aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ia64/fpu/e_exp.S
diff options
context:
space:
mode:
Diffstat (limited to 'sysdeps/ia64/fpu/e_exp.S')
-rw-r--r--sysdeps/ia64/fpu/e_exp.S799
1 files changed, 0 insertions, 799 deletions
diff --git a/sysdeps/ia64/fpu/e_exp.S b/sysdeps/ia64/fpu/e_exp.S
deleted file mode 100644
index c106a2dcde..0000000000
--- a/sysdeps/ia64/fpu/e_exp.S
+++ /dev/null
@@ -1,799 +0,0 @@
-.file "exp.s"
-
-
-// Copyright (c) 2000 - 2005, Intel Corporation
-// All rights reserved.
-//
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// * Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// * The name of Intel Corporation may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
-// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// Intel Corporation is the author of this code, and requests that all
-// problem reports or change requests be submitted to it directly at
-// http://www.intel.com/software/products/opensource/libraries/num.htm.
-//
-// History
-//==============================================================
-// 2/02/00 Initial version
-// 3/07/00 exp(inf) = inf but now does NOT call error support
-// exp(-inf) = 0 but now does NOT call error support
-// 4/04/00 Unwind support added
-// 8/15/00 Bundle added after call to __libm_error_support to properly
-// set [the previously overwritten] GR_Parameter_RESULT.
-// 11/30/00 Reworked to shorten main path, widen main path to include all
-// args in normal range, and add quick exit for 0, nan, inf.
-// 12/05/00 Loaded constants earlier with setf to save 2 cycles.
-// 02/05/02 Corrected uninitialize predicate in POSSIBLE_UNDERFLOW path
-// 05/20/02 Cleaned up namespace and sf0 syntax
-// 09/07/02 Force inexact flag
-// 11/15/02 Split underflow path into zero/nonzero; eliminated fma in main path
-// 05/30/03 Set inexact flag on unmasked overflow/underflow
-// 03/31/05 Reformatted delimiters between data tables
-
-// API
-//==============================================================
-// double exp(double)
-
-// Overview of operation
-//==============================================================
-// Take the input x. w is "how many log2/128 in x?"
-// w = x * 128/log2
-// n = int(w)
-// x = n log2/128 + r + delta
-
-// n = 128M + index_1 + 2^4 index_2
-// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
-
-// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
-// Construct 2^M
-// Get 2^(index_1/128) from table_1;
-// Get 2^(index_2/8) from table_2;
-// Calculate exp(r) by 5th order polynomial
-// r = x - n (log2/128)_high
-// delta = - n (log2/128)_low
-// Calculate exp(delta) as 1 + delta
-
-
-// Special values
-//==============================================================
-// exp(+0) = 1.0
-// exp(-0) = 1.0
-
-// exp(+qnan) = +qnan
-// exp(-qnan) = -qnan
-// exp(+snan) = +qnan
-// exp(-snan) = -qnan
-
-// exp(-inf) = +0
-// exp(+inf) = +inf
-
-// Overflow and Underflow
-//=======================
-// exp(x) = largest double normal when
-// x = 709.7827 = 0x40862e42fefa39ef
-
-// exp(x) = smallest double normal when
-// x = -708.396 = 0xc086232bdd7abcd2
-
-// exp(x) = largest round-to-nearest single zero when
-// x = -745.1332 = 0xc0874910d52d3052
-
-
-// Registers used
-//==============================================================
-// Floating Point registers used:
-// f8, input, output
-// f6 -> f15, f32 -> f49
-
-// General registers used:
-// r14 -> r40
-
-// Predicate registers used:
-// p6 -> p15
-
-// Assembly macros
-//==============================================================
-
-rRshf = r14
-rAD_TB1 = r15
-rAD_T1 = r15
-rAD_TB2 = r16
-rAD_T2 = r16
-rAD_P = r17
-rN = r18
-rIndex_1 = r19
-rIndex_2_16 = r20
-rM = r21
-rBiased_M = r21
-rIndex_1_16 = r21
-rSig_inv_ln2 = r22
-rExp_bias = r23
-rExp_mask = r24
-rTmp = r25
-rRshf_2to56 = r26
-rGt_ln = r27
-rExp_2tom56 = r28
-
-
-GR_SAVE_B0 = r33
-GR_SAVE_PFS = r34
-GR_SAVE_GP = r35
-GR_SAVE_SP = r36
-
-GR_Parameter_X = r37
-GR_Parameter_Y = r38
-GR_Parameter_RESULT = r39
-GR_Parameter_TAG = r40
-
-
-FR_X = f10
-FR_Y = f1
-FR_RESULT = f8
-
-fRSHF_2TO56 = f6
-fINV_LN2_2TO63 = f7
-fW_2TO56_RSH = f9
-f2TOM56 = f11
-fP5 = f12
-fP54 = f12
-fP5432 = f12
-fP4 = f13
-fP3 = f14
-fP32 = f14
-fP2 = f15
-fP = f15
-
-fLn2_by_128_hi = f33
-fLn2_by_128_lo = f34
-
-fRSHF = f35
-fNfloat = f36
-fNormX = f37
-fR = f38
-fF = f39
-
-fRsq = f40
-f2M = f41
-fS1 = f42
-fT1 = f42
-fS2 = f43
-fT2 = f43
-fS = f43
-fWre_urm_f8 = f44
-fFtz_urm_f8 = f44
-
-fMIN_DBL_OFLOW_ARG = f45
-fMAX_DBL_ZERO_ARG = f46
-fMAX_DBL_NORM_ARG = f47
-fMIN_DBL_NORM_ARG = f48
-fGt_pln = f49
-fTmp = f49
-
-
-// Data tables
-//==============================================================
-
-RODATA
-.align 16
-
-// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
-
-// double-extended 1/ln(2)
-// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
-// 3fff b8aa 3b29 5c17 f0bc
-// For speed the significand will be loaded directly with a movl and setf.sig
-// and the exponent will be bias+63 instead of bias+0. Thus subsequent
-// computations need to scale appropriately.
-// The constant 128/ln(2) is needed for the computation of w. This is also
-// obtained by scaling the computations.
-//
-// Two shifting constants are loaded directly with movl and setf.d.
-// 1. fRSHF_2TO56 = 1.1000..00 * 2^(63-7)
-// This constant is added to x*1/ln2 to shift the integer part of
-// x*128/ln2 into the rightmost bits of the significand.
-// The result of this fma is fW_2TO56_RSH.
-// 2. fRSHF = 1.1000..00 * 2^(63)
-// This constant is subtracted from fW_2TO56_RSH * 2^(-56) to give
-// the integer part of w, n, as a floating-point number.
-// The result of this fms is fNfloat.
-
-
-LOCAL_OBJECT_START(exp_table_1)
-data8 0x40862e42fefa39f0 // smallest dbl overflow arg, +709.7827
-data8 0xc0874910d52d3052 // largest arg for rnd-to-nearest 0 result, -745.133
-data8 0x40862e42fefa39ef // largest dbl arg to give normal dbl result, +709.7827
-data8 0xc086232bdd7abcd2 // smallest dbl arg to give normal dbl result, -708.396
-data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
-data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
-//
-// Table 1 is 2^(index_1/128) where
-// index_1 goes from 0 to 15
-//
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x80B1ED4FD999AB6C , 0x00003FFF
-data8 0x8164D1F3BC030773 , 0x00003FFF
-data8 0x8218AF4373FC25EC , 0x00003FFF
-data8 0x82CD8698AC2BA1D7 , 0x00003FFF
-data8 0x8383594EEFB6EE37 , 0x00003FFF
-data8 0x843A28C3ACDE4046 , 0x00003FFF
-data8 0x84F1F656379C1A29 , 0x00003FFF
-data8 0x85AAC367CC487B15 , 0x00003FFF
-data8 0x8664915B923FBA04 , 0x00003FFF
-data8 0x871F61969E8D1010 , 0x00003FFF
-data8 0x87DB357FF698D792 , 0x00003FFF
-data8 0x88980E8092DA8527 , 0x00003FFF
-data8 0x8955EE03618E5FDD , 0x00003FFF
-data8 0x8A14D575496EFD9A , 0x00003FFF
-data8 0x8AD4C6452C728924 , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_1)
-
-// Table 2 is 2^(index_1/8) where
-// index_2 goes from 0 to 7
-LOCAL_OBJECT_START(exp_table_2)
-data8 0x8000000000000000 , 0x00003FFF
-data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
-data8 0x9837F0518DB8A96F , 0x00003FFF
-data8 0xA5FED6A9B15138EA , 0x00003FFF
-data8 0xB504F333F9DE6484 , 0x00003FFF
-data8 0xC5672A115506DADD , 0x00003FFF
-data8 0xD744FCCAD69D6AF4 , 0x00003FFF
-data8 0xEAC0C6E7DD24392F , 0x00003FFF
-LOCAL_OBJECT_END(exp_table_2)
-
-
-LOCAL_OBJECT_START(exp_p_table)
-data8 0x3f8111116da21757 //P5
-data8 0x3fa55555d787761c //P4
-data8 0x3fc5555555555414 //P3
-data8 0x3fdffffffffffd6a //P2
-LOCAL_OBJECT_END(exp_p_table)
-
-
-.section .text
-GLOBAL_IEEE754_ENTRY(exp)
-
-{ .mlx
- nop.m 0
- movl rSig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
-}
-{ .mlx
- addl rAD_TB1 = @ltoff(exp_table_1), gp
- movl rRshf_2to56 = 0x4768000000000000 // 1.10000 2^(63+56)
-}
-;;
-
-{ .mfi
- ld8 rAD_TB1 = [rAD_TB1]
- fclass.m p8,p0 = f8,0x07 // Test for x=0
- mov rExp_mask = 0x1ffff
-}
-{ .mfi
- mov rExp_bias = 0xffff
- fnorm.s1 fNormX = f8
- mov rExp_2tom56 = 0xffff-56
-}
-;;
-
-// Form two constants we need
-// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
-// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
-
-{ .mfi
- setf.sig fINV_LN2_2TO63 = rSig_inv_ln2 // form 1/ln2 * 2^63
- fclass.m p9,p0 = f8,0x22 // Test for x=-inf
- nop.i 0
-}
-{ .mlx
- setf.d fRSHF_2TO56 = rRshf_2to56 // Form const 1.100 * 2^(63+56)
- movl rRshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
-}
-;;
-
-{ .mfi
- ldfpd fMIN_DBL_OFLOW_ARG, fMAX_DBL_ZERO_ARG = [rAD_TB1],16
- fclass.m p10,p0 = f8,0x1e1 // Test for x=+inf, nan, NaT
- nop.i 0
-}
-{ .mfb
- setf.exp f2TOM56 = rExp_2tom56 // form 2^-56 for scaling Nfloat
-(p9) fma.d.s0 f8 = f0,f0,f0 // quick exit for x=-inf
-(p9) br.ret.spnt b0
-}
-;;
-
-{ .mfi
- ldfpd fMAX_DBL_NORM_ARG, fMIN_DBL_NORM_ARG = [rAD_TB1],16
- nop.f 0
- nop.i 0
-}
-{ .mfb
- setf.d fRSHF = rRshf // Form right shift const 1.100 * 2^63
-(p8) fma.d.s0 f8 = f1,f1,f0 // quick exit for x=0
-(p8) br.ret.spnt b0
-}
-;;
-
-{ .mfb
- ldfe fLn2_by_128_hi = [rAD_TB1],16
-(p10) fma.d.s0 f8 = f8,f8,f0 // Result if x=+inf, nan, NaT
-(p10) br.ret.spnt b0 // quick exit for x=+inf, nan, NaT
-}
-;;
-
-{ .mfi
- ldfe fLn2_by_128_lo = [rAD_TB1],16
- fcmp.eq.s0 p6,p0 = f8, f0 // Dummy to set D
- nop.i 0
-}
-;;
-
-// After that last load, rAD_TB1 points to the beginning of table 1
-
-// W = X * Inv_log2_by_128
-// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
-// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
-
-{ .mfi
- nop.m 0
- fma.s1 fW_2TO56_RSH = fNormX, fINV_LN2_2TO63, fRSHF_2TO56
- nop.i 0
-}
-;;
-
-// Divide arguments into the following categories:
-// Certain Underflow p11 - -inf < x <= MAX_DBL_ZERO_ARG
-// Possible Underflow p13 - MAX_DBL_ZERO_ARG < x < MIN_DBL_NORM_ARG
-// Certain Safe - MIN_DBL_NORM_ARG <= x <= MAX_DBL_NORM_ARG
-// Possible Overflow p14 - MAX_DBL_NORM_ARG < x < MIN_DBL_OFLOW_ARG
-// Certain Overflow p15 - MIN_DBL_OFLOW_ARG <= x < +inf
-//
-// If the input is really a double arg, then there will never be
-// "Possible Overflow" arguments.
-//
-
-{ .mfi
- add rAD_TB2 = 0x100, rAD_TB1
- fcmp.ge.s1 p15,p0 = fNormX,fMIN_DBL_OFLOW_ARG
- nop.i 0
-}
-;;
-
-{ .mfi
- add rAD_P = 0x80, rAD_TB2
- fcmp.le.s1 p11,p0 = fNormX,fMAX_DBL_ZERO_ARG
- nop.i 0
-}
-;;
-
-{ .mfb
- ldfpd fP5, fP4 = [rAD_P] ,16
- fcmp.gt.s1 p14,p0 = fNormX,fMAX_DBL_NORM_ARG
-(p15) br.cond.spnt EXP_CERTAIN_OVERFLOW
-}
-;;
-
-// Nfloat = round_int(W)
-// The signficand of fW_2TO56_RSH contains the rounded integer part of W,
-// as a twos complement number in the lower bits (that is, it may be negative).
-// That twos complement number (called N) is put into rN.
-
-// Since fW_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
-// before the shift constant 1.10000 * 2^63 is subtracted to yield fNfloat.
-// Thus, fNfloat contains the floating point version of N
-
-{ .mfb
- ldfpd fP3, fP2 = [rAD_P]
- fms.s1 fNfloat = fW_2TO56_RSH, f2TOM56, fRSHF
-(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW
-}
-;;
-
-{ .mfi
- getf.sig rN = fW_2TO56_RSH
- nop.f 0
- nop.i 0
-}
-;;
-
-// rIndex_1 has index_1
-// rIndex_2_16 has index_2 * 16
-// rBiased_M has M
-// rIndex_1_16 has index_1 * 16
-
-// rM has true M
-// r = x - Nfloat * ln2_by_128_hi
-// f = 1 - Nfloat * ln2_by_128_lo
-{ .mfi
- and rIndex_1 = 0x0f, rN
- fnma.s1 fR = fNfloat, fLn2_by_128_hi, fNormX
- shr rM = rN, 0x7
-}
-{ .mfi
- and rIndex_2_16 = 0x70, rN
- fnma.s1 fF = fNfloat, fLn2_by_128_lo, f1
- nop.i 0
-}
-;;
-
-// rAD_T1 has address of T1
-// rAD_T2 has address if T2
-
-{ .mmi
- add rBiased_M = rExp_bias, rM
- add rAD_T2 = rAD_TB2, rIndex_2_16
- shladd rAD_T1 = rIndex_1, 4, rAD_TB1
-}
-;;
-
-// Create Scale = 2^M
-{ .mmi
- setf.exp f2M = rBiased_M
- ldfe fT2 = [rAD_T2]
- nop.i 0
-}
-;;
-
-// Load T1 and T2
-{ .mfi
- ldfe fT1 = [rAD_T1]
- fmpy.s0 fTmp = fLn2_by_128_lo, fLn2_by_128_lo // Force inexact
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fRsq = fR, fR, f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP54 = fR, fP5, fP4
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.lt.s1 p13,p0 = fNormX,fMIN_DBL_NORM_ARG
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fP32 = fR, fP3, fP2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP5432 = fRsq, fP54, fP32
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fS1 = f2M,fT1,f0
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fS2 = fF,fT2,f0
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.s1 fP = fRsq, fP5432, fR
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.s1 fS = fS1,fS2,f0
- nop.i 0
-}
-;;
-
-{ .mbb
- nop.m 0
-(p13) br.cond.spnt EXP_POSSIBLE_UNDERFLOW
-(p14) br.cond.spnt EXP_POSSIBLE_OVERFLOW
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Normal path exit
-}
-;;
-
-
-EXP_POSSIBLE_OVERFLOW:
-
-// Here if fMAX_DBL_NORM_ARG < x < fMIN_DBL_OFLOW_ARG
-// This cannot happen if input is a double, only if input higher precision.
-// Overflow is a possibility, not a certainty.
-
-// Recompute result using status field 2 with user's rounding mode,
-// and wre set. If result is larger than largest double, then we have
-// overflow
-
-{ .mfi
- mov rGt_ln = 0x103ff // Exponent for largest dbl + 1 ulp
- fsetc.s2 0x7F,0x42 // Get user's round mode, set wre
- nop.i 0
-}
-;;
-
-{ .mfi
- setf.exp fGt_pln = rGt_ln // Create largest double + 1 ulp
- fma.d.s2 fWre_urm_f8 = fS, fP, fS // Result with wre set
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off wre in sf2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.ge.s1 p6, p0 = fWre_urm_f8, fGt_pln // Test for overflow
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- nop.f 0
-(p6) br.cond.spnt EXP_CERTAIN_OVERFLOW // Branch if overflow
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS
- br.ret.sptk b0 // Exit if really no overflow
-}
-;;
-
-EXP_CERTAIN_OVERFLOW:
-{ .mmi
- sub rTmp = rExp_mask, r0, 1
-;;
- setf.exp fTmp = rTmp
- nop.i 0
-}
-;;
-
-{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fmerge.s FR_X = f8,f8
- nop.i 0
-}
-{ .mfb
- mov GR_Parameter_TAG = 14
- fma.d.s0 FR_RESULT = fTmp, fTmp, fTmp // Set I,O and +INF result
- br.cond.sptk __libm_error_region
-}
-;;
-
-EXP_POSSIBLE_UNDERFLOW:
-
-// Here if fMAX_DBL_ZERO_ARG < x < fMIN_DBL_NORM_ARG
-// Underflow is a possibility, not a certainty
-
-// We define an underflow when the answer with
-// ftz set
-// is zero (tiny numbers become zero)
-
-// Notice (from below) that if we have an unlimited exponent range,
-// then there is an extra machine number E between the largest denormal and
-// the smallest normal.
-
-// So if with unbounded exponent we round to E or below, then we are
-// tiny and underflow has occurred.
-
-// But notice that you can be in a situation where we are tiny, namely
-// rounded to E, but when the exponent is bounded we round to smallest
-// normal. So the answer can be the smallest normal with underflow.
-
-// E
-// -----+--------------------+--------------------+-----
-// | | |
-// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
-// 0.1...11 2^-3ffe (biased, 1)
-// largest dn smallest normal
-
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x41 // Get user's round mode, set ftz
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fma.d.s2 fFtz_urm_f8 = fS, fP, fS // Result with ftz set
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fsetc.s2 0x7F,0x40 // Turn off ftz in sf2
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fcmp.eq.s1 p6, p7 = fFtz_urm_f8, f0 // Test for underflow
- nop.i 0
-}
-{ .mfi
- nop.m 0
- fma.d.s0 f8 = fS, fP, fS // Compute result, set I, maybe U
- nop.i 0
-}
-;;
-
-{ .mbb
- nop.m 0
-(p6) br.cond.spnt EXP_UNDERFLOW_COMMON // Branch if really underflow
-(p7) br.ret.sptk b0 // Exit if really no underflow
-}
-;;
-
-EXP_CERTAIN_UNDERFLOW:
-// Here if x < fMAX_DBL_ZERO_ARG
-// Result will be zero (or smallest denorm if round to +inf) with I, U set
-{ .mmi
- mov rTmp = 1
-;;
- setf.exp fTmp = rTmp // Form small normal
- nop.i 0
-}
-;;
-
-{ .mfi
- nop.m 0
- fmerge.se fTmp = fTmp, fLn2_by_128_lo // Small with signif lsb 1
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fma.d.s0 f8 = fTmp, fTmp, f0 // Set I,U, tiny (+0.0) result
- br.cond.sptk EXP_UNDERFLOW_COMMON
-}
-;;
-
-EXP_UNDERFLOW_COMMON:
-// Determine if underflow result is zero or nonzero
-{ .mfi
- alloc r32=ar.pfs,1,4,4,0
- fcmp.eq.s1 p6, p0 = f8, f0
- nop.i 0
-}
-;;
-
-{ .mfb
- nop.m 0
- fmerge.s FR_X = fNormX,fNormX
-(p6) br.cond.spnt EXP_UNDERFLOW_ZERO
-}
-;;
-
-EXP_UNDERFLOW_NONZERO:
-// Here if x < fMIN_DBL_NORM_ARG and result nonzero;
-// I, U are set
-{ .mfb
- mov GR_Parameter_TAG = 15
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
-}
-;;
-
-EXP_UNDERFLOW_ZERO:
-// Here if x < fMIN_DBL_NORM_ARG and result zero;
-// I, U are set
-{ .mfb
- mov GR_Parameter_TAG = 15
- nop.f 0 // FR_RESULT already set
- br.cond.sptk __libm_error_region
-}
-;;
-
-GLOBAL_IEEE754_END(exp)
-libm_alias_double_other (__exp, exp)
-#ifdef SHARED
-.symver exp,exp@@GLIBC_2.29
-.weak __exp_compat
-.set __exp_compat,__exp
-.symver __exp_compat,exp@GLIBC_2.2
-#endif
-
-
-LOCAL_LIBM_ENTRY(__libm_error_region)
-.prologue
-{ .mfi
- add GR_Parameter_Y=-32,sp // Parameter 2 value
- nop.f 0
-.save ar.pfs,GR_SAVE_PFS
- mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
-}
-{ .mfi
-.fframe 64
- add sp=-64,sp // Create new stack
- nop.f 0
- mov GR_SAVE_GP=gp // Save gp
-};;
-{ .mmi
- stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
- add GR_Parameter_X = 16,sp // Parameter 1 address
-.save b0, GR_SAVE_B0
- mov GR_SAVE_B0=b0 // Save b0
-};;
-.body
-{ .mib
- stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
- add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
- nop.b 0
-}
-{ .mib
- stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
- add GR_Parameter_Y = -16,GR_Parameter_Y
- br.call.sptk b0=__libm_error_support# // Call error handling function
-};;
-{ .mmi
- add GR_Parameter_RESULT = 48,sp
- nop.m 0
- nop.i 0
-};;
-{ .mmi
- ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
-.restore sp
- add sp = 64,sp // Restore stack pointer
- mov b0 = GR_SAVE_B0 // Restore return address
-};;
-{ .mib
- mov gp = GR_SAVE_GP // Restore gp
- mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
- br.ret.sptk b0 // Return
-};;
-
-LOCAL_LIBM_END(__libm_error_region)
-.type __libm_error_support#,@function
-.global __libm_error_support#