1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
|
.file "acoshl.s"
// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
// 10/01/01 Initial version
// 10/10/01 Performance inproved
// 12/11/01 Changed huges_logp to not be global
// 01/02/02 Corrected .restore syntax
// 05/20/02 Cleaned up namespace and sf0 syntax
// 08/14/02 Changed mli templates to mlx
// 02/06/03 Reorganized data tables
// 03/31/05 Reformatted delimiters between data tables
//
//*********************************************************************
//
// API
//==============================================================
// long double acoshl(long double);
//
// Overview of operation
//==============================================================
//
// There are 6 paths:
// 1. x = 1
// Return acoshl(x) = 0;
//
// 2. x < 1
// Return acoshl(x) = Nan (Domain error, error handler call with tag 135);
//
// 3. x = [S,Q]Nan or +INF
// Return acoshl(x) = x + x;
//
// 4. 'Near 1': 1 < x < 1+1/8
// Return acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
// where y = 1, P(y)/Q(y) - rational approximation
//
// 5. 'Huges': x > 0.5*2^64
// Return acoshl(x) = (logl(2*x-1));
//
// 6. 'Main path': 1+1/8 < x < 0.5*2^64
// b_hi + b_lo = x + sqrt(x^2 - 1);
// acoshl(x) = logl_special(b_hi, b_lo);
//
// Algorithm description
//==============================================================
//
// I. Near 1 path algorithm
// **************************************************************
// The formula is acoshl(x) = sqrtl(2*y)*(1-P(y)/Q(y)),
// where y = 1, P(y)/Q(y) - rational approximation
//
// 1) y = x - 1, y2 = 2 * y
//
// 2) Compute in parallel sqrtl(2*y) and P(y)/Q(y)
// a) sqrtl computation method described below (main path algorithm, item 2))
// As result we obtain (gg+gl) - multiprecision result
// as pair of double extended values
// b) P(y) and Q(y) calculated without any extra precision manipulations
// c) P/Q division:
// y = frcpa(Q) initial approximation of 1/Q
// z = P*y initial approximation of P/Q
//
// e = 1 - b*y
// e2 = e + e^2
// e1 = e^2
// y1 = y + y*e2 = y + y*(e+e^2)
//
// e3 = e + e1^2
// y2 = y + y1*e3 = y + y*(e+e^2+..+e^6)
//
// r = P - Q*z
// e = 1 - Q*y2
// xx = z + r*y2 high part of a/b
//
// y3 = y2 + y2*e4
// r1 = P - Q*xx
// xl = r1*y3 low part of a/b
//
// 3) res = sqrt(2*y) - sqrt(2*y)*(P(y)/Q(y)) =
// = (gg+gl) - (gg + gl)*(xx+xl);
//
// a) hh = gg*xx; hl = gg*xl; lh = gl*xx; ll = gl*xl;
// b) res = ((((gl + ll) + lh) + hl) + hh) + gg;
// (exactly in this order)
//
// II. Main path algorithm
// ( thanks to Peter Markstein for the idea of sqrt(x^2+1) computation! )
// **********************************************************************
//
// There are 3 parts of x+sqrt(x^2-1) computation:
//
// 1) m2 = (m2_hi+m2_lo) = x^2-1 obtaining
// ------------------------------------
// m2_hi = x2_hi - 1, where x2_hi = x * x;
// m2_lo = x2_lo + p1_lo, where
// x2_lo = FMS(x*x-x2_hi),
// p1_lo = (1 + m2_hi) - x2_hi;
//
// 2) g = (g_hi+g_lo) = sqrt(m2) = sqrt(m2_hi+m2_lo)
// ----------------------------------------------
// r = invsqrt(m2_hi) (8-bit reciprocal square root approximation);
// g = m2_hi * r (first 8 bit-approximation of sqrt);
//
// h = 0.5 * r;
// e = 0.5 - g * h;
// g = g * e + g (second 16 bit-approximation of sqrt);
//
// h = h * e + h;
// e = 0.5 - g * h;
// g = g * e + g (third 32 bit-approximation of sqrt);
//
// h = h * e + h;
// e = 0.5 - g * h;
// g_hi = g * e + g (fourth 64 bit-approximation of sqrt);
//
// Remainder computation:
// h = h * e + h;
// d = (m2_hi - g_hi * g_hi) + m2_lo;
// g_lo = d * h;
//
// 3) b = (b_hi + b_lo) = x + g, where g = (g_hi + g_lo) = sqrt(x^2-1)
// -------------------------------------------------------------------
// b_hi = (g_hi + x) + gl;
// b_lo = (x - b_hi) + g_hi + gl;
//
// Now we pass b presented as sum b_hi + b_lo to special version
// of logl function which accept a pair of arguments as
// mutiprecision value.
//
// Special log algorithm overview
// ================================
// Here we use a table lookup method. The basic idea is that in
// order to compute logl(Arg) for an argument Arg in [1,2),
// we construct a value G such that G*Arg is close to 1 and that
// logl(1/G) is obtainable easily from a table of values calculated
// beforehand. Thus
//
// logl(Arg) = logl(1/G) + logl((G*Arg - 1))
//
// Because |G*Arg - 1| is small, the second term on the right hand
// side can be approximated by a short polynomial. We elaborate
// this method in four steps.
//
// Step 0: Initialization
//
// We need to calculate logl( X+1 ). Obtain N, S_hi such that
//
// X = 2^N * ( S_hi + S_lo ) exactly
//
// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
// that |S_lo| <= ulp(S_hi).
//
// For the special version of logl: S_lo = b_lo
// !-----------------------------------------------!
//
// Step 1: Argument Reduction
//
// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
// G := G_1 * G_2 * G_3
// r := (G * S_hi - 1) + G * S_lo
//
// These G_j's have the property that the product is exactly
// representable and that |r| < 2^(-12) as a result.
//
// Step 2: Approximation
//
// logl(1 + r) is approximated by a short polynomial poly(r).
//
// Step 3: Reconstruction
//
// Finally, logl( X ) = logl( X+1 ) is given by
//
// logl( X ) = logl( 2^N * (S_hi + S_lo) )
// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
// ~=~ N*logl(2) + logl(1/G) + poly(r).
//
// For detailed description see logl or log1pl function, regular path.
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f95 (64 registers)
// General registers used:
// r32 -> r67 (36 registers)
// Predicate registers used:
// p7 -> p11
// p7 for 'NaNs, Inf' path
// p8 for 'near 1' path
// p9 for 'huges' path
// p10 for x = 1
// p11 for x < 1
//
//*********************************************************************
// IEEE Special Conditions:
//
// acoshl(+inf) = +inf
// acoshl(-inf) = QNaN
// acoshl(1) = 0
// acoshl(x<1) = QNaN
// acoshl(SNaN) = QNaN
// acoshl(QNaN) = QNaN
//
// Data tables
//==============================================================
RODATA
.align 64
// Near 1 path rational approximation coefficients
LOCAL_OBJECT_START(Poly_P)
data8 0xB0978143F695D40F, 0x3FF1 // .84205539791447100108478906277453574946e-4
data8 0xB9800D841A8CAD29, 0x3FF6 // .28305085180397409672905983082168721069e-2
data8 0xC889F455758C1725, 0x3FF9 // .24479844297887530847660233111267222945e-1
data8 0x9BE1DFF006F45F12, 0x3FFB // .76114415657565879842941751209926938306e-1
data8 0x9E34AF4D372861E0, 0x3FFB // .77248925727776366270605984806795850504e-1
data8 0xF3DC502AEE14C4AE, 0x3FA6 // .3077953476682583606615438814166025592e-26
LOCAL_OBJECT_END(Poly_P)
//
LOCAL_OBJECT_START(Poly_Q)
data8 0xF76E3FD3C7680357, 0x3FF1 // .11798413344703621030038719253730708525e-3
data8 0xD107D2E7273263AE, 0x3FF7 // .63791065024872525660782716786703188820e-2
data8 0xB609BE5CDE206AEF, 0x3FFB // .88885771950814004376363335821980079985e-1
data8 0xF7DEACAC28067C8A, 0x3FFD // .48412074662702495416825113623936037072302
data8 0x8F9BE5890CEC7E38, 0x3FFF // 1.1219450873557867470217771071068369729526
data8 0xED4F06F3D2BC92D1, 0x3FFE // .92698710873331639524734537734804056798748
LOCAL_OBJECT_END(Poly_Q)
// Q coeffs
LOCAL_OBJECT_START(Constants_Q)
data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
LOCAL_OBJECT_END(Constants_Q)
// Z1 - 16 bit fixed
LOCAL_OBJECT_START(Constants_Z_1)
data4 0x00008000
data4 0x00007879
data4 0x000071C8
data4 0x00006BCB
data4 0x00006667
data4 0x00006187
data4 0x00005D18
data4 0x0000590C
data4 0x00005556
data4 0x000051EC
data4 0x00004EC5
data4 0x00004BDB
data4 0x00004925
data4 0x0000469F
data4 0x00004445
data4 0x00004211
LOCAL_OBJECT_END(Constants_Z_1)
// G1 and H1 - IEEE single and h1 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h1)
data4 0x3F800000,0x00000000
data8 0x0000000000000000
data4 0x3F70F0F0,0x3D785196
data8 0x3DA163A6617D741C
data4 0x3F638E38,0x3DF13843
data8 0x3E2C55E6CBD3D5BB
data4 0x3F579430,0x3E2FF9A0
data8 0xBE3EB0BFD86EA5E7
data4 0x3F4CCCC8,0x3E647FD6
data8 0x3E2E6A8C86B12760
data4 0x3F430C30,0x3E8B3AE7
data8 0x3E47574C5C0739BA
data4 0x3F3A2E88,0x3EA30C68
data8 0x3E20E30F13E8AF2F
data4 0x3F321640,0x3EB9CEC8
data8 0xBE42885BF2C630BD
data4 0x3F2AAAA8,0x3ECF9927
data8 0x3E497F3497E577C6
data4 0x3F23D708,0x3EE47FC5
data8 0x3E3E6A6EA6B0A5AB
data4 0x3F1D89D8,0x3EF8947D
data8 0xBDF43E3CD328D9BE
data4 0x3F17B420,0x3F05F3A1
data8 0x3E4094C30ADB090A
data4 0x3F124920,0x3F0F4303
data8 0xBE28FBB2FC1FE510
data4 0x3F0D3DC8,0x3F183EBF
data8 0x3E3A789510FDE3FA
data4 0x3F088888,0x3F20EC80
data8 0x3E508CE57CC8C98F
data4 0x3F042108,0x3F29516A
data8 0xBE534874A223106C
LOCAL_OBJECT_END(Constants_G_H_h1)
// Z2 - 16 bit fixed
LOCAL_OBJECT_START(Constants_Z_2)
data4 0x00008000
data4 0x00007F81
data4 0x00007F02
data4 0x00007E85
data4 0x00007E08
data4 0x00007D8D
data4 0x00007D12
data4 0x00007C98
data4 0x00007C20
data4 0x00007BA8
data4 0x00007B31
data4 0x00007ABB
data4 0x00007A45
data4 0x000079D1
data4 0x0000795D
data4 0x000078EB
LOCAL_OBJECT_END(Constants_Z_2)
// G2 and H2 - IEEE single and h2 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h2)
data4 0x3F800000,0x00000000
data8 0x0000000000000000
data4 0x3F7F00F8,0x3B7F875D
data8 0x3DB5A11622C42273
data4 0x3F7E03F8,0x3BFF015B
data8 0x3DE620CF21F86ED3
data4 0x3F7D08E0,0x3C3EE393
data8 0xBDAFA07E484F34ED
data4 0x3F7C0FC0,0x3C7E0586
data8 0xBDFE07F03860BCF6
data4 0x3F7B1880,0x3C9E75D2
data8 0x3DEA370FA78093D6
data4 0x3F7A2328,0x3CBDC97A
data8 0x3DFF579172A753D0
data4 0x3F792FB0,0x3CDCFE47
data8 0x3DFEBE6CA7EF896B
data4 0x3F783E08,0x3CFC15D0
data8 0x3E0CF156409ECB43
data4 0x3F774E38,0x3D0D874D
data8 0xBE0B6F97FFEF71DF
data4 0x3F766038,0x3D1CF49B
data8 0xBE0804835D59EEE8
data4 0x3F757400,0x3D2C531D
data8 0x3E1F91E9A9192A74
data4 0x3F748988,0x3D3BA322
data8 0xBE139A06BF72A8CD
data4 0x3F73A0D0,0x3D4AE46F
data8 0x3E1D9202F8FBA6CF
data4 0x3F72B9D0,0x3D5A1756
data8 0xBE1DCCC4BA796223
data4 0x3F71D488,0x3D693B9D
data8 0xBE049391B6B7C239
LOCAL_OBJECT_END(Constants_G_H_h2)
// G3 and H3 - IEEE single and h3 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h3)
data4 0x3F7FFC00,0x38800100
data8 0x3D355595562224CD
data4 0x3F7FF400,0x39400480
data8 0x3D8200A206136FF6
data4 0x3F7FEC00,0x39A00640
data8 0x3DA4D68DE8DE9AF0
data4 0x3F7FE400,0x39E00C41
data8 0xBD8B4291B10238DC
data4 0x3F7FDC00,0x3A100A21
data8 0xBD89CCB83B1952CA
data4 0x3F7FD400,0x3A300F22
data8 0xBDB107071DC46826
data4 0x3F7FCC08,0x3A4FF51C
data8 0x3DB6FCB9F43307DB
data4 0x3F7FC408,0x3A6FFC1D
data8 0xBD9B7C4762DC7872
data4 0x3F7FBC10,0x3A87F20B
data8 0xBDC3725E3F89154A
data4 0x3F7FB410,0x3A97F68B
data8 0xBD93519D62B9D392
data4 0x3F7FAC18,0x3AA7EB86
data8 0x3DC184410F21BD9D
data4 0x3F7FA420,0x3AB7E101
data8 0xBDA64B952245E0A6
data4 0x3F7F9C20,0x3AC7E701
data8 0x3DB4B0ECAABB34B8
data4 0x3F7F9428,0x3AD7DD7B
data8 0x3D9923376DC40A7E
data4 0x3F7F8C30,0x3AE7D474
data8 0x3DC6E17B4F2083D3
data4 0x3F7F8438,0x3AF7CBED
data8 0x3DAE314B811D4394
data4 0x3F7F7C40,0x3B03E1F3
data8 0xBDD46F21B08F2DB1
data4 0x3F7F7448,0x3B0BDE2F
data8 0xBDDC30A46D34522B
data4 0x3F7F6C50,0x3B13DAAA
data8 0x3DCB0070B1F473DB
data4 0x3F7F6458,0x3B1BD766
data8 0xBDD65DDC6AD282FD
data4 0x3F7F5C68,0x3B23CC5C
data8 0xBDCDAB83F153761A
data4 0x3F7F5470,0x3B2BC997
data8 0xBDDADA40341D0F8F
data4 0x3F7F4C78,0x3B33C711
data8 0x3DCD1BD7EBC394E8
data4 0x3F7F4488,0x3B3BBCC6
data8 0xBDC3532B52E3E695
data4 0x3F7F3C90,0x3B43BAC0
data8 0xBDA3961EE846B3DE
data4 0x3F7F34A0,0x3B4BB0F4
data8 0xBDDADF06785778D4
data4 0x3F7F2CA8,0x3B53AF6D
data8 0x3DCC3ED1E55CE212
data4 0x3F7F24B8,0x3B5BA620
data8 0xBDBA31039E382C15
data4 0x3F7F1CC8,0x3B639D12
data8 0x3D635A0B5C5AF197
data4 0x3F7F14D8,0x3B6B9444
data8 0xBDDCCB1971D34EFC
data4 0x3F7F0CE0,0x3B7393BC
data8 0x3DC7450252CD7ADA
data4 0x3F7F04F0,0x3B7B8B6D
data8 0xBDB68F177D7F2A42
LOCAL_OBJECT_END(Constants_G_H_h3)
// Assembly macros
//==============================================================
// Floating Point Registers
FR_Arg = f8
FR_Res = f8
FR_PP0 = f32
FR_PP1 = f33
FR_PP2 = f34
FR_PP3 = f35
FR_PP4 = f36
FR_PP5 = f37
FR_QQ0 = f38
FR_QQ1 = f39
FR_QQ2 = f40
FR_QQ3 = f41
FR_QQ4 = f42
FR_QQ5 = f43
FR_Q1 = f44
FR_Q2 = f45
FR_Q3 = f46
FR_Q4 = f47
FR_Half = f48
FR_Two = f49
FR_log2_hi = f50
FR_log2_lo = f51
FR_X2 = f52
FR_M2 = f53
FR_M2L = f54
FR_Rcp = f55
FR_GG = f56
FR_HH = f57
FR_EE = f58
FR_DD = f59
FR_GL = f60
FR_Tmp = f61
FR_XM1 = f62
FR_2XM1 = f63
FR_XM12 = f64
// Special logl registers
FR_XLog_Hi = f65
FR_XLog_Lo = f66
FR_Y_hi = f67
FR_Y_lo = f68
FR_S_hi = f69
FR_S_lo = f70
FR_poly_lo = f71
FR_poly_hi = f72
FR_G = f73
FR_H = f74
FR_h = f75
FR_G2 = f76
FR_H2 = f77
FR_h2 = f78
FR_r = f79
FR_rsq = f80
FR_rcub = f81
FR_float_N = f82
FR_G3 = f83
FR_H3 = f84
FR_h3 = f85
FR_2_to_minus_N = f86
// Near 1 registers
FR_PP = f65
FR_QQ = f66
FR_PV6 = f69
FR_PV4 = f70
FR_PV3 = f71
FR_PV2 = f72
FR_QV6 = f73
FR_QV4 = f74
FR_QV3 = f75
FR_QV2 = f76
FR_Y0 = f77
FR_Q0 = f78
FR_E0 = f79
FR_E2 = f80
FR_E1 = f81
FR_Y1 = f82
FR_E3 = f83
FR_Y2 = f84
FR_R0 = f85
FR_E4 = f86
FR_Y3 = f87
FR_R1 = f88
FR_X_Hi = f89
FR_X_lo = f90
FR_HH = f91
FR_LL = f92
FR_HL = f93
FR_LH = f94
// Error handler registers
FR_Arg_X = f95
FR_Arg_Y = f0
// General Purpose Registers
// General prolog registers
GR_PFS = r32
GR_OneP125 = r33
GR_TwoP63 = r34
GR_Arg = r35
GR_Half = r36
// Near 1 path registers
GR_Poly_P = r37
GR_Poly_Q = r38
// Special logl registers
GR_Index1 = r39
GR_Index2 = r40
GR_signif = r41
GR_X_0 = r42
GR_X_1 = r43
GR_X_2 = r44
GR_minus_N = r45
GR_Z_1 = r46
GR_Z_2 = r47
GR_N = r48
GR_Bias = r49
GR_M = r50
GR_Index3 = r51
GR_exp_2tom80 = r52
GR_exp_mask = r53
GR_exp_2tom7 = r54
GR_ad_ln10 = r55
GR_ad_tbl_1 = r56
GR_ad_tbl_2 = r57
GR_ad_tbl_3 = r58
GR_ad_q = r59
GR_ad_z_1 = r60
GR_ad_z_2 = r61
GR_ad_z_3 = r62
//
// Added for unwind support
//
GR_SAVE_PFS = r32
GR_SAVE_B0 = r33
GR_SAVE_GP = r34
GR_Parameter_X = r64
GR_Parameter_Y = r65
GR_Parameter_RESULT = r66
GR_Parameter_TAG = r67
.section .text
GLOBAL_LIBM_ENTRY(acoshl)
{ .mfi
alloc GR_PFS = ar.pfs,0,32,4,0 // Local frame allocation
fcmp.lt.s1 p11, p0 = FR_Arg, f1 // if arg is less than 1
mov GR_Half = 0xfffe // 0.5's exp
}
{ .mfi
addl GR_Poly_Q = @ltoff(Poly_Q), gp // Address of Q-coeff table
fma.s1 FR_X2 = FR_Arg, FR_Arg, f0 // Obtain x^2
addl GR_Poly_P = @ltoff(Poly_P), gp // Address of P-coeff table
};;
{ .mfi
getf.d GR_Arg = FR_Arg // get argument as double (int64)
fma.s0 FR_Two = f1, f1, f1 // construct 2.0
addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp // logl tables
}
{ .mlx
nop.m 0
movl GR_TwoP63 = 0x43E8000000000000 // 0.5*2^63 (huge arguments)
};;
{ .mfi
ld8 GR_Poly_P = [GR_Poly_P] // get actual P-coeff table address
fcmp.eq.s1 p10, p0 = FR_Arg, f1 // if arg == 1 (return 0)
nop.i 0
}
{ .mlx
ld8 GR_Poly_Q = [GR_Poly_Q] // get actual Q-coeff table address
movl GR_OneP125 = 0x3FF2000000000000 // 1.125 (near 1 path bound)
};;
{ .mfi
ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
fclass.m p7,p0 = FR_Arg, 0xe3 // if arg NaN inf
cmp.le p9, p0 = GR_TwoP63, GR_Arg // if arg > 0.5*2^63 ('huges')
}
{ .mfb
cmp.ge p8, p0 = GR_OneP125, GR_Arg // if arg<1.125 -near 1 path
fms.s1 FR_XM1 = FR_Arg, f1, f1 // X0 = X-1 (for near 1 path)
(p11) br.cond.spnt acoshl_lt_pone // error branch (less than 1)
};;
{ .mmi
setf.exp FR_Half = GR_Half // construct 0.5
(p9) setf.s FR_XLog_Lo = r0 // Low of logl arg=0 (Huges path)
mov GR_exp_mask = 0x1FFFF // Create exponent mask
};;
{ .mmf
(p8) ldfe FR_PP5 = [GR_Poly_P],16 // Load P5
(p8) ldfe FR_QQ5 = [GR_Poly_Q],16 // Load Q5
fms.s1 FR_M2 = FR_X2, f1, f1 // m2 = x^2 - 1
};;
{ .mfi
(p8) ldfe FR_QQ4 = [GR_Poly_Q],16 // Load Q4
fms.s1 FR_M2L = FR_Arg, FR_Arg, FR_X2 // low part of
// m2 = fma(X*X - m2)
add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
}
{ .mfb
(p8) ldfe FR_PP4 = [GR_Poly_P],16 // Load P4
(p7) fma.s0 FR_Res = FR_Arg,f1,FR_Arg // r = a + a (Nan, Inf)
(p7) br.ret.spnt b0 // return (Nan, Inf)
};;
{ .mfi
(p8) ldfe FR_PP3 = [GR_Poly_P],16 // Load P3
nop.f 0
add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
}
{ .mfb
(p8) ldfe FR_QQ3 = [GR_Poly_Q],16 // Load Q3
(p9) fms.s1 FR_XLog_Hi = FR_Two, FR_Arg, f1 // Hi of log arg = 2*X-1
(p9) br.cond.spnt huges_logl // special version of log
}
;;
{ .mfi
(p8) ldfe FR_PP2 = [GR_Poly_P],16 // Load P2
(p8) fma.s1 FR_2XM1 = FR_Two, FR_XM1, f0 // 2X0 = 2 * X0
add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
}
{ .mfb
(p8) ldfe FR_QQ2 = [GR_Poly_Q],16 // Load Q2
(p10) fma.s0 FR_Res = f0,f1,f0 // r = 0 (arg = 1)
(p10) br.ret.spnt b0 // return (arg = 1)
};;
{ .mmi
(p8) ldfe FR_PP1 = [GR_Poly_P],16 // Load P1
(p8) ldfe FR_QQ1 = [GR_Poly_Q],16 // Load Q1
add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
}
;;
{ .mfi
(p8) ldfe FR_PP0 = [GR_Poly_P] // Load P0
fma.s1 FR_Tmp = f1, f1, FR_M2 // Tmp = 1 + m2
add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
}
{ .mfb
(p8) ldfe FR_QQ0 = [GR_Poly_Q]
nop.f 0
(p8) br.cond.spnt near_1 // near 1 path
};;
{ .mfi
ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
nop.f 0
mov GR_Bias = 0x0FFFF // Create exponent bias
};;
{ .mfi
nop.m 0
frsqrta.s1 FR_Rcp, p0 = FR_M2 // Rcp = 1/m2 reciprocal appr.
nop.i 0
};;
{ .mfi
ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
fms.s1 FR_Tmp = FR_X2, f1, FR_Tmp // Tmp = x^2 - Tmp
nop.i 0
};;
{ .mfi
ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
fma.s1 FR_GG = FR_Rcp, FR_M2, f0 // g = Rcp * m2
// 8 bit Newton Raphson iteration
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp
nop.i 0
};;
{ .mfi
ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_M2L = FR_Tmp, f1, FR_M2L // low part of m2 = Tmp+m2l
nop.i 0
};;
{ .mfi
ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
// 16 bit Newton Raphson iteration
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
nop.i 0
};;
{ .mfi
ldfe FR_Q1 = [GR_ad_q] // Load Q1
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
// 32 bit Newton Raphson iteration
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g
// 64 bit Newton Raphson iteration
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_DD = FR_GG, FR_GG, FR_M2 // Remainder d = g * g - p2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_XLog_Hi = FR_Arg, f1, FR_GG // bh = z + gh
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_DD = FR_DD, f1, FR_M2L // add p2l: d = d + p2l
nop.i 0
};;
{ .mfi
getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
nop.f 0
mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
};;
{ .mfi
nop.m 0
fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h
extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
}
{ .mfi
nop.m 0
fma.s1 FR_XLog_Hi = FR_DD, FR_HH, FR_XLog_Hi // bh = bh + gl
nop.i 0
};;
{ .mmi
shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
};;
{ .mmi
ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
nop.m 0
nop.i 0
};;
{ .mmi
ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
nop.m 0
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_XLog_Lo = FR_Arg, f1, FR_XLog_Hi // bl = x - bh
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
};;
// WE CANNOT USE GR_X_1 IN NEXT 3 CYCLES BECAUSE OF POSSIBLE 10 CLOCKS STALL!
// "DEAD" ZONE!
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x+1|
nop.i 0
};;
{ .mmi
getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
ldfd FR_h = [GR_ad_tbl_1] // Load h_1
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
};;
{ .mfi
shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GG // bl = bl + gg
mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
}
{ .mfi
shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
nop.f 0
sub GR_N = GR_N, GR_Bias // sub bias from exp
};;
{ .mmi
ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
};;
{ .mmi
ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
nop.m 0
nop.i 0
};;
{ .mmi
setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
};;
// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
// (Just nops added - nothing to do here)
{ .mfi
nop.m 0
fma.s1 FR_XLog_Lo = FR_XLog_Lo, f1, FR_GL // bl = bl + gl
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
};;
{ .mfi
shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
nop.f 0
nop.i 0
};;
{ .mfi
ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
nop.f 0
nop.i 0
};;
{ .mfi
ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
fcvt.xf FR_float_N = FR_float_N
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_S_lo = FR_XLog_Lo, FR_2_to_minus_N, f0 //S_lo=S_lo*2^(-N)
nop.i 0
};;
{ .mfi
nop.m 0
fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h=N*log2_lo+h
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r=G*S_lo+(G*S_hi-1)
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo
// Y_lo=poly_hi+poly_lo
nop.i 0
};;
{ .mfb
nop.m 0
fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
br.ret.sptk b0 // Common exit for 2^-7 < x < inf
};;
huges_logl:
{ .mmi
getf.sig GR_signif = FR_XLog_Hi // Get significand of x+1
mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
nop.i 0
};;
{ .mfi
add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
nop.f 0
add GR_ad_q = -0x60, GR_ad_z_1 // Point to Constants_P
}
{ .mfi
add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
nop.f 0
add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
};;
{ .mfi
add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
nop.f 0
extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
};;
{ .mfi
shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
nop.f 0
extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of signif.
};;
{ .mfi
ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
nop.f 0
mov GR_exp_mask = 0x1FFFF // Create exponent mask
}
{ .mfi
shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
nop.f 0
mov GR_Bias = 0x0FFFF // Create exponent bias
};;
{ .mfi
ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
fmerge.se FR_S_hi = f1,FR_XLog_Hi // Form |x|
nop.i 0
};;
{ .mmi
getf.exp GR_N = FR_XLog_Hi // Get N = exponent of x+1
ldfd FR_h = [GR_ad_tbl_1] // Load h_1
nop.i 0
};;
{ .mfi
ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
nop.f 0
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
};;
{ .mmi
ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
sub GR_N = GR_N, GR_Bias
mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
};;
{ .mfi
ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
nop.f 0
sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
};;
{ .mmf
ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
setf.sig FR_float_N = GR_N // Put integer N into rightmost sign
nop.f 0
};;
{ .mmi
ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
nop.m 0
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
};;
{ .mmi
ldfe FR_Q1 = [GR_ad_q] // Load Q1
shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
nop.i 0
};;
{ .mmi
ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
nop.i 0
};;
{ .mmi
ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
nop.m 0
nop.i 0
};;
{ .mmf
ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
nop.f 0
};;
{ .mfi
nop.m 0
nop.f 0
pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1*Z_2
};;
// WE CANNOT USE GR_X_2 IN NEXT 3 CYCLES ("DEAD" ZONE!)
// BECAUSE OF POSSIBLE 10 CLOCKS STALL!
// (Just nops added - nothing to do here)
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
};;
{ .mfi
shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
fcvt.xf FR_float_N = FR_float_N
nop.i 0
};;
{ .mfi
ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
nop.f 0
nop.i 0
};;
{ .mfi
ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
nop.i 0
};;
{ .mmf
nop.m 0
nop.m 0
fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
};;
{ .mfi
nop.m 0
fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2)*G_3
nop.i 0
}
{ .mfi
nop.m 0
fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2)+H_3
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi=N*log2_hi+H
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N*log2_lo+h
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
nop.i 0
}
{ .mfi
nop.m 0
fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo=poly_lo*r+Q2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1*rsq + r
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h//poly_lo=poly_lo*r^3+h
nop.i 0
};;
{ .mfi
nop.m 0
fadd.s0 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo=poly_hi+poly_lo
nop.i 0
};;
{ .mfb
nop.m 0
fadd.s0 FR_Res = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
br.ret.sptk b0 // Common exit
};;
// NEAR ONE INTERVAL
near_1:
{ .mfi
nop.m 0
frsqrta.s1 FR_Rcp, p0 = FR_2XM1 // Rcp = 1/x reciprocal appr. &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_PV6 = FR_PP5, FR_XM1, FR_PP4 // pv6 = P5*xm1+P4 $POLY$
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_QV6 = FR_QQ5, FR_XM1, FR_QQ4 // qv6 = Q5*xm1+Q4 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_PV4 = FR_PP3, FR_XM1, FR_PP2 // pv4 = P3*xm1+P2 $POLY$
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_QV4 = FR_QQ3, FR_XM1, FR_QQ2 // qv4 = Q3*xm1+Q2 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_XM12 = FR_XM1, FR_XM1, f0 // xm1^2 = xm1 * xm1 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_PV2 = FR_PP1, FR_XM1, FR_PP0 // pv2 = P1*xm1+P0 $POLY$
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_QV2 = FR_QQ1, FR_XM1, FR_QQ0 // qv2 = Q1*xm1+Q0 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_Rcp, FR_2XM1, f0 // g = Rcp * x &SQRT&
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_Half, FR_Rcp, f0 // h = 0.5 * Rcp &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_PV3 = FR_XM12, FR_PV6, FR_PV4//pv3=pv6*xm1^2+pv4 $POLY$
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_QV3 = FR_XM12, FR_QV6, FR_QV4//qv3=qv6*xm1^2+qv4 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_PP = FR_XM12, FR_PV3, FR_PV2 //pp=pv3*xm1^2+pv2 $POLY$
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_QQ = FR_XM12, FR_QV3, FR_QV2 //qq=qv3*xm1^2+qv2 $POLY$
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
frcpa.s1 FR_Y0,p0 = f1,FR_QQ // y = frcpa(b) #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g*h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_Q0 = FR_PP,FR_Y0,f0 // q = a*y #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_E0 = FR_Y0,FR_QQ,f1 // e = 1 - b*y #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_GG, FR_EE, FR_GG // g = g * e + g &SQRT&
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_E2 = FR_E0,FR_E0,FR_E0 // e2 = e+e^2 #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_E1 = FR_E0,FR_E0,f0 // e1 = e^2 #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_EE = FR_GG, FR_HH, FR_Half // e = 0.5 - g * h &SQRT&
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_Y1 = FR_Y0,FR_E2,FR_Y0 // y1 = y+y*e2 #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_E3 = FR_E1,FR_E1,FR_E0 // e3 = e+e1^2 #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GG = FR_DD, FR_HH, FR_GG // g = d * h + g &SQRT&
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_HH, FR_EE, FR_HH // h = h * e + h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_Y2 = FR_Y1,FR_E3,FR_Y0 // y2 = y+y1*e3 #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_R0 = FR_QQ,FR_Q0,FR_PP // r = a-b*q #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_DD = FR_GG, FR_GG, FR_2XM1 // d = x - g * g &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fnma.s1 FR_E4 = FR_QQ,FR_Y2,f1 // e4 = 1-b*y2 #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_X_Hi = FR_R0,FR_Y2,FR_Q0 // x = q+r*y2 #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_GL = FR_DD, FR_HH, f0 // gl = d * h &SQRT&
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_Y3 = FR_Y2,FR_E4,FR_Y2 // y3 = y2+y2*e4 #DIV#
nop.i 0
}
{ .mfi
nop.m 0
fnma.s1 FR_R1 = FR_QQ,FR_X_Hi,FR_PP // r1 = a-b*x #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_HH = FR_GG, FR_X_Hi, f0 // hh = gg * x_hi
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_LH = FR_GL, FR_X_Hi, f0 // lh = gl * x_hi
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_X_lo = FR_R1,FR_Y3,f0 // x_lo = r1*y3 #DIV#
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_LL = FR_GL, FR_X_lo, f0 // ll = gl*x_lo
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_HL = FR_GG, FR_X_lo, f0 // hl = gg * x_lo
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_Res = FR_GL, f1, FR_LL // res = gl + ll
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_Res = FR_Res, f1, FR_LH // res = res + lh
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_Res = FR_Res, f1, FR_HL // res = res + hl
nop.i 0
};;
{ .mfi
nop.m 0
fms.s1 FR_Res = FR_Res, f1, FR_HH // res = res + hh
nop.i 0
};;
{ .mfb
nop.m 0
fma.s0 FR_Res = FR_Res, f1, FR_GG // result = res + gg
br.ret.sptk b0 // Exit for near 1 path
};;
// NEAR ONE INTERVAL END
acoshl_lt_pone:
{ .mfi
nop.m 0
fmerge.s FR_Arg_X = FR_Arg, FR_Arg
nop.i 0
};;
{ .mfb
mov GR_Parameter_TAG = 135
frcpa.s0 FR_Res,p0 = f0,f0 // get QNaN,and raise invalid
br.cond.sptk __libm_error_region // exit if x < 1.0
};;
GLOBAL_LIBM_END(acoshl)
libm_alias_ldouble_other (acosh, acosh)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y = -32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp = -64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP = gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Arg_Y,16 // Parameter 2 to stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0,GR_SAVE_B0
mov GR_SAVE_B0 = b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_Arg_X // Parameter 1 to stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfe [GR_Parameter_Y] = FR_Res // Parameter 3 to stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0 = __libm_error_support# // Error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return res
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|