aboutsummaryrefslogtreecommitdiff
path: root/math/gen-tgmath-tests.py
blob: 364963da6525e08df4c8916a178144337aa69707 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
#!/usr/bin/python3
# Generate tests for <tgmath.h> macros.
# Copyright (C) 2017-2021 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
#
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <https://www.gnu.org/licenses/>.

# As glibc does not support decimal floating point, the types to
# consider for generic parameters are standard and binary
# floating-point types, and integer types which are treated as double.
# The corresponding complex types may also be used (including complex
# integer types, which are a GNU extension, but are currently disabled
# here because they do not work properly with tgmath.h).

# The proposed resolution to TS 18661-1 DR#9
# <http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2149.htm#dr_9>
# makes the <tgmath.h> rules for selecting a function to call
# correspond to the usual arithmetic conversions (applied successively
# to the arguments for generic parameters in order), which choose the
# type whose set of values contains that of the other type (undefined
# behavior if neither type's set of values is a superset of the
# other), with interchange types being preferred to standard types
# (long double, double, float), being preferred to extended types
# (_Float128x, _Float64x, _Float32x).

# For the standard and binary floating-point types supported by GCC 7
# on any platform, this means the resulting type is the last of the
# given types in one of the following orders, or undefined behavior if
# types with both ibm128 and binary128 representation are specified.

# If double = long double: _Float16, float, _Float32, _Float32x,
# double, long double, _Float64, _Float64x, _Float128.

# Otherwise: _Float16, float, _Float32, _Float32x, double, _Float64,
# _Float64x, long double, _Float128.

# We generate tests to verify the return type is exactly as expected.
# We also verify that the function called is real or complex as
# expected, and that it is called for the right floating-point format
# (but it is OK to call a double function instead of a long double one
# if they have the same format, for example).  For all the formats
# supported on any given configuration of glibc, the MANT_DIG value
# uniquely determines the format.

import string
import sys

class Type(object):
    """A type that may be used as an argument for generic parameters."""

    # All possible argument or result types.
    all_types_list = []
    # All argument types.
    argument_types_list = []
    # All real argument types.
    real_argument_types_list = []
    # Real argument types that correspond to a standard floating type
    # (float, double or long double; not _FloatN or _FloatNx).
    standard_real_argument_types_list = []
    # Real argument types other than float, double and long double
    # (i.e., those that are valid as arguments to narrowing macros
    # returning _FloatN or _FloatNx).
    non_standard_real_argument_types_list = []
    # The real floating types by their order properties (which are
    # tuples giving the positions in both the possible orders above).
    real_types_order = {}
    # The type double.
    double_type = None
    # The type long double.
    long_double_type = None
    # The type _Complex double.
    complex_double_type = None
    # The type _Float64.
    float64_type = None
    # The type _Complex _Float64.
    complex_float64_type = None
    # The type _Float64x.
    float64x_type = None
    # The type _Float64x if available, otherwise _Float64.
    float32x_ext_type = None

    def __init__(self, name, suffix=None, mant_dig=None, condition='1',
                 order=None, integer=False, complex=False, real_type=None):
        """Initialize a Type object, creating any corresponding complex type
        in the process."""
        self.name = name
        self.suffix = suffix
        self.mant_dig = mant_dig
        self.condition = condition
        self.order = order
        self.integer = integer
        self.complex = complex
        if complex:
            self.complex_type = self
            self.real_type = real_type
        else:
            # complex_type filled in by the caller once created.
            self.complex_type = None
            self.real_type = self

    def register_type(self, internal):
        """Record a type in the lists of all types."""
        Type.all_types_list.append(self)
        if not internal:
            Type.argument_types_list.append(self)
            if not self.complex:
                Type.real_argument_types_list.append(self)
                if not self.name.startswith('_Float'):
                    Type.standard_real_argument_types_list.append(self)
                if self.name not in ('float', 'double', 'long double'):
                    Type.non_standard_real_argument_types_list.append(self)
        if self.order is not None:
            Type.real_types_order[self.order] = self
        if self.name == 'double':
            Type.double_type = self
        if self.name == 'long double':
            Type.long_double_type = self
        if self.name == '_Complex double':
            Type.complex_double_type = self
        if self.name == '_Float64':
            Type.float64_type = self
        if self.name == '_Complex _Float64':
            Type.complex_float64_type = self
        if self.name == '_Float64x':
            Type.float64x_type = self
        if self.name == 'Float32x_ext':
            Type.float32x_ext_type = self

    @staticmethod
    def create_type(name, suffix=None, mant_dig=None, condition='1', order=None,
                    integer=False, complex_name=None, complex_ok=True,
                    internal=False):
        """Create and register a Type object for a real type, creating any
        corresponding complex type in the process."""
        real_type = Type(name, suffix=suffix, mant_dig=mant_dig,
                         condition=condition, order=order, integer=integer,
                         complex=False)
        if complex_ok:
            if complex_name is None:
                complex_name = '_Complex %s' % name
            complex_type = Type(complex_name, condition=condition,
                                integer=integer, complex=True,
                                real_type=real_type)
        else:
            complex_type = None
        real_type.complex_type = complex_type
        real_type.register_type(internal)
        if complex_type is not None:
            complex_type.register_type(internal)

    def floating_type(self, floatn):
        """Return the corresponding floating type."""
        if self.integer:
            if floatn:
                return (Type.complex_float64_type
                        if self.complex
                        else Type.float64_type)
            else:
                return (Type.complex_double_type
                        if self.complex
                        else Type.double_type)
        else:
            return self

    def real_floating_type(self, floatn):
        """Return the corresponding real floating type."""
        return self.real_type.floating_type(floatn)

    def __str__(self):
        """Return string representation of a type."""
        return self.name

    @staticmethod
    def init_types():
        """Initialize all the known types."""
        Type.create_type('_Float16', 'f16', 'FLT16_MANT_DIG',
                         complex_name='__CFLOAT16',
                         condition='defined HUGE_VAL_F16', order=(0, 0))
        Type.create_type('float', 'f', 'FLT_MANT_DIG', order=(1, 1))
        Type.create_type('_Float32', 'f32', 'FLT32_MANT_DIG',
                         complex_name='__CFLOAT32',
                         condition='defined HUGE_VAL_F32', order=(2, 2))
        Type.create_type('_Float32x', 'f32x', 'FLT32X_MANT_DIG',
                         complex_name='__CFLOAT32X',
                         condition='defined HUGE_VAL_F32X', order=(3, 3))
        Type.create_type('double', '', 'DBL_MANT_DIG', order=(4, 4))
        Type.create_type('long double', 'l', 'LDBL_MANT_DIG', order=(5, 7))
        Type.create_type('_Float64', 'f64', 'FLT64_MANT_DIG',
                         complex_name='__CFLOAT64',
                         condition='defined HUGE_VAL_F64', order=(6, 5))
        Type.create_type('_Float64x', 'f64x', 'FLT64X_MANT_DIG',
                         complex_name='__CFLOAT64X',
                         condition='defined HUGE_VAL_F64X', order=(7, 6))
        Type.create_type('_Float128', 'f128', 'FLT128_MANT_DIG',
                         complex_name='__CFLOAT128',
                         condition='defined HUGE_VAL_F128', order=(8, 8))
        Type.create_type('char', integer=True)
        Type.create_type('signed char', integer=True)
        Type.create_type('unsigned char', integer=True)
        Type.create_type('short int', integer=True)
        Type.create_type('unsigned short int', integer=True)
        Type.create_type('int', integer=True)
        Type.create_type('unsigned int', integer=True)
        Type.create_type('long int', integer=True)
        Type.create_type('unsigned long int', integer=True)
        Type.create_type('long long int', integer=True)
        Type.create_type('unsigned long long int', integer=True)
        Type.create_type('__int128', integer=True,
                         condition='defined __SIZEOF_INT128__')
        Type.create_type('unsigned __int128', integer=True,
                         condition='defined __SIZEOF_INT128__')
        Type.create_type('enum e', integer=True, complex_ok=False)
        Type.create_type('_Bool', integer=True, complex_ok=False)
        Type.create_type('bit_field', integer=True, complex_ok=False)
        # Internal types represent the combination of long double with
        # _Float64 or _Float64x, for which the ordering depends on
        # whether long double has the same format as double.
        Type.create_type('long_double_Float64', None, 'LDBL_MANT_DIG',
                         complex_name='complex_long_double_Float64',
                         condition='defined HUGE_VAL_F64', order=(6, 7),
                         internal=True)
        Type.create_type('long_double_Float64x', None, 'FLT64X_MANT_DIG',
                         complex_name='complex_long_double_Float64x',
                         condition='defined HUGE_VAL_F64X', order=(7, 7),
                         internal=True)
        # An internal type for the argument type used by f32x*
        # narrowing macros (_Float64x if available, otherwise
        # _Float64).
        Type.create_type('Float32x_ext', None, 'FLT32X_EXT_MANT_DIG',
                         complex_name='complex_Float32x_ext',
                         condition='1', internal=True)

    @staticmethod
    def can_combine_types(types, floatn):
        """Return a C preprocessor conditional for whether the given list of
        types can be used together as type-generic macro arguments."""
        have_long_double = False
        have_float128 = False
        for t in types:
            t = t.real_floating_type(floatn)
            if t.name == 'long double':
                have_long_double = True
            if t.name == '_Float128' or t.name == '_Float64x':
                have_float128 = True
        if have_long_double and have_float128:
            # If ibm128 format is in use for long double, both
            # _Float64x and _Float128 are binary128 and the types
            # cannot be combined.
            return '(LDBL_MANT_DIG != 106)'
        return '1'

    @staticmethod
    def combine_types(types, floatn):
        """Return the result of combining a set of types."""
        have_complex = False
        combined = None
        for t in types:
            if t.complex:
                have_complex = True
            t = t.real_floating_type(floatn)
            if combined is None:
                combined = t
            else:
                order = (max(combined.order[0], t.order[0]),
                         max(combined.order[1], t.order[1]))
                combined = Type.real_types_order[order]
        return combined.complex_type if have_complex else combined

def list_product_initial(initial, lists):
    """Return a list of lists, with an initial sequence from the first
    argument (a list of lists) followed by each sequence of one
    element from each successive element of the second argument."""
    if not lists:
        return initial
    return list_product_initial([a + [b] for a in initial for b in lists[0]],
                                lists[1:])

def list_product(lists):
    """Return a list of lists, with each sequence of one element from each
    successive element of the argument."""
    return list_product_initial([[]], lists)

try:
    trans_id = str.maketrans(' *', '_p')
except AttributeError:
    trans_id = string.maketrans(' *', '_p')
def var_for_type(name):
    """Return the name of a variable with a given type (name)."""
    return 'var_%s' % name.translate(trans_id)

def vol_var_for_type(name):
    """Return the name of a variable with a given volatile type (name)."""
    return 'vol_var_%s' % name.translate(trans_id)

def define_vars_for_type(name):
    """Return the definitions of variables with a given type (name)."""
    if name == 'bit_field':
        struct_vars = define_vars_for_type('struct s');
        return '%s#define %s %s.bf\n' % (struct_vars,
                                         vol_var_for_type(name),
                                         vol_var_for_type('struct s'))
    return ('%s %s __attribute__ ((unused));\n'
            '%s volatile %s __attribute__ ((unused));\n'
            % (name, var_for_type(name), name, vol_var_for_type(name)))

def if_cond_text(conds, text):
    """Return the result of making some text conditional under #if.  The
    text ends with a newline, as does the return value if not empty."""
    if '0' in conds:
        return ''
    conds = [c for c in conds if c != '1']
    conds = sorted(set(conds))
    if not conds:
        return text
    return '#if %s\n%s#endif\n' % (' && '.join(conds), text)

class Tests(object):
    """The state associated with testcase generation."""

    def __init__(self):
        """Initialize a Tests object."""
        self.header_list = ['#define __STDC_WANT_IEC_60559_TYPES_EXT__\n'
                            '#include <float.h>\n'
                            '#include <stdbool.h>\n'
                            '#include <stdint.h>\n'
                            '#include <stdio.h>\n'
                            '#include <string.h>\n'
                            '#include <tgmath.h>\n'
                            '\n'
                            'struct test\n'
                            '  {\n'
                            '    void (*func) (void);\n'
                            '    const char *func_name;\n'
                            '    const char *test_name;\n'
                            '    int mant_dig;\n'
                            '    int narrow_mant_dig;\n'
                            '  };\n'
                            'int num_pass, num_fail;\n'
                            'volatile int called_mant_dig;\n'
                            'const char *volatile called_func_name;\n'
                            'enum e { E, F };\n'
                            'struct s\n'
                            '  {\n'
                            '    int bf:2;\n'
                            '  };\n']
        float64_text = ('# if LDBL_MANT_DIG == DBL_MANT_DIG\n'
                        'typedef _Float64 long_double_Float64;\n'
                        'typedef __CFLOAT64 complex_long_double_Float64;\n'
                        '# else\n'
                        'typedef long double long_double_Float64;\n'
                        'typedef _Complex long double '
                        'complex_long_double_Float64;\n'
                        '# endif\n')
        float64_text = if_cond_text([Type.float64_type.condition],
                                    float64_text)
        float64x_text = ('# if LDBL_MANT_DIG == DBL_MANT_DIG\n'
                         'typedef _Float64x long_double_Float64x;\n'
                         'typedef __CFLOAT64X complex_long_double_Float64x;\n'
                         '# else\n'
                         'typedef long double long_double_Float64x;\n'
                         'typedef _Complex long double '
                         'complex_long_double_Float64x;\n'
                         '# endif\n')
        float64x_text = if_cond_text([Type.float64x_type.condition],
                                     float64x_text)
        float32x_ext_text = ('#ifdef HUGE_VAL_F64X\n'
                             'typedef _Float64x Float32x_ext;\n'
                             'typedef __CFLOAT64X complex_Float32x_ext;\n'
                             '# define FLT32X_EXT_MANT_DIG FLT64X_MANT_DIG\n'
                             '#else\n'
                             'typedef _Float64 Float32x_ext;\n'
                             'typedef __CFLOAT64 complex_Float32x_ext;\n'
                             '# define FLT32X_EXT_MANT_DIG FLT64_MANT_DIG\n'
                             '#endif\n')
        self.header_list.append(float64_text)
        self.header_list.append(float64x_text)
        self.header_list.append(float32x_ext_text)
        self.types_seen = set()
        for t in Type.all_types_list:
            self.add_type_var(t.name, t.condition)
        self.test_text_list = []
        self.test_array_list = []
        self.macros_seen = set()

    def add_type_var(self, name, cond):
        """Add declarations of variables for a type."""
        if name in self.types_seen:
            return
        t_vars = define_vars_for_type(name)
        self.header_list.append(if_cond_text([cond], t_vars))
        self.types_seen.add(name)

    def add_tests(self, macro, ret, args, complex_func=None):
        """Add tests for a given tgmath.h macro, if that is the macro for
        which tests are to be generated; otherwise just add it to the
        list of macros for which test generation is supported."""
        # 'c' means the function argument or return type is
        # type-generic and complex only (a complex function argument
        # may still have a real macro argument).  'g' means it is
        # type-generic and may be real or complex; 'r' means it is
        # type-generic and may only be real; 's' means the same as
        # 'r', but restricted to float, double and long double.
        self.macros_seen.add(macro)
        if macro != self.macro:
            return
        have_complex = False
        func = macro
        narrowing = False
        narrowing_std = False
        if ret == 'c' or 'c' in args:
            # Complex-only.
            have_complex = True
            complex_func = func
            func = None
        elif ret == 'g' or 'g' in args:
            # Real and complex.
            have_complex = True
            if complex_func == None:
                complex_func = 'c%s' % func
        # For narrowing macros, compute narrow_args, the list of
        # argument types for which there is an actual corresponding
        # function.  If none of those types exist, or the return type
        # does not exist, then the macro is not defined and no tests
        # of it can be run.
        if ret == 'float':
            narrowing = True
            narrowing_std = True
            narrow_cond = '1'
            narrow_args = [Type.double_type, Type.long_double_type]
            narrow_fallback = Type.double_type
        elif ret == 'double':
            narrowing = True
            narrowing_std = True
            narrow_cond = '1'
            narrow_args = [Type.long_double_type]
            narrow_fallback = Type.long_double_type
        elif ret.startswith('_Float'):
            narrowing = True
            narrow_args = []
            nret_type = None
            narrow_fallback = None
            for order, real_type in sorted(Type.real_types_order.items()):
                if real_type.name == ret:
                    nret_type = real_type
                elif nret_type and real_type.name.startswith('_Float'):
                    narrow_args.append(real_type)
                    if (narrow_fallback is None
                        and ret.endswith('x') == real_type.name.endswith('x')):
                        narrow_fallback = real_type
            if narrow_args:
                narrow_cond = ('(%s && (%s))'
                               % (nret_type.condition,
                                  ' || '.join(t.condition
                                              for t in narrow_args)))
                if narrow_fallback is None:
                    narrow_fallback = narrow_args[0]
                if ret == '_Float32x':
                    narrow_fallback = Type.float32x_ext_type
            else:
                # No possible argument types, even conditionally.
                narrow_cond = '0'
        narrowing_nonstd = narrowing and not narrowing_std
        types = [ret] + args
        for t in types:
            if t != 'c' and t != 'g' and t != 'r' and t != 's':
                self.add_type_var(t, '1')
        for t in Type.argument_types_list:
            if t.integer:
                continue
            if t.complex and not have_complex:
                continue
            if func == None and not t.complex:
                continue
            if ret == 's' and t.name.startswith('_Float'):
                continue
            if narrowing and t not in narrow_args:
                continue
            if ret == 'c':
                ret_name = t.complex_type.name
            elif ret == 'g':
                ret_name = t.name
            elif ret == 'r' or ret == 's':
                ret_name = t.real_type.name
            else:
                ret_name = ret
            dummy_func_name = complex_func if t.complex else func
            arg_list = []
            arg_num = 0
            for a in args:
                if a == 'c':
                    arg_name = t.complex_type.name
                elif a == 'g':
                    arg_name = t.name
                elif a == 'r' or a == 's':
                    arg_name = t.real_type.name
                else:
                    arg_name = a
                arg_list.append('%s arg%d __attribute__ ((unused))'
                                % (arg_name, arg_num))
                arg_num += 1
            dummy_func = ('%s\n'
                          '(%s%s) (%s)\n'
                          '{\n'
                          '  called_mant_dig = %s;\n'
                          '  called_func_name = "%s";\n'
                          '  return 0;\n'
                          '}\n' % (ret_name, dummy_func_name,
                                   t.real_type.suffix, ', '.join(arg_list),
                                   t.real_type.mant_dig, dummy_func_name))
            if narrowing:
                dummy_cond = [narrow_cond, t.condition]
            else:
                dummy_cond = [t.condition]
            dummy_func = if_cond_text(dummy_cond, dummy_func)
            self.test_text_list.append(dummy_func)
        arg_types = []
        for t in args:
            if t == 'g' or t == 'c':
                arg_types.append(Type.argument_types_list)
            elif t == 'r':
                if narrowing_std:
                    arg_types.append(Type.standard_real_argument_types_list)
                elif narrowing:
                    arg_types.append(
                        Type.non_standard_real_argument_types_list)
                else:
                    arg_types.append(Type.real_argument_types_list)
            elif t == 's':
                arg_types.append(Type.standard_real_argument_types_list)
        arg_types_product = list_product(arg_types)
        test_num = 0
        for this_args in arg_types_product:
            comb_type = Type.combine_types(this_args, narrowing_nonstd)
            if narrowing:
                # As long as there are no integer arguments, and as
                # long as the chosen argument type is as wide as all
                # the floating-point arguments passed, the semantics
                # of the macro call do not depend on the exact
                # function chosen.  In particular, for f32x functions
                # when _Float64x exists, the chosen type should differ
                # for _Float32x and _Float64 arguments, but it is not
                # always possible to distinguish those types before
                # GCC 7 and the implementation does not attempt to do
                # so before GCC 8.
                narrow_mant_dig = comb_type.real_type.mant_dig
                for arg_type in this_args:
                    if arg_type.integer:
                        narrow_mant_dig = 0
            else:
                narrow_mant_dig = 0
            if (narrowing
                and comb_type not in narrow_args
                and narrow_fallback is not None):
                comb_type = narrow_fallback
            can_comb = Type.can_combine_types(this_args, narrowing_nonstd)
            all_conds = [t.condition for t in this_args]
            all_conds.append(can_comb)
            if narrowing:
                all_conds.append(narrow_cond)
            any_complex = func == None
            for t in this_args:
                if t.complex:
                    any_complex = True
            func_name = complex_func if any_complex else func
            test_name = '%s (%s)' % (macro,
                                     ', '.join([t.name for t in this_args]))
            test_func_name = 'test_%s_%d' % (macro, test_num)
            test_num += 1
            mant_dig = comb_type.real_type.mant_dig
            test_text = '%s, "%s", "%s", %s, %s' % (test_func_name, func_name,
                                                    test_name, mant_dig,
                                                    narrow_mant_dig)
            test_text = '    { %s },\n' % test_text
            test_text = if_cond_text(all_conds, test_text)
            self.test_array_list.append(test_text)
            call_args = []
            call_arg_pos = 0
            for t in args:
                if t == 'g' or t == 'c' or t == 'r' or t == 's':
                    type = this_args[call_arg_pos].name
                    call_arg_pos += 1
                else:
                    type = t
                call_args.append(vol_var_for_type(type))
            call_args_text = ', '.join(call_args)
            if ret == 'g':
                ret_type = comb_type.name
            elif ret == 'r' or ret == 's':
                ret_type = comb_type.real_type.name
            elif ret == 'c':
                ret_type = comb_type.complex_type.name
            else:
                ret_type = ret
            call_text = '%s (%s)' % (macro, call_args_text)
            test_func_text = ('static void\n'
                              '%s (void)\n'
                              '{\n'
                              '  extern typeof (%s) %s '
                              '__attribute__ ((unused));\n'
                              '  %s = %s;\n'
                              '}\n' % (test_func_name, call_text,
                                       var_for_type(ret_type),
                                       vol_var_for_type(ret_type), call_text))
            test_func_text = if_cond_text(all_conds, test_func_text)
            self.test_text_list.append(test_func_text)

    def add_all_tests(self, macro):
        """Add tests for the given tgmath.h macro, if any, and generate the
        list of all supported macros."""
        self.macro = macro
        # C99/C11 real-only functions.
        self.add_tests('atan2', 'r', ['r', 'r'])
        self.add_tests('cbrt', 'r', ['r'])
        self.add_tests('ceil', 'r', ['r'])
        self.add_tests('copysign', 'r', ['r', 'r'])
        self.add_tests('erf', 'r', ['r'])
        self.add_tests('erfc', 'r', ['r'])
        self.add_tests('exp2', 'r', ['r'])
        self.add_tests('expm1', 'r', ['r'])
        self.add_tests('fdim', 'r', ['r', 'r'])
        self.add_tests('floor', 'r', ['r'])
        self.add_tests('fma', 'r', ['r', 'r', 'r'])
        self.add_tests('fmax', 'r', ['r', 'r'])
        self.add_tests('fmin', 'r', ['r', 'r'])
        self.add_tests('fmod', 'r', ['r', 'r'])
        self.add_tests('frexp', 'r', ['r', 'int *'])
        self.add_tests('hypot', 'r', ['r', 'r'])
        self.add_tests('ilogb', 'int', ['r'])
        self.add_tests('ldexp', 'r', ['r', 'int'])
        self.add_tests('lgamma', 'r', ['r'])
        self.add_tests('llrint', 'long long int', ['r'])
        self.add_tests('llround', 'long long int', ['r'])
        # log10 is real-only in ISO C, but supports complex arguments
        # as a GNU extension.
        self.add_tests('log10', 'g', ['g'])
        self.add_tests('log1p', 'r', ['r'])
        self.add_tests('log2', 'r', ['r'])
        self.add_tests('logb', 'r', ['r'])
        self.add_tests('lrint', 'long int', ['r'])
        self.add_tests('lround', 'long int', ['r'])
        self.add_tests('nearbyint', 'r', ['r'])
        self.add_tests('nextafter', 'r', ['r', 'r'])
        self.add_tests('nexttoward', 's', ['s', 'long double'])
        self.add_tests('remainder', 'r', ['r', 'r'])
        self.add_tests('remquo', 'r', ['r', 'r', 'int *'])
        self.add_tests('rint', 'r', ['r'])
        self.add_tests('round', 'r', ['r'])
        self.add_tests('scalbn', 'r', ['r', 'int'])
        self.add_tests('scalbln', 'r', ['r', 'long int'])
        self.add_tests('tgamma', 'r', ['r'])
        self.add_tests('trunc', 'r', ['r'])
        # C99/C11 real-and-complex functions.
        self.add_tests('acos', 'g', ['g'])
        self.add_tests('asin', 'g', ['g'])
        self.add_tests('atan', 'g', ['g'])
        self.add_tests('acosh', 'g', ['g'])
        self.add_tests('asinh', 'g', ['g'])
        self.add_tests('atanh', 'g', ['g'])
        self.add_tests('cos', 'g', ['g'])
        self.add_tests('sin', 'g', ['g'])
        self.add_tests('tan', 'g', ['g'])
        self.add_tests('cosh', 'g', ['g'])
        self.add_tests('sinh', 'g', ['g'])
        self.add_tests('tanh', 'g', ['g'])
        self.add_tests('exp', 'g', ['g'])
        self.add_tests('log', 'g', ['g'])
        self.add_tests('pow', 'g', ['g', 'g'])
        self.add_tests('sqrt', 'g', ['g'])
        self.add_tests('fabs', 'r', ['g'], 'cabs')
        # C99/C11 complex-only functions.
        self.add_tests('carg', 'r', ['c'])
        self.add_tests('cimag', 'r', ['c'])
        self.add_tests('conj', 'c', ['c'])
        self.add_tests('cproj', 'c', ['c'])
        self.add_tests('creal', 'r', ['c'])
        # TS 18661-1 functions.
        self.add_tests('roundeven', 'r', ['r'])
        self.add_tests('nextup', 'r', ['r'])
        self.add_tests('nextdown', 'r', ['r'])
        self.add_tests('fminmag', 'r', ['r', 'r'])
        self.add_tests('fmaxmag', 'r', ['r', 'r'])
        self.add_tests('llogb', 'long int', ['r'])
        self.add_tests('fromfp', 'intmax_t', ['r', 'int', 'unsigned int'])
        self.add_tests('fromfpx', 'intmax_t', ['r', 'int', 'unsigned int'])
        self.add_tests('ufromfp', 'uintmax_t', ['r', 'int', 'unsigned int'])
        self.add_tests('ufromfpx', 'uintmax_t', ['r', 'int', 'unsigned int'])
        for fn in ('add', 'div', 'mul', 'sub'):
            for ret, prefix in (('float', 'f'),
                                ('double', 'd'),
                                ('_Float16', 'f16'),
                                ('_Float32', 'f32'),
                                ('_Float64', 'f64'),
                                ('_Float128', 'f128'),
                                ('_Float32x', 'f32x'),
                                ('_Float64x', 'f64x')):
                self.add_tests(prefix + fn, ret, ['r', 'r'])
        # Miscellaneous functions.
        self.add_tests('scalb', 's', ['s', 's'])

    def tests_text(self):
        """Return the text of the generated testcase."""
        test_list = [''.join(self.test_text_list),
                     'static const struct test tests[] =\n'
                     '  {\n',
                     ''.join(self.test_array_list),
                     '  };\n']
        footer_list = ['static int\n'
                       'do_test (void)\n'
                       '{\n'
                       '  for (size_t i = 0;\n'
                       '       i < sizeof (tests) / sizeof (tests[0]);\n'
                       '       i++)\n'
                       '    {\n'
                       '      called_mant_dig = 0;\n'
                       '      called_func_name = "";\n'
                       '      tests[i].func ();\n'
                       '      if (called_mant_dig == tests[i].mant_dig\n'
                       '          && strcmp (called_func_name,\n'
                       '                     tests[i].func_name) == 0)\n'
                       '        num_pass++;\n'
                       '#if !__GNUC_PREREQ (8, 0)\n'
                       '      else if (tests[i].narrow_mant_dig > 0\n'
                       '               && (called_mant_dig\n'
                       '                   >= tests[i].narrow_mant_dig)\n'
                       '               && strcmp (called_func_name,\n'
                       '                          tests[i].func_name) == 0)\n'
                       '        {\n'
                       '          num_pass++;\n'
                       '          printf ("Test %zu (%s):\\n"\n'
                       '                  "  Expected: %s precision %d\\n"\n'
                       '                  "  Actual: %s precision %d\\n"\n'
                       '                  "  (OK with old GCC)\\n\\n",\n'
                       '                  i, tests[i].test_name,\n'
                       '                  tests[i].func_name,\n'
                       '                  tests[i].mant_dig,\n'
                       '                  called_func_name, called_mant_dig);\n'
                       '        }\n'
                       '#endif\n'
                       '      else\n'
                       '        {\n'
                       '          num_fail++;\n'
                       '          printf ("Test %zu (%s):\\n"\n'
                       '                  "  Expected: %s precision %d\\n"\n'
                       '                  "  Actual: %s precision %d\\n\\n",\n'
                       '                  i, tests[i].test_name,\n'
                       '                  tests[i].func_name,\n'
                       '                  tests[i].mant_dig,\n'
                       '                  called_func_name, called_mant_dig);\n'
                       '        }\n'
                       '    }\n'
                       '  printf ("%d pass, %d fail\\n", num_pass, num_fail);\n'
                       '  return num_fail != 0;\n'
                       '}\n'
                       '\n'
                       '#include <support/test-driver.c>']
        return ''.join(self.header_list + test_list + footer_list)

    def check_macro_list(self, macro_list):
        """Check the list of macros that can be tested."""
        if self.macros_seen != set(macro_list):
            print('error: macro list mismatch')
            sys.exit(1)

def main():
    """The main entry point."""
    Type.init_types()
    t = Tests()
    if sys.argv[1] == 'check-list':
        macro = None
        macro_list = sys.argv[2:]
    else:
        macro = sys.argv[1]
        macro_list = []
    t.add_all_tests(macro)
    if macro:
        print(t.tests_text())
    else:
        t.check_macro_list(macro_list)

if __name__ == '__main__':
    main()