aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/s_ceilf.S
blob: 2636e85debcfc8c87b206cdfc55d9583ab4e0a8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
.file "ceilf.s"

// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
// 
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
// 
// WARRANTY DISCLAIMER
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://developer.intel.com/opensource.
//

#include "libm_support.h"

.align 32
.global ceilf#

.section .text
.proc  ceilf#
.align 32

// History
//==============================================================
// 2/02/00: Initial version
// 6/13/00: Improved speed
// 6/27/00: Eliminated incorrect invalid flag setting

// API
//==============================================================
// float ceilf(float x)

// general input registers:  

ceil_GR_FFFF      = r14
ceil_GR_signexp   = r15
ceil_GR_exponent  = r16
ceil_GR_expmask   = r17
ceil_GR_bigexp    = r18


// predicate registers used: 

// p6  ==> Input is NaN, infinity, zero
// p7  ==> Input is denormal
// p8  ==> Input is <0
// p9  ==> Input is >=0
// p10 ==> Input is already an integer (bigger than largest integer)
// p11 ==> Input is not a large integer
// p12 ==> Input is a smaller integer
// p13 ==> Input is not an even integer, so inexact must be set
// p14 ==> Input is between -1 and 0, so result will be -0 and inexact


// floating-point registers used: 

CEIL_SIGNED_ZERO  = f7
CEIL_NORM_f8      = f9                        
CEIL_FFFF         = f10 
CEIL_INEXACT      = f11 
CEIL_FLOAT_INT_f8 = f12
CEIL_INT_f8       = f13
CEIL_adj          = f14
CEIL_MINUS_ONE    = f15

// Overview of operation
//==============================================================

// float ceilf(float x)
// Return an integer value (represented as a float) that is the smallest 
// value not less than x
// This is x rounded toward +infinity to an integral value.
// Inexact is set if x != ceilf(x)
// **************************************************************************

// Set denormal flag for denormal input and
// and take denormal fault if necessary.

// Is the input an integer value already?

// double_extended
// if the exponent is > 1003e => 3F(true) = 63(decimal)
// we have a significand of 64 bits 1.63-bits.
// If we multiply by 2^63, we no longer have a fractional part
// So input is an integer value already.

// double
// if the exponent is >= 10033 => 34(true) = 52(decimal)
// 34 + 3ff = 433
// we have a significand of 53 bits 1.52-bits. (implicit 1)
// If we multiply by 2^52, we no longer have a fractional part
// So input is an integer value already.

// single
// if the exponent is > 10016 => 17(true) = 23(decimal)
// we have a significand of 24 bits 1.23-bits. (implicit 1)
// If we multiply by 2^23, we no longer have a fractional part
// So input is an integer value already.

// If x is NAN, ZERO, or INFINITY, then  return

// qnan snan inf norm     unorm 0 -+
// 1    1    1   0        0     1 11     0xe7


ceilf:

{ .mfi
      getf.exp ceil_GR_signexp  = f8
      fcvt.fx.trunc.s1     CEIL_INT_f8  = f8
      addl        ceil_GR_bigexp = 0x10016, r0
}
{ .mfi
      addl        ceil_GR_FFFF      = -1,r0
      fcmp.lt.s1  p8,p9 = f8,f0
      mov         ceil_GR_expmask    = 0x1FFFF ;;
}

// p7 ==> denorm
{ .mfi
      setf.sig    CEIL_FFFF  = ceil_GR_FFFF
      fclass.m    p7,p0 = f8, 0x0b
      nop.i 999
}
{ .mfi
      nop.m 999
      fnorm           CEIL_NORM_f8  = f8
      nop.i 999 ;;
}

// Form 0 with sign of input in case negative zero is needed
{ .mfi
      nop.m 999
      fmerge.s           CEIL_SIGNED_ZERO = f8, f0
      nop.i 999
}
{ .mfi
      nop.m 999
      fsub.s1           CEIL_MINUS_ONE = f0, f1
      nop.i 999 ;;
}

// p6 ==> NAN, INF, ZERO
{ .mfb
      nop.m 999
      fclass.m      p6,p10 = f8, 0xe7
(p7)  br.cond.spnt  L(CEIL_DENORM) ;;
}

L(CEIL_COMMON):
.pred.rel "mutex",p8,p9
// Set adjustment to add to trunc(x) for result
//   If x>0,  adjustment is 1.0
//   If x<=0, adjustment is 0.0
{ .mfi
      and      ceil_GR_exponent = ceil_GR_signexp, ceil_GR_expmask
(p9)  fadd.s1  CEIL_adj = f1,f0
      nop.i 999
}
{ .mfi
      nop.m 999
(p8)  fadd.s1  CEIL_adj = f0,f0
      nop.i 999 ;;
}

{ .mfi
(p10) cmp.ge.unc    p10,p11 = ceil_GR_exponent, ceil_GR_bigexp
(p6)  fnorm.s f8 = f8
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
(p11) fcvt.xf         CEIL_FLOAT_INT_f8   = CEIL_INT_f8
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
(p10) fnorm.s f8 = CEIL_NORM_f8
      nop.i 999 ;;
}

// Is -1 < x < 0?  If so, result will be -0.  Special case it with p14 set.
{ .mfi
      nop.m 999
(p8)  fcmp.gt.unc.s1 p14,p0 = CEIL_NORM_f8, CEIL_MINUS_ONE
      nop.i 999 ;;
}

{ .mfi
(p14) cmp.ne  p11,p0 = r0,r0
(p14) fnorm.s f8 = CEIL_SIGNED_ZERO
      nop.i 999
}
{ .mfi
      nop.m 999
(p14) fmpy.s0     CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
(p11) fadd.s   f8 = CEIL_FLOAT_INT_f8,CEIL_adj
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p11) fcmp.eq.unc.s1  p12,p13  = CEIL_FLOAT_INT_f8, CEIL_NORM_f8
      nop.i 999 ;;
}

// Set inexact if result not equal to input
{ .mfi
      nop.m 999
(p13) fmpy.s0     CEIL_INEXACT = CEIL_FFFF,CEIL_FFFF
      nop.i 999
}
// Set result to input if integer
{ .mfb
      nop.m 999
(p12) fnorm.s f8 = CEIL_NORM_f8
      br.ret.sptk    b0 ;;
}

// Here if input denorm
L(CEIL_DENORM):
{ .mfb
      getf.exp ceil_GR_signexp  = CEIL_NORM_f8
      fcvt.fx.trunc.s1     CEIL_INT_f8  = CEIL_NORM_f8
      br.cond.sptk  L(CEIL_COMMON) ;;
}

.endp ceilf
ASM_SIZE_DIRECTIVE(ceilf)