1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/* Inline math functions for Alpha.
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by David Mosberger-Tang.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef _MATH_H
# error "Never use <bits/mathinline.h> directly; include <math.h> instead."
#endif
#ifdef __cplusplus
# define __MATH_INLINE __inline
#else
# define __MATH_INLINE extern __inline
#endif
#ifdef __USE_ISOC9X
# define isunordered(x, y) \
(__extension__ \
({ double __r; \
__asm ("cmptun/su %1,%2,%0\n\ttrapb" \
: "=&f" (__r) : "f" (x), "f"(y)); \
__r != 0; }))
# define isgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x > __y; }))
# define isgreaterequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x >= __y; }))
# define isless(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x < __y; }))
# define islessequal(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x <= __y; }))
# define islessgreater(x, y) \
(__extension__ \
({ __typeof__(x) __x = (x); __typeof__(y) __y = (y); \
!isunordered(__x, __y) && __x != __y; }))
#endif /* ISOC9X */
#define __inline_copysign(NAME, TYPE) \
__MATH_INLINE TYPE \
NAME (TYPE __x, TYPE __y) \
{ \
TYPE __z; \
__asm ("cpys %1, %2, %0" : "=f" (__z) : "f" (__y), "f" (__x)); \
return __z; \
}
__inline_copysign(__copysignf, float)
__inline_copysign(copysignf, float)
__inline_copysign(__copysign, double)
__inline_copysign(copysign, double)
#undef __MATH_INLINE_copysign
#if defined __GNUC__ && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
__MATH_INLINE float __fabsf (float __x) { return __builtin_fabsf (__x); }
__MATH_INLINE float fabsf (float __x) { return __builtin_fabsf (__x); }
__MATH_INLINE double __fabs (double __x) { return __builtin_fabs (__x); }
__MATH_INLINE double fabs (double __x) { return __builtin_fabs (__x); }
#else
#define __inline_fabs(NAME, TYPE) \
__MATH_INLINE TYPE \
NAME (TYPE __x) \
{ \
TYPE __z; \
__asm ("cpys $f31, %1, %0" : "=f" (__z) : "f" (__x)); \
return __z; \
}
__inline_fabs(__fabsf, float)
__inline_fabs(fabsf, float)
__inline_fabs(__fabs, double)
__inline_fabs(fabs, double)
#undef __inline_fabs
#endif
/* Use the -inf rounding mode conversion instructions to implement
floor. We note when the exponent is large enough that the value
must be integral, as this avoids unpleasant integer overflows. */
__MATH_INLINE float
__floorf (float __x)
{
/* Check not zero since floor(-0) == -0. */
if (__x != 0 && fabsf (__x) < 16777216.0f) /* 1 << FLT_MANT_DIG */
{
/* Note that Alpha S_Floating is stored in registers in a
restricted T_Floating format, so we don't even need to
convert back to S_Floating in the end. The initial
conversion to T_Floating is needed to handle denormals. */
float __tmp1, __tmp2;
__asm ("cvtst/s %3,%2\n\t"
#ifdef _IEEE_FP_INEXACT
"cvttq/svim %2,%1\n\t"
#else
"cvttq/svm %2,%1\n\t"
#endif
"cvtqt/m %1,%0\n\t"
: "=f"(__x), "=&f"(__tmp1), "=&f"(__tmp2)
: "f"(__x));
}
return __x;
}
__MATH_INLINE double
__floor (double __x)
{
if (__x != 0 && fabs (__x) < 9007199254740992.0) /* 1 << DBL_MANT_DIG */
{
double __tmp1;
__asm (
#ifdef _IEEE_FP_INEXACT
"cvttq/svim %2,%1\n\t"
#else
"cvttq/svm %2,%1\n\t"
#endif
"cvtqt/m %1,%0\n\t"
: "=f"(__x), "=&f"(__tmp1)
: "f"(__x));
}
return __x;
}
__MATH_INLINE float floorf (float __x) { return __floorf(__x); }
__MATH_INLINE double floor (double __x) { return __floor(__x); }
__MATH_INLINE float __fdimf (float __x, float __y)
{
return __x < __y ? 0.0f : __x - __y;
}
__MATH_INLINE float fdimf (float __x, float __y)
{
return __x < __y ? 0.0f : __x - __y;
}
__MATH_INLINE double __fdim (double __x, double __y)
{
return __x < __y ? 0.0 : __x - __y;
}
__MATH_INLINE double fdim (double __x, double __y)
{
return __x < __y ? 0.0 : __x - __y;
}
|