aboutsummaryrefslogtreecommitdiff
path: root/stdlib/divmod_1.c
blob: b11fd7bf8c342bc2c11af7db3e6d7bcaea18dfe1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
   Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
   Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
   Return the single-limb remainder.
   There are no constraints on the value of the divisor.

   QUOT_PTR and DIVIDEND_PTR might point to the same limb.

Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, see
<http://www.gnu.org/licenses/>.  */

#include <gmp.h>
#include "gmp-impl.h"
#include "longlong.h"

#ifndef UMUL_TIME
#define UMUL_TIME 1
#endif

#ifndef UDIV_TIME
#define UDIV_TIME UMUL_TIME
#endif

/* FIXME: We should be using invert_limb (or invert_normalized_limb)
   here (not udiv_qrnnd).  */

mp_limb_t
#if __STDC__
mpn_divmod_1 (mp_ptr quot_ptr,
	      mp_srcptr dividend_ptr, mp_size_t dividend_size,
	      mp_limb_t divisor_limb)
#else
mpn_divmod_1 (quot_ptr, dividend_ptr, dividend_size, divisor_limb)
     mp_ptr quot_ptr;
     mp_srcptr dividend_ptr;
     mp_size_t dividend_size;
     mp_limb_t divisor_limb;
#endif
{
  mp_size_t i;
  mp_limb_t n1, n0, r;
  mp_limb_t dummy;

  /* ??? Should this be handled at all?  Rely on callers?  */
  if (dividend_size == 0)
    return 0;

  /* If multiplication is much faster than division, and the
     dividend is large, pre-invert the divisor, and use
     only multiplications in the inner loop.  */

  /* This test should be read:
       Does it ever help to use udiv_qrnnd_preinv?
	 && Does what we save compensate for the inversion overhead?  */
  if (UDIV_TIME > (2 * UMUL_TIME + 6)
      && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
    {
      int normalization_steps;

      count_leading_zeros (normalization_steps, divisor_limb);
      if (normalization_steps != 0)
	{
	  mp_limb_t divisor_limb_inverted;

	  divisor_limb <<= normalization_steps;

	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
	     most significant bit (with weight 2**N) implicit.  */

	  /* Special case for DIVISOR_LIMB == 100...000.  */
	  if (divisor_limb << 1 == 0)
	    divisor_limb_inverted = ~(mp_limb_t) 0;
	  else
	    udiv_qrnnd (divisor_limb_inverted, dummy,
			-divisor_limb, 0, divisor_limb);

	  n1 = dividend_ptr[dividend_size - 1];
	  r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);

	  /* Possible optimization:
	     if (r == 0
	     && divisor_limb > ((n1 << normalization_steps)
			     | (dividend_ptr[dividend_size - 2] >> ...)))
	     ...one division less... */

	  for (i = dividend_size - 2; i >= 0; i--)
	    {
	      n0 = dividend_ptr[i];
	      udiv_qrnnd_preinv (quot_ptr[i + 1], r, r,
				 ((n1 << normalization_steps)
				  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
				 divisor_limb, divisor_limb_inverted);
	      n1 = n0;
	    }
	  udiv_qrnnd_preinv (quot_ptr[0], r, r,
			     n1 << normalization_steps,
			     divisor_limb, divisor_limb_inverted);
	  return r >> normalization_steps;
	}
      else
	{
	  mp_limb_t divisor_limb_inverted;

	  /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
	     result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
	     most significant bit (with weight 2**N) implicit.  */

	  /* Special case for DIVISOR_LIMB == 100...000.  */
	  if (divisor_limb << 1 == 0)
	    divisor_limb_inverted = ~(mp_limb_t) 0;
	  else
	    udiv_qrnnd (divisor_limb_inverted, dummy,
			-divisor_limb, 0, divisor_limb);

	  i = dividend_size - 1;
	  r = dividend_ptr[i];

	  if (r >= divisor_limb)
	    r = 0;
	  else
	    {
	      quot_ptr[i] = 0;
	      i--;
	    }

	  for (; i >= 0; i--)
	    {
	      n0 = dividend_ptr[i];
	      udiv_qrnnd_preinv (quot_ptr[i], r, r,
				 n0, divisor_limb, divisor_limb_inverted);
	    }
	  return r;
	}
    }
  else
    {
      if (UDIV_NEEDS_NORMALIZATION)
	{
	  int normalization_steps;

	  count_leading_zeros (normalization_steps, divisor_limb);
	  if (normalization_steps != 0)
	    {
	      divisor_limb <<= normalization_steps;

	      n1 = dividend_ptr[dividend_size - 1];
	      r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);

	      /* Possible optimization:
		 if (r == 0
		 && divisor_limb > ((n1 << normalization_steps)
				 | (dividend_ptr[dividend_size - 2] >> ...)))
		 ...one division less... */

	      for (i = dividend_size - 2; i >= 0; i--)
		{
		  n0 = dividend_ptr[i];
		  udiv_qrnnd (quot_ptr[i + 1], r, r,
			      ((n1 << normalization_steps)
			       | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
			      divisor_limb);
		  n1 = n0;
		}
	      udiv_qrnnd (quot_ptr[0], r, r,
			  n1 << normalization_steps,
			  divisor_limb);
	      return r >> normalization_steps;
	    }
	}
      /* No normalization needed, either because udiv_qrnnd doesn't require
	 it, or because DIVISOR_LIMB is already normalized.  */

      i = dividend_size - 1;
      r = dividend_ptr[i];

      if (r >= divisor_limb)
	r = 0;
      else
	{
	  quot_ptr[i] = 0;
	  i--;
	}

      for (; i >= 0; i--)
	{
	  n0 = dividend_ptr[i];
	  udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb);
	}
      return r;
    }
}