aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/sparc/sparc32/divrem.m4
diff options
context:
space:
mode:
authorAdhemerval Zanella <adhemerval.zanella@linaro.org>2019-11-13 12:32:17 +0000
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2019-11-27 09:37:57 -0300
commit5d9b7b9fa734c5381e0295c85c0e40520d9f6063 (patch)
treed8f050c206fdbe03167d31f8ff3916e2d52d8dc1 /sysdeps/sparc/sparc32/divrem.m4
parentbfdb731438206b0f70fe7afa890681155c30b419 (diff)
downloadglibc-5d9b7b9fa734c5381e0295c85c0e40520d9f6063.tar
glibc-5d9b7b9fa734c5381e0295c85c0e40520d9f6063.tar.gz
glibc-5d9b7b9fa734c5381e0295c85c0e40520d9f6063.tar.bz2
glibc-5d9b7b9fa734c5381e0295c85c0e40520d9f6063.zip
Remove 32 bit sparc v7 support
The patch is straighforward: - The sparc32 v8 implementations are moved as the generic ones. - A configure test is added to check for either __sparc_v8__ or __sparc_v9__. - The triple names are simplified and sparc implies sparcv8. The idea is to keep support on sparcv8 architectures that does support CAS instructions, such as LEON3/LEON4. Checked on a sparcv9-linux-gnu and sparc64-linux-gnu. Tested-by: Andreas Larsson <andreas@gaisler.com>
Diffstat (limited to 'sysdeps/sparc/sparc32/divrem.m4')
-rw-r--r--sysdeps/sparc/sparc32/divrem.m4234
1 files changed, 0 insertions, 234 deletions
diff --git a/sysdeps/sparc/sparc32/divrem.m4 b/sysdeps/sparc/sparc32/divrem.m4
deleted file mode 100644
index c08c530020..0000000000
--- a/sysdeps/sparc/sparc32/divrem.m4
+++ /dev/null
@@ -1,234 +0,0 @@
-/*
- * Division and remainder, from Appendix E of the Sparc Version 8
- * Architecture Manual, with fixes from Gordon Irlam.
- */
-
-/*
- * Input: dividend and divisor in %o0 and %o1 respectively.
- *
- * m4 parameters:
- * NAME name of function to generate
- * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
- * S S=true => signed; S=false => unsigned
- *
- * Algorithm parameters:
- * N how many bits per iteration we try to get (4)
- * WORDSIZE total number of bits (32)
- *
- * Derived constants:
- * TOPBITS number of bits in the top `decade' of a number
- *
- * Important variables:
- * Q the partial quotient under development (initially 0)
- * R the remainder so far, initially the dividend
- * ITER number of main division loop iterations required;
- * equal to ceil(log2(quotient) / N). Note that this
- * is the log base (2^N) of the quotient.
- * V the current comparand, initially divisor*2^(ITER*N-1)
- *
- * Cost:
- * Current estimate for non-large dividend is
- * ceil(log2(quotient) / N) * (10 + 7N/2) + C
- * A large dividend is one greater than 2^(31-TOPBITS) and takes a
- * different path, as the upper bits of the quotient must be developed
- * one bit at a time.
- */
-
-define(N, `4')dnl
-define(WORDSIZE, `32')dnl
-define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))dnl
-dnl
-define(dividend, `%o0')dnl
-define(divisor, `%o1')dnl
-define(Q, `%o2')dnl
-define(R, `%o3')dnl
-define(ITER, `%o4')dnl
-define(V, `%o5')dnl
-dnl
-dnl m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d
-define(T, `%g1')dnl
-define(SC, `%g2')dnl
-ifelse(S, `true', `define(SIGN, `%g3')')dnl
-
-dnl
-dnl This is the recursive definition for developing quotient digits.
-dnl
-dnl Parameters:
-dnl $1 the current depth, 1 <= $1 <= N
-dnl $2 the current accumulation of quotient bits
-dnl N max depth
-dnl
-dnl We add a new bit to $2 and either recurse or insert the bits in
-dnl the quotient. R, Q, and V are inputs and outputs as defined above;
-dnl the condition codes are expected to reflect the input R, and are
-dnl modified to reflect the output R.
-dnl
-define(DEVELOP_QUOTIENT_BITS,
-` ! depth $1, accumulated bits $2
- bl LOC($1.eval(2**N+$2))
- srl V,1,V
- ! remainder is positive
- subcc R,V,R
- ifelse($1, N,
- ` b 9f
- add Q, ($2*2+1), Q
-', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
-LOC($1.eval(2**N+$2)):
- ! remainder is negative
- addcc R,V,R
- ifelse($1, N,
- ` b 9f
- add Q, ($2*2-1), Q
-', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
-ifelse($1, 1, `9:')')dnl
-
-#include <sysdep.h>
-#include <sys/trap.h>
-
-ENTRY(NAME)
-ifelse(S, `true',
-` ! compute sign of result; if neither is negative, no problem
- orcc divisor, dividend, %g0 ! either negative?
- bge 2f ! no, go do the divide
-ifelse(OP, `div',
-` xor divisor, dividend, SIGN ! compute sign in any case',
-` mov dividend, SIGN ! sign of remainder matches dividend')
- tst divisor
- bge 1f
- tst dividend
- ! divisor is definitely negative; dividend might also be negative
- bge 2f ! if dividend not negative...
- sub %g0, divisor, divisor ! in any case, make divisor nonneg
-1: ! dividend is negative, divisor is nonnegative
- sub %g0, dividend, dividend ! make dividend nonnegative
-2:
-')
- ! Ready to divide. Compute size of quotient; scale comparand.
- orcc divisor, %g0, V
- bne 1f
- mov dividend, R
-
- ! Divide by zero trap. If it returns, return 0 (about as
- ! wrong as possible, but that is what SunOS does...).
- ta ST_DIV0
- retl
- clr %o0
-
-1:
- cmp R, V ! if divisor exceeds dividend, done
- blu LOC(got_result) ! (and algorithm fails otherwise)
- clr Q
- sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
- cmp R, T
- blu LOC(not_really_big)
- clr ITER
-
- ! `Here the dividend is >= 2**(31-N) or so. We must be careful here,
- ! as our usual N-at-a-shot divide step will cause overflow and havoc.
- ! The number of bits in the result here is N*ITER+SC, where SC <= N.
- ! Compute ITER in an unorthodox manner: know we need to shift V into
- ! the top decade: so do not even bother to compare to R.'
- 1:
- cmp V, T
- bgeu 3f
- mov 1, SC
- sll V, N, V
- b 1b
- add ITER, 1, ITER
-
- ! Now compute SC.
- 2: addcc V, V, V
- bcc LOC(not_too_big)
- add SC, 1, SC
-
- ! We get here if the divisor overflowed while shifting.
- ! This means that R has the high-order bit set.
- ! Restore V and subtract from R.
- sll T, TOPBITS, T ! high order bit
- srl V, 1, V ! rest of V
- add V, T, V
- b LOC(do_single_div)
- sub SC, 1, SC
-
- LOC(not_too_big):
- 3: cmp V, R
- blu 2b
- nop
- be LOC(do_single_div)
- nop
- /* NB: these are commented out in the V8-Sparc manual as well */
- /* (I do not understand this) */
- ! V > R: went too far: back up 1 step
- ! srl V, 1, V
- ! dec SC
- ! do single-bit divide steps
- !
- ! We have to be careful here. We know that R >= V, so we can do the
- ! first divide step without thinking. BUT, the others are conditional,
- ! and are only done if R >= 0. Because both R and V may have the high-
- ! order bit set in the first step, just falling into the regular
- ! division loop will mess up the first time around.
- ! So we unroll slightly...
- LOC(do_single_div):
- subcc SC, 1, SC
- bl LOC(end_regular_divide)
- nop
- sub R, V, R
- mov 1, Q
- b LOC(end_single_divloop)
- nop
- LOC(single_divloop):
- sll Q, 1, Q
- bl 1f
- srl V, 1, V
- ! R >= 0
- sub R, V, R
- b 2f
- add Q, 1, Q
- 1: ! R < 0
- add R, V, R
- sub Q, 1, Q
- 2:
- LOC(end_single_divloop):
- subcc SC, 1, SC
- bge LOC(single_divloop)
- tst R
- b,a LOC(end_regular_divide)
-
-LOC(not_really_big):
-1:
- sll V, N, V
- cmp V, R
- bleu 1b
- addcc ITER, 1, ITER
- be LOC(got_result)
- sub ITER, 1, ITER
-
- tst R ! set up for initial iteration
-LOC(divloop):
- sll Q, N, Q
- DEVELOP_QUOTIENT_BITS(1, 0)
-LOC(end_regular_divide):
- subcc ITER, 1, ITER
- bge LOC(divloop)
- tst R
- bl,a LOC(got_result)
- ! non-restoring fixup here (one instruction only!)
-ifelse(OP, `div',
-` sub Q, 1, Q
-', ` add R, divisor, R
-')
-
-LOC(got_result):
-ifelse(S, `true',
-` ! check to see if answer should be < 0
- tst SIGN
- bl,a 1f
- ifelse(OP, `div', `sub %g0, Q, Q', `sub %g0, R, R')
-1:')
- retl
- ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
-
-END(NAME)
-ifelse(OP, `div', ifelse(S, `false', `strong_alias (.udiv, __wrap_.udiv)
-'))dnl