aboutsummaryrefslogtreecommitdiff
path: root/sysdeps/ieee754
diff options
context:
space:
mode:
authorAdhemerval Zanella <adhemerval.zanella@linaro.org>2021-04-05 17:28:48 -0300
committerAdhemerval Zanella <adhemerval.zanella@linaro.org>2021-12-13 09:02:34 -0300
commitaa9c28cde3966064bf2b05ca8d25c62b3e463688 (patch)
tree3d875fde6993a527785dc769b0fafacf4421cb1f /sysdeps/ieee754
parentccfa865a82c648fde56864ea094f70ee1a8a944b (diff)
downloadglibc-aa9c28cde3966064bf2b05ca8d25c62b3e463688.tar
glibc-aa9c28cde3966064bf2b05ca8d25c62b3e463688.tar.gz
glibc-aa9c28cde3966064bf2b05ca8d25c62b3e463688.tar.bz2
glibc-aa9c28cde3966064bf2b05ca8d25c62b3e463688.zip
math: Use an improved algorithm for hypotl (ldbl-96)
This implementation is based on 'An Improved Algorithm for hypot(a,b)' by Carlos F. Borges [1] using the MyHypot3 with the following changes: - Handle qNaN and sNaN. - Tune the 'widely varying operands' to avoid spurious underflow due the multiplication and fix the return value for upwards rounding mode. - Handle required underflow exception for subnormal results. The main advantage of the new algorithm is its precision. With a random 1e8 input pairs in the range of [LDBL_MIN, LDBL_MAX], glibc current implementation shows around 0.02% results with an error of 1 ulp (23158 results) while the new implementation only shows 0.0001% of total (111). [1] https://arxiv.org/pdf/1904.09481.pdf
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r--sysdeps/ieee754/ldbl-96/e_hypotl.c231
1 files changed, 98 insertions, 133 deletions
diff --git a/sysdeps/ieee754/ldbl-96/e_hypotl.c b/sysdeps/ieee754/ldbl-96/e_hypotl.c
index 44e72353c0..0f9b81472a 100644
--- a/sysdeps/ieee754/ldbl-96/e_hypotl.c
+++ b/sysdeps/ieee754/ldbl-96/e_hypotl.c
@@ -1,142 +1,107 @@
-/* e_hypotl.c -- long double version of e_hypot.c.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_hypotl(x,y)
- *
- * Method :
- * If (assume round-to-nearest) z=x*x+y*y
- * has error less than sqrt(2)/2 ulp, than
- * sqrt(z) has error less than 1 ulp (exercise).
- *
- * So, compute sqrt(x*x+y*y) with some care as
- * follows to get the error below 1 ulp:
- *
- * Assume x>y>0;
- * (if possible, set rounding to round-to-nearest)
- * 1. if x > 2y use
- * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
- * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
- * 2. if x <= 2y use
- * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
- * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
- * y1= y with lower 32 bits chopped, y2 = y-y1.
- *
- * NOTE: scaling may be necessary if some argument is too
- * large or too tiny
- *
- * Special cases:
- * hypot(x,y) is INF if x or y is +INF or -INF; else
- * hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- * hypot(x,y) returns sqrt(x^2+y^2) with error less
- * than 1 ulps (units in the last place)
- */
+/* Euclidean distance function. Long Double/Binary96 version.
+ Copyright (C) 2021 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+/* This implementation is based on 'An Improved Algorithm for hypot(a,b)' by
+ Carlos F. Borges [1] using the MyHypot3 with the following changes:
+
+ - Handle qNaN and sNaN.
+ - Tune the 'widely varying operands' to avoid spurious underflow
+ due the multiplication and fix the return value for upwards
+ rounding mode.
+ - Handle required underflow exception for subnormal results.
+
+ [1] https://arxiv.org/pdf/1904.09481.pdf */
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
#include <libm-alias-finite.h>
-long double __ieee754_hypotl(long double x, long double y)
+#define SCALE 0x8p-8257L
+#define LARGE_VAL 0xb.504f333f9de6484p+8188L
+#define TINY_VAL 0x8p-8194L
+#define EPS 0x8p-68L
+
+/* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0
+ and squaring ax, ay and (ax - ay) does not overflow or underflow. */
+static inline long double
+kernel (long double ax, long double ay)
{
- long double a,b,t1,t2,y1,y2,w;
- uint32_t j,k,ea,eb;
-
- GET_LDOUBLE_EXP(ea,x);
- ea &= 0x7fff;
- GET_LDOUBLE_EXP(eb,y);
- eb &= 0x7fff;
- if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;}
- SET_LDOUBLE_EXP(a,ea); /* a <- |a| */
- SET_LDOUBLE_EXP(b,eb); /* b <- |b| */
- if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */
- k=0;
- if(__builtin_expect(ea > 0x5f3f,0)) { /* a>2**8000 */
- if(ea == 0x7fff) { /* Inf or NaN */
- uint32_t exp __attribute__ ((unused));
- uint32_t high,low;
- w = a+b; /* for sNaN */
- if (issignaling (a) || issignaling (b))
- return w;
- GET_LDOUBLE_WORDS(exp,high,low,a);
- if(((high&0x7fffffff)|low)==0) w = a;
- GET_LDOUBLE_WORDS(exp,high,low,b);
- if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
- return w;
- }
- /* scale a and b by 2**-9600 */
- ea -= 0x2580; eb -= 0x2580; k += 9600;
- SET_LDOUBLE_EXP(a,ea);
- SET_LDOUBLE_EXP(b,eb);
- }
- if(__builtin_expect(eb < 0x20bf, 0)) { /* b < 2**-8000 */
- if(eb == 0) { /* subnormal b or 0 */
- uint32_t exp __attribute__ ((unused));
- uint32_t high,low;
- GET_LDOUBLE_WORDS(exp,high,low,b);
- if((high|low)==0) return a;
- SET_LDOUBLE_WORDS(t1, 0x7ffd, 0x80000000, 0); /* t1=2^16382 */
- b *= t1;
- a *= t1;
- k -= 16382;
- GET_LDOUBLE_EXP (ea, a);
- GET_LDOUBLE_EXP (eb, b);
- if (eb > ea)
- {
- t1 = a;
- a = b;
- b = t1;
- j = ea;
- ea = eb;
- eb = j;
- }
- } else { /* scale a and b by 2^9600 */
- ea += 0x2580; /* a *= 2^9600 */
- eb += 0x2580; /* b *= 2^9600 */
- k -= 9600;
- SET_LDOUBLE_EXP(a,ea);
- SET_LDOUBLE_EXP(b,eb);
- }
- }
- /* medium size a and b */
- w = a-b;
- if (w>b) {
- uint32_t high;
- GET_LDOUBLE_MSW(high,a);
- SET_LDOUBLE_WORDS(t1,ea,high,0);
- t2 = a-t1;
- w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
- } else {
- uint32_t high;
- GET_LDOUBLE_MSW(high,b);
- a = a+a;
- SET_LDOUBLE_WORDS(y1,eb,high,0);
- y2 = b - y1;
- GET_LDOUBLE_MSW(high,a);
- SET_LDOUBLE_WORDS(t1,ea+1,high,0);
- t2 = a - t1;
- w = sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
- }
- if(k!=0) {
- uint32_t exp;
- t1 = 1.0;
- GET_LDOUBLE_EXP(exp,t1);
- SET_LDOUBLE_EXP(t1,exp+k);
- w *= t1;
- math_check_force_underflow_nonneg (w);
- return w;
- } else return w;
+ long double t1, t2;
+ long double h = sqrtl (ax * ax + ay * ay);
+ if (h <= 2.0L * ay)
+ {
+ long double delta = h - ay;
+ t1 = ax * (2.0L * delta - ax);
+ t2 = (delta - 2.0L * (ax - ay)) * delta;
+ }
+ else
+ {
+ long double delta = h - ax;
+ t1 = 2.0L * delta * (ax - 2.0L * ay);
+ t2 = (4.0L * delta - ay) * ay + delta * delta;
+ }
+
+ h -= (t1 + t2) / (2.0L * h);
+ return h;
+}
+
+long double
+__ieee754_hypotl (long double x, long double y)
+{
+ if (!isfinite(x) || !isfinite(y))
+ {
+ if ((isinf (x) || isinf (y))
+ && !issignaling (x) && !issignaling (y))
+ return INFINITY;
+ return x + y;
+ }
+
+ x = fabsl (x);
+ y = fabsl (y);
+
+ long double ax = x < y ? y : x;
+ long double ay = x < y ? x : y;
+
+ /* If ax is huge, scale both inputs down. */
+ if (__glibc_unlikely (ax > LARGE_VAL))
+ {
+ if (__glibc_unlikely (ay <= ax * EPS))
+ return ax + ay;
+
+ return kernel (ax * SCALE, ay * SCALE) / SCALE;
+ }
+
+ /* If ay is tiny, scale both inputs up. */
+ if (__glibc_unlikely (ay < TINY_VAL))
+ {
+ if (__glibc_unlikely (ax >= ay / EPS))
+ return ax + ay;
+
+ ax = kernel (ax / SCALE, ay / SCALE) * SCALE;
+ math_check_force_underflow_nonneg (ax);
+ return ax;
+ }
+
+ /* Common case: ax is not huge and ay is not tiny. */
+ if (__glibc_unlikely (ay <= ax * EPS))
+ return ax + ay;
+
+ return kernel (ax, ay);
}
libm_alias_finite (__ieee754_hypotl, __hypotl)