8 0xBFEF6297CFF75CB0 // cos ( 17 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 18 Pi / 16 )
data8 0xBFED906BCF328D46 // cos ( 18 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 19 Pi / 16 )
data8 0xBFEA9B66290EA1A3 // cos ( 19 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 20 Pi / 16 )
data8 0xBFE6A09E667F3BCD // cos ( 20 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 21 Pi / 16 )
data8 0xBFE1C73B39AE68C8 // cos ( 21 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 22 Pi / 16 )
data8 0xBFD87DE2A6AEA963 // cos ( 22 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 23 Pi / 16 )
data8 0xBFC8F8B83C69A60B // cos ( 23 Pi / 16 )
//
data8 0xBFF0000000000000 // sin ( 24 Pi / 16 )
data8 0x0000000000000000 // cos ( 24 Pi / 16 )
//
data8 0xBFEF6297CFF75CB0 // sin ( 25 Pi / 16 )
data8 0x3FC8F8B83C69A60B // cos ( 25 Pi / 16 )
//
data8 0xBFED906BCF328D46 // sin ( 26 Pi / 16 )
data8 0x3FD87DE2A6AEA963 // cos ( 26 Pi / 16 )
//
data8 0xBFEA9B66290EA1A3 // sin ( 27 Pi / 16 )
data8 0x3FE1C73B39AE68C8 // cos ( 27 Pi / 16 )
//
data8 0xBFE6A09E667F3BCD // sin ( 28 Pi / 16 )
data8 0x3FE6A09E667F3BCD // cos ( 28 Pi / 16 )
//
data8 0xBFE1C73B39AE68C8 // sin ( 29 Pi / 16 )
data8 0x3FEA9B66290EA1A3 // cos ( 29 Pi / 16 )
//
data8 0xBFD87DE2A6AEA963 // sin ( 30 Pi / 16 )
data8 0x3FED906BCF328D46 // cos ( 30 Pi / 16 )
//
data8 0xBFC8F8B83C69A60B // sin ( 31 Pi / 16 )
data8 0x3FEF6297CFF75CB0 // cos ( 31 Pi / 16 )
//
data8 0x0000000000000000 // sin ( 32 Pi / 16 )
data8 0x3FF0000000000000 // cos ( 32 Pi / 16 )
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
.section .text
////////////////////////////////////////////////////////
// There are two entry points: sin and cos
// If from sin, p8 is true
// If from cos, p9 is true
GLOBAL_IEEE754_ENTRY(sinf)
{ .mlx
alloc r32 = ar.pfs,1,13,0,0
movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
}
{ .mlx
addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
};;
{ .mfi
ld8 sincosf_AD_1 = [sincosf_AD_1]
fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
}
{ .mib
mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
mov sincosf_r_sincos = 0x0 // 0 for sin
br.cond.sptk _SINCOSF_COMMON // go to common part
};;
GLOBAL_IEEE754_END(sinf)
libm_alias_float_other (__sin, sin)
GLOBAL_IEEE754_ENTRY(cosf)
{ .mlx
alloc r32 = ar.pfs,1,13,0,0
movl sincosf_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A //signd of 16/pi
}
{ .mlx
addl sincosf_AD_1 = @ltoff(double_sincosf_pi), gp
movl sincosf_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
};;
{ .mfi
ld8 sincosf_AD_1 = [sincosf_AD_1]
fnorm.s1 sincosf_NORM_f8 = f8 // Normalize argument
cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
}
{ .mib
mov sincosf_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
mov sincosf_r_sincos = 0x8 // 8 for cos
nop.b 999
};;
////////////////////////////////////////////////////////
// All entry points end up here.
// If from sin, sincosf_r_sincos is 0 and p8 is true
// If from cos, sincosf_r_sincos is 8 = 2^(k-1) and p9 is true
// We add sincosf_r_sincos to N
///////////// Common sin and cos part //////////////////
_SINCOSF_COMMON:
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
// fcmp used to set denormal, and invalid on snans
{ .mfi
setf.sig sincosf_SIG_INV_PI_BY_16_2TO61 = sincosf_GR_sig_inv_pi_by_16
fclass.m p6,p0 = f8, 0xe7 // if x=0,inf,nan
mov sincosf_exp_limit = 0x10017
}
{ .mlx
setf.d sincosf_RSHF_2TO61 = sincosf_GR_rshf_2to61
movl sincosf_GR_rshf = 0x43e8000000000000 // 1.1000 2^63
};; // Right shift
// Form another constant
// 2^-61 for scaling Nfloat
// 0x10017 is register_bias + 24.
// So if f8 >= 2^24, go to large argument routines
{ .mmi
getf.exp sincosf_r_signexp = f8
setf.exp sincosf_2TOM61 = sincosf_GR_exp_2tom61
addl gr_tmp = -1,r0 // For "inexect" constant create
};;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
{ .mmb
ldfe sincosf_Pi_by_16_1 = [sincosf_AD_1],16
setf.d sincosf_RSHF = sincosf_GR_rshf
(p6) br.cond.spnt _SINCOSF_SPECIAL_ARGS
};;
// Getting argument's exp for "large arguments" filtering
{ .mmi
ldfe sincosf_Pi_by_16_2 = [sincosf_AD_1],16
setf.sig fp_tmp = gr_tmp // constant for inexact set
nop.i 999
};;
// Polynomial coefficients (Q2, Q1, P2, P1) loading
{ .mmi
ldfpd sincosf_P2,sincosf_Q2 = [sincosf_AD_1],16
nop.m 999
nop.i 999
};;
// Select exponent (17 lsb)
{ .mmi
ldfpd sincosf_P1,sincosf_Q1 = [sincosf_AD_1],16
nop.m 999
dep.z sincosf_r_exp = sincosf_r_signexp, 0, 17
};;
// p10 is true if we must call routines to handle larger arguments
// p10 is true if f8 exp is >= 0x10017 (2^24)
{ .mfb
cmp.ge p10,p0 = sincosf_r_exp,sincosf_exp_limit
nop.f 999
(p10) br.cond.spnt _SINCOSF_LARGE_ARGS // Go to "large args" routine
};;
// sincosf_W = x * sincosf_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
nop.m 999
fma.s1 sincosf_W_2TO61_RSH = sincosf_NORM_f8, sincosf_SIG_INV_PI_BY_16_2TO61, sincosf_RSHF_2TO61
nop.i 999
};;
// sincosf_NFLOAT = Round_Int_Nearest(sincosf_W)
// This is done by scaling back by 2^-61 and subtracting the shift constant
{ .mfi
nop.m 999
fms.s1 sincosf_NFLOAT = sincosf_W_2TO61_RSH,sincosf_2TOM61,sincosf_RSHF
nop.i 999
};;
// get N = (int)sincosf_int_Nfloat
{ .mfi
getf.sig sincosf_GR_n = sincosf_W_2TO61_RSH // integer N value
nop.f 999
nop.i 999
};;
// Add 2^(k-1) (which is in sincosf_r_sincos=8) to N
// sincosf_r = -sincosf_Nfloat * sincosf_Pi_by_16_1 + x
{ .mfi
add sincosf_GR_n = sincosf_GR_n, sincosf_r_sincos
fnma.s1 sincosf_r = sincosf_NFLOAT, sincosf_Pi_by_16_1, sincosf_NORM_f8
nop.i 999
};;
// Get M (least k+1 bits of N)
{ .mmi
and sincosf_GR_m = 0x1f,sincosf_GR_n // Put mask 0x1F -
nop.m 999 // - select k+1 bits
nop.i 999
};;
// Add 16*M to address of sin_cos_beta table
{ .mfi
shladd sincosf_AD_2 = sincosf_GR_32m, 4, sincosf_AD_1
(p8) fclass.m.unc p10,p0 = f8,0x0b // If sin denormal input -
nop.i 999
};;
// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
{ .mfi
ldfd sincosf_Sm = [sincosf_AD_2],8 // Sin value S[m]
(p9) fclass.m.unc p11,p0 = f8,0x0b // If cos denormal input -
nop.i 999 // - set denormal
};;
// sincosf_r = sincosf_r -sincosf_Nfloat * sincosf_Pi_by_16_2
{ .mfi
ldfd sincosf_Cm = [sincosf_AD_2] // Cos table value C[m]
fnma.s1 sincosf_r_exact = sincosf_NFLOAT, sincosf_Pi_by_16_2, sincosf_r
nop.i 999
}
// get rsq = r*r
{ .mfi
nop.m 999
fma.s1 sincosf_rsq = sincosf_r, sincosf_r, f0 // r^2 = r*r
nop.i 999
};;
{ .mfi
nop.m 999
fmpy.s0 fp_tmp = fp_tmp, fp_tmp // forces inexact flag
nop.i 999
};;
// Polynomials calculation
// Q = Q2*r^2 + Q1
// P = P2*r^2 + P1
{ .mfi
nop.m 999
fma.s1 sincosf_Q = sincosf_rsq, sincosf_Q2, sincosf_Q1
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincosf_P = sincosf_rsq, sincosf_P2, sincosf_P1
nop.i 999
};;
// get rcube and S[m]*r^2
{ .mfi
nop.m 999
fmpy.s1 sincosf_srsq = sincosf_Sm,sincosf_rsq // r^2*S[m]
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 sincosf_rcub = sincosf_r_exact, sincosf_rsq
nop.i 999
};;
// Get final P and Q
// Q = Q*S[m]*r^2 + S[m]
// P = P*r^3 + r
{ .mfi
nop.m 999
fma.s1 sincosf_Q = sincosf_srsq,sincosf_Q, sincosf_Sm
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincosf_P = sincosf_rcub,sincosf_P,sincosf_r_exact
nop.i 999
};;
// If sinf(denormal) - force underflow to be set
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 999
(p10) fmpy.s.s0 fp_tmp = f8,f8 // forces underflow flag
nop.i 999 // for denormal sine args
}
// If cosf(denormal) - force denormal to be set
{ .mfi
nop.m 999
(p11) fma.s.s0 fp_tmp = f8, f1, f8 // forces denormal flag
nop.i 999 // for denormal cosine args
};;
// Final calculation
// result = C[m]*P + Q
{ .mfb
nop.m 999
fma.s.s0 f8 = sincosf_Cm, sincosf_P, sincosf_Q
br.ret.sptk b0 // Exit for common path
};;
////////// x = 0/Inf/NaN path //////////////////
_SINCOSF_SPECIAL_ARGS:
.pred.rel "mutex",p8,p9
// sinf(+/-0) = +/-0
// sinf(Inf) = NaN
// sinf(NaN) = NaN
{ .mfi
nop.m 999
(p8) fma.s.s0 f8 = f8, f0, f0 // sinf(+/-0,NaN,Inf)
nop.i 999
}
// cosf(+/-0) = 1.0
// cosf(Inf) = NaN
// cosf(NaN) = NaN
{ .mfb
nop.m 999
(p9) fma.s.s0 f8 = f8, f0, f1 // cosf(+/-0,NaN,Inf)
br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
};;
GLOBAL_IEEE754_END(cosf)
libm_alias_float_other (__cos, cos)
//////////// x >= 2^24 - large arguments routine call ////////////
LOCAL_LIBM_ENTRY(__libm_callout_sincosf)
_SINCOSF_LARGE_ARGS:
.prologue
{ .mfi
mov sincosf_GR_all_ones = -1 // 0xffffffff
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP = gp
nop.f 999
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0
}
.body
{ .mbb
setf.sig sincosf_save_tmp = sincosf_GR_all_ones // inexact set
nop.b 999
(p8) br.call.sptk.many b0 = __libm_sin_large# // sinf(large_X)
};;
{ .mbb
cmp.ne p9,p0 = sincosf_r_sincos, r0 // set p9 if cos
nop.b 999
(p9) br.call.sptk.many b0 = __libm_cos_large# // cosf(large_X)
};;
{ .mfi
mov gp = GR_SAVE_GP
fma.s.s0 f8 = f8, f1, f0 // Round result to single
mov b0 = GR_SAVE_B0
}
{ .mfi // force inexact set
nop.m 999
fmpy.s0 sincosf_save_tmp = sincosf_save_tmp, sincosf_save_tmp
nop.i 999
};;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0 // Exit for large arguments routine call
};;
LOCAL_LIBM_END(__libm_callout_sincosf)
.type __libm_sin_large#, @function
.global __libm_sin_large#
.type __libm_cos_large#, @function
.global __libm_cos_large#
|