1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
/* Copyright (C) 1995-2012 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef dl_machine_h
#define dl_machine_h
#define ELF_MACHINE_NAME "aarch64"
#include <tls.h>
#include <dl-tlsdesc.h>
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int __attribute__ ((unused))
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
{
return ehdr->e_machine == EM_AARCH64;
}
/* Return the link-time address of _DYNAMIC. Conveniently, this is the
first element of the GOT. */
static inline ElfW(Addr) __attribute__ ((unused))
elf_machine_dynamic (void)
{
ElfW(Addr) addr = (ElfW(Addr)) &_DYNAMIC;
return addr;
}
/* Return the run-time load address of the shared object. */
static inline ElfW(Addr) __attribute__ ((unused))
elf_machine_load_address (void)
{
/* To figure out the load address we use the definition that for any symbol:
dynamic_addr(symbol) = static_addr(symbol) + load_addr
The choice of symbol is arbitrary. The static address we obtain
by constructing a non GOT reference to the symbol, the dynamic
address of the symbol we compute using adrp/add to compute the
symbol's address relative to the PC. */
ElfW(Addr) static_addr;
ElfW(Addr) dynamic_addr;
asm (" \n\
adrp %1, _dl_start; \n\
add %1, %1, #:lo12:_dl_start \n\
ldr %w0, 1f \n\
b 2f \n\
1: .word _dl_start \n\
2: \n\
" : "=r" (static_addr), "=r" (dynamic_addr));
return dynamic_addr - static_addr;
}
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int __attribute__ ((unused))
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
if (l->l_info[DT_JMPREL] && lazy)
{
ElfW(Addr) *got;
extern void _dl_runtime_resolve (ElfW(Word));
extern void _dl_runtime_profile (ElfW(Word));
got = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]);
if (got[1])
{
l->l_mach.plt = got[1] + l->l_addr;
}
got[1] = (ElfW(Addr)) l;
/* The got[2] entry contains the address of a function which gets
called to get the address of a so far unresolved function and
jump to it. The profiling extension of the dynamic linker allows
to intercept the calls to collect information. In this case we
don't store the address in the GOT so that all future calls also
end in this function. */
if ( profile)
{
got[2] = (ElfW(Addr)) &_dl_runtime_profile;
if (GLRO(dl_profile) != NULL
&& _dl_name_match_p (GLRO(dl_profile), l))
/* Say that we really want profiling and the timers are
started. */
GL(dl_profile_map) = l;
}
else
{
/* This function will get called to fix up the GOT entry
indicated by the offset on the stack, and then jump to
the resolved address. */
got[2] = (ElfW(Addr)) &_dl_runtime_resolve;
}
}
if (l->l_info[ADDRIDX (DT_TLSDESC_GOT)] && lazy)
*(Elf64_Addr*)(D_PTR (l, l_info[ADDRIDX (DT_TLSDESC_GOT)]) + l->l_addr)
= (Elf64_Addr) &_dl_tlsdesc_resolve_rela;
return lazy;
}
/* Initial entry point for the dynamic linker. The C function
_dl_start is the real entry point, its return value is the user
program's entry point */
#define RTLD_START asm ("\
.text \n\
.globl _start \n\
.type _start, %function \n\
.globl _dl_start_user \n\
.type _dl_start_user, %function \n\
_start: \n\
mov x0, sp \n\
bl _dl_start \n\
// returns user entry point in x0 \n\
mov x21, x0 \n\
_dl_start_user: \n\
// get the original arg count \n\
ldr x1, [sp] \n\
// get the argv address \n\
add x2, sp, #8 \n\
// get _dl_skip_args to see if we were \n\
// invoked as an executable \n\
adrp x4, _dl_skip_args \n\
ldr w4, [x4, #:lo12:_dl_skip_args] \n\
// do we need to adjust argc/argv \n\
cmp w4, 0 \n\
beq .L_done_stack_adjust \n\
// subtract _dl_skip_args from original arg count \n\
sub x1, x1, x4 \n\
// store adjusted argc back to stack \n\
str x1, [sp] \n\
// find the first unskipped argument \n\
mov x3, x2 \n\
add x4, x2, x4, lsl #3 \n\
// shuffle argv down \n\
1: ldr x5, [x4], #8 \n\
str x5, [x3], #8 \n\
cmp x5, #0 \n\
bne 1b \n\
// shuffle envp down \n\
1: ldr x5, [x4], #8 \n\
str x5, [x3], #8 \n\
cmp x5, #0 \n\
bne 1b \n\
// shuffle auxv down \n\
1: ldp x0, x5, [x4, #16]! \n\
stp x0, x5, [x3], #16 \n\
cmp x0, #0 \n\
bne 1b \n\
// Update _dl_argv \n\
adrp x3, _dl_argv \n\
str x2, [x3, #:lo12:_dl_argv] \n\
.L_done_stack_adjust: \n\
// compute envp \n\
add x3, x2, x1, lsl #3 \n\
add x3, x3, #8 \n\
adrp x16, _rtld_local \n\
add x16, x16, #:lo12:_rtld_local \n\
ldr x0, [x16] \n\
bl _dl_init_internal \n\
// load the finalizer function \n\
adrp x0, _dl_fini \n\
add x0, x0, #:lo12:_dl_fini \n\
// jump to the user_s entry point \n\
br x21 \n\
");
#define elf_machine_type_class(type) \
((((type) == R_AARCH64_JUMP_SLOT || \
(type) == R_AARCH64_TLS_DTPMOD64 || \
(type) == R_AARCH64_TLS_DTPREL64 || \
(type) == R_AARCH64_TLS_TPREL64 || \
(type) == R_AARCH64_TLSDESC) * ELF_RTYPE_CLASS_PLT) \
| (((type) == R_AARCH64_COPY) * ELF_RTYPE_CLASS_COPY))
#define ELF_MACHINE_JMP_SLOT R_AARCH64_JUMP_SLOT
/* AArch64 uses RELA not REL */
#define ELF_MACHINE_NO_REL 1
static inline ElfW(Addr)
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
const ElfW(Rela) *reloc,
ElfW(Addr) *reloc_addr,
ElfW(Addr) value)
{
return *reloc_addr = value;
}
/* Return the final value of a plt relocation. */
static inline ElfW(Addr)
elf_machine_plt_value (struct link_map *map,
const ElfW(Rela) *reloc,
ElfW(Addr) value)
{
return value;
}
#endif
/* Names of the architecture-specific auditing callback functions. */
#define ARCH_LA_PLTENTER aarch64_gnu_pltenter
#define ARCH_LA_PLTEXIT aarch64_gnu_pltexit
#ifdef RESOLVE_MAP
auto inline void
__attribute__ ((always_inline))
elf_machine_rela (struct link_map *map, const ElfW(Rela) *reloc,
const ElfW(Sym) *sym, const struct r_found_version *version,
void *const reloc_addr_arg, int skip_ifunc)
{
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
const unsigned int r_type = ELF64_R_TYPE (reloc->r_info);
if (__builtin_expect (r_type == R_AARCH64_RELATIVE, 0))
*reloc_addr = map->l_addr + reloc->r_addend;
else if (__builtin_expect (r_type == R_AARCH64_NONE, 0))
return;
else
{
const ElfW(Sym) *const refsym = sym;
struct link_map *sym_map = RESOLVE_MAP (&sym, version, r_type);
ElfW(Addr) value = sym_map == NULL ? 0 : sym_map->l_addr + sym->st_value;
switch (r_type)
{
case R_AARCH64_COPY:
if (sym == NULL)
break;
if (sym->st_size > refsym->st_size
|| (GLRO(dl_verbose) && sym->st_size < refsym->st_size))
{
const char *strtab;
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
_dl_error_printf ("\
%s: Symbol `%s' has different size in shared object, consider re-linking\n",
rtld_progname ?: "<program name unknown>",
strtab + refsym->st_name);
}
memcpy (reloc_addr_arg, (void *) value,
MIN (sym->st_size, refsym->st_size));
break;
case R_AARCH64_RELATIVE:
case R_AARCH64_GLOB_DAT:
case R_AARCH64_JUMP_SLOT:
case R_AARCH64_ABS32:
case R_AARCH64_ABS64:
*reloc_addr = value + reloc->r_addend;
break;
case R_AARCH64_TLSDESC:
{
struct tlsdesc volatile *td =
(struct tlsdesc volatile *)reloc_addr;
#ifndef RTLD_BOOTSTRAP
if (! sym)
{
td->arg = (void*)reloc->r_addend;
td->entry = _dl_tlsdesc_undefweak;
}
else
#endif
{
#ifndef RTLD_BOOTSTRAP
# ifndef SHARED
CHECK_STATIC_TLS (map, sym_map);
# else
if (!TRY_STATIC_TLS (map, sym_map))
{
td->arg = _dl_make_tlsdesc_dynamic
(sym_map, sym->st_value + reloc->r_addend);
td->entry = _dl_tlsdesc_dynamic;
}
else
# endif
#endif
{
td->arg = (void*)(sym->st_value + sym_map->l_tls_offset
+ reloc->r_addend);
td->entry = _dl_tlsdesc_return;
}
}
break;
}
case R_AARCH64_TLS_DTPMOD64:
#ifdef RTLD_BOOTSTRAP
*reloc_addr = 1;
#else
if (sym_map != NULL)
{
*reloc_addr = sym_map->l_tls_modid;
}
#endif
break;
case R_AARCH64_TLS_DTPREL64:
if (sym)
{
const char *strtab;
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
*reloc_addr = sym->st_value + reloc->r_addend;
}
break;
case R_AARCH64_TLS_TPREL64:
if (sym)
{
const char *strtab;
strtab = (const void *) D_PTR (map, l_info[DT_STRTAB]);
CHECK_STATIC_TLS (map, sym_map);
*reloc_addr =
sym->st_value + reloc->r_addend + sym_map->l_tls_offset;
}
break;
default:
_dl_reloc_bad_type (map, r_type, 0);
break;
}
}
}
inline void
__attribute__ ((always_inline))
elf_machine_rela_relative (ElfW(Addr) l_addr,
const ElfW(Rela) *reloc,
void *const reloc_addr_arg)
{
ElfW(Addr) *const reloc_addr = reloc_addr_arg;
*reloc_addr = l_addr + reloc->r_addend;
}
inline void
__attribute__ ((always_inline))
elf_machine_lazy_rel (struct link_map *map,
ElfW(Addr) l_addr,
const ElfW(Rela) *reloc,
int skip_ifunc)
{
ElfW(Addr) *const reloc_addr = (void *) (l_addr + reloc->r_offset);
const unsigned int r_type = ELF64_R_TYPE (reloc->r_info);
/* Check for unexpected PLT reloc type. */
if (__builtin_expect (r_type == R_AARCH64_JUMP_SLOT, 1))
{
if (__builtin_expect (map->l_mach.plt, 0) == 0)
*reloc_addr += l_addr;
else
*reloc_addr = map->l_mach.plt;
}
else if (__builtin_expect (r_type == R_AARCH64_TLSDESC, 1))
{
struct tlsdesc volatile *td =
(struct tlsdesc volatile *)reloc_addr;
td->arg = (void*)reloc;
td->entry = (void*)(D_PTR (map, l_info[ADDRIDX (DT_TLSDESC_PLT)])
+ map->l_addr);
}
else
_dl_reloc_bad_type (map, r_type, 1);
}
#endif
|