diff options
author | Patrick McGehearty <patrick.mcgehearty@oracle.com> | 2018-04-15 18:46:37 -0400 |
---|---|---|
committer | Patrick McGehearty <patrick.mcgehearty@oracle.com> | 2018-04-15 18:46:37 -0400 |
commit | a14d8acd3261a7290e572a3cf435509ecd6e96d4 (patch) | |
tree | 31005eefa4147504e9ac0cc14aea39e4f601c1d2 /sysdeps/ieee754 | |
parent | a700e7cb3799316e1b23879b4cf0891f5703acb1 (diff) | |
download | glibc-a14d8acd3261a7290e572a3cf435509ecd6e96d4.tar glibc-a14d8acd3261a7290e572a3cf435509ecd6e96d4.tar.gz glibc-a14d8acd3261a7290e572a3cf435509ecd6e96d4.tar.bz2 glibc-a14d8acd3261a7290e572a3cf435509ecd6e96d4.zip |
Improves __ieee754_exp(x) performance by 18-37% when |x| < 1.0397
Adds a fast path to e_exp.c when |x| < 1.03972053527832.
When values are tested in isolation, reduction in execution
time is: aarch 30%, sparc 18%, x86 37%.
When comparing benchtests/bench.out which includes values
outside that range, the gains are:
aarch 8%, sparc 5%, x86 9%.
make check is clean (no increase in ulp for any math test).
Testing 20M values for each rounding mode in that range shows
approximately one in 200 values is off by 1 ulp. No value tested
for exp(x) changed by 2 or more ulp.
No observed change in performance or accuracy for x outside
fast path range.
These changes will be active for all platforms that don't provide
their own exp() routines. They will also be active for ieee754
versions of ccos, ccosh, cosh, csin, csinh, sinh, exp10, gamma, and
erf.
Diffstat (limited to 'sysdeps/ieee754')
-rw-r--r-- | sysdeps/ieee754/dbl-64/e_exp.c | 46 | ||||
-rw-r--r-- | sysdeps/ieee754/dbl-64/eexp.tbl | 172 |
2 files changed, 211 insertions, 7 deletions
diff --git a/sysdeps/ieee754/dbl-64/e_exp.c b/sysdeps/ieee754/dbl-64/e_exp.c index 62035a890b..b5589aabca 100644 --- a/sysdeps/ieee754/dbl-64/e_exp.c +++ b/sysdeps/ieee754/dbl-64/e_exp.c @@ -40,6 +40,7 @@ #include <math_private.h> #include <fenv.h> #include <float.h> +#include "eexp.tbl" #ifndef SECTION # define SECTION @@ -50,8 +51,10 @@ SECTION __ieee754_exp (double x) { double bexp, t, eps, del, base, y, al, bet, res, rem, cor; + double z; mynumber junk1, junk2, binexp = {{0, 0}}; int4 i, j, m, n, ex; + int4 k; double retval; { @@ -61,7 +64,42 @@ __ieee754_exp (double x) m = junk1.i[HIGH_HALF]; n = m & hugeint; - if (n > smallint && n < bigint) + if (n < 0x3ff0a2b2) /* |x| < 1.03972053527832 */ + { + if (n < 0x3f862e42) /* |x| < 3/2 ln 2 */ + { + if (n < 0x3ed00000) /* |x| < 1/64 ln 2 */ + { + if (n < 0x3e300000) /* |x| < 2^18 */ + { + retval = one + junk1.x; + goto ret; + } + retval = one + junk1.x * (one + half * junk1.x); + goto ret; + } + t = junk1.x * junk1.x; + retval = junk1.x + (t * (half + junk1.x * t2) + + (t * t) * (t3 + junk1.x * t4 + t * t5)); + retval = one + retval; + goto ret; + } + + /* Find the multiple of 2^-6 nearest x. */ + k = n >> 20; + j = (0x00100000 | (n & 0x000fffff)) >> (0x40c - k); + j = (j - 1) & ~1; + if (m < 0) + j += 134; + z = junk1.x - TBL2[j]; + t = z * z; + retval = z + (t * (half + (z * t2)) + + (t * t) * (t3 + z * t4 + t * t5)); + retval = TBL2[j + 1] + TBL2[j + 1] * retval; + goto ret; + } + + if (n < bigint) /* && |x| >= 1.03972053527832 */ { y = x * log2e.x + three51.x; bexp = y - three51.x; /* multiply the result by 2**bexp */ @@ -94,12 +132,6 @@ __ieee754_exp (double x) goto ret; } - if (n <= smallint) - { - retval = 1.0; - goto ret; - } - if (n >= badint) { if (n > infint) diff --git a/sysdeps/ieee754/dbl-64/eexp.tbl b/sysdeps/ieee754/dbl-64/eexp.tbl new file mode 100644 index 0000000000..4ee6040638 --- /dev/null +++ b/sysdeps/ieee754/dbl-64/eexp.tbl @@ -0,0 +1,172 @@ +/* EXP function tables - for use in computing double precision exponential + Copyright (C) 2018 Free Software Foundation, Inc. + This file is part of the GNU C Library. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with the GNU C Library; if not, see + <http://www.gnu.org/licenses/>. */ + +/* For i = 0, ..., 66, + TBL2[2*i] is a double precision number near (i+1)*2^-6, and + TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less + than 2^-60. + + For i = 67, ..., 133, + TBL2[2*i] is a double precision number near -(i+1)*2^-6, and + TBL2[2*i+1] = exp(TBL2[2*i]) to within a relative error less + than 2^-60. */ + +static const double TBL2[268] = { + 0x1.ffffffffffc82p-7, 0x1.04080ab55de32p+0, + 0x1.fffffffffffdbp-6, 0x1.08205601127ecp+0, + 0x1.80000000000a0p-5, 0x1.0c49236829e91p+0, + 0x1.fffffffffff79p-5, 0x1.1082b577d34e9p+0, + 0x1.3fffffffffffcp-4, 0x1.14cd4fc989cd6p+0, + 0x1.8000000000060p-4, 0x1.192937074e0d4p+0, + 0x1.c000000000061p-4, 0x1.1d96b0eff0e80p+0, + 0x1.fffffffffffd6p-4, 0x1.2216045b6f5cap+0, + 0x1.1ffffffffff58p-3, 0x1.26a7793f6014cp+0, + 0x1.3ffffffffff75p-3, 0x1.2b4b58b372c65p+0, + 0x1.5ffffffffff00p-3, 0x1.3001ecf601ad1p+0, + 0x1.8000000000020p-3, 0x1.34cb8170b583ap+0, + 0x1.9ffffffffa629p-3, 0x1.39a862bd3b344p+0, + 0x1.c00000000000fp-3, 0x1.3e98deaa11dcep+0, + 0x1.e00000000007fp-3, 0x1.439d443f5f16dp+0, + 0x1.0000000000072p-2, 0x1.48b5e3c3e81abp+0, + 0x1.0fffffffffecap-2, 0x1.4de30ec211dfbp+0, + 0x1.1ffffffffff8fp-2, 0x1.5325180cfacd2p+0, + 0x1.300000000003bp-2, 0x1.587c53c5a7b04p+0, + 0x1.4000000000034p-2, 0x1.5de9176046007p+0, + 0x1.4ffffffffff89p-2, 0x1.636bb9a98322fp+0, + 0x1.5ffffffffffe7p-2, 0x1.690492cbf942ap+0, + 0x1.6ffffffffff78p-2, 0x1.6eb3fc55b1e45p+0, + 0x1.7ffffffffff65p-2, 0x1.747a513dbef32p+0, + 0x1.8ffffffffffd5p-2, 0x1.7a57ede9ea22ep+0, + 0x1.9ffffffffff6ep-2, 0x1.804d30347b50fp+0, + 0x1.affffffffffc3p-2, 0x1.865a7772164aep+0, + 0x1.c000000000053p-2, 0x1.8c802477b0030p+0, + 0x1.d00000000004dp-2, 0x1.92be99a09bf1ep+0, + 0x1.e000000000096p-2, 0x1.99163ad4b1e08p+0, + 0x1.efffffffffefap-2, 0x1.9f876d8e8c4fcp+0, + 0x1.fffffffffffd0p-2, 0x1.a61298e1e0688p+0, + 0x1.0800000000002p-1, 0x1.acb82581eee56p+0, + 0x1.100000000001fp-1, 0x1.b3787dc80f979p+0, + 0x1.17ffffffffff8p-1, 0x1.ba540dba56e4fp+0, + 0x1.1fffffffffffap-1, 0x1.c14b431256441p+0, + 0x1.27fffffffffc4p-1, 0x1.c85e8d43f7c9bp+0, + 0x1.2fffffffffffdp-1, 0x1.cf8e5d84758a6p+0, + 0x1.380000000001fp-1, 0x1.d6db26d16cd84p+0, + 0x1.3ffffffffffd8p-1, 0x1.de455df80e39bp+0, + 0x1.4800000000052p-1, 0x1.e5cd799c6a59cp+0, + 0x1.4ffffffffffc8p-1, 0x1.ed73f240dc10cp+0, + 0x1.5800000000013p-1, 0x1.f539424d90f71p+0, + 0x1.5ffffffffffbcp-1, 0x1.fd1de6182f885p+0, + 0x1.680000000002dp-1, 0x1.02912df5ce741p+1, + 0x1.7000000000040p-1, 0x1.06a39207f0a2ap+1, + 0x1.780000000004fp-1, 0x1.0ac660691652ap+1, + 0x1.7ffffffffff6fp-1, 0x1.0ef9db467dcabp+1, + 0x1.87fffffffffe5p-1, 0x1.133e45d82e943p+1, + 0x1.9000000000035p-1, 0x1.1793e4652cc6dp+1, + 0x1.97fffffffffb3p-1, 0x1.1bfafc47bda48p+1, + 0x1.a000000000000p-1, 0x1.2073d3f1bd518p+1, + 0x1.a80000000004ap-1, 0x1.24feb2f105ce2p+1, + 0x1.affffffffffedp-1, 0x1.299be1f3e7f11p+1, + 0x1.b7ffffffffffbp-1, 0x1.2e4baacdb6611p+1, + 0x1.c00000000001dp-1, 0x1.330e587b62b39p+1, + 0x1.c800000000079p-1, 0x1.37e437282d538p+1, + 0x1.cffffffffff51p-1, 0x1.3ccd943268248p+1, + 0x1.d7fffffffff74p-1, 0x1.41cabe304cadcp+1, + 0x1.e000000000011p-1, 0x1.46dc04f4e5343p+1, + 0x1.e80000000001ep-1, 0x1.4c01b9950a124p+1, + 0x1.effffffffff9ep-1, 0x1.513c2e6c73196p+1, + 0x1.f7fffffffffedp-1, 0x1.568bb722dd586p+1, + 0x1.0000000000034p+0, 0x1.5bf0a8b1457b0p+1, + 0x1.03fffffffffe2p+0, 0x1.616b5967376dfp+1, + 0x1.07fffffffff4bp+0, 0x1.66fc20f0337a9p+1, + 0x1.0bffffffffffdp+0, 0x1.6ca35859290f5p+1, + -0x1.fffffffffffe4p-7, 0x1.f80feabfeefa5p-1, + -0x1.ffffffffffb0bp-6, 0x1.f03f56a88b5fep-1, + -0x1.7ffffffffffa7p-5, 0x1.e88dc6afecfc5p-1, + -0x1.ffffffffffea8p-5, 0x1.e0fabfbc702b8p-1, + -0x1.3ffffffffffb3p-4, 0x1.d985c89d041acp-1, + -0x1.7ffffffffffe3p-4, 0x1.d22e6a0197c06p-1, + -0x1.bffffffffff9ap-4, 0x1.caf42e73a4c89p-1, + -0x1.fffffffffff98p-4, 0x1.c3d6a24ed822dp-1, + -0x1.1ffffffffffe9p-3, 0x1.bcd553b9d7b67p-1, + -0x1.3ffffffffffe0p-3, 0x1.b5efd29f24c2dp-1, + -0x1.5fffffffff553p-3, 0x1.af25b0a61a9f4p-1, + -0x1.7ffffffffff8bp-3, 0x1.a876812c08794p-1, + -0x1.9fffffffffe51p-3, 0x1.a1e1d93d68828p-1, + -0x1.bffffffffff6ep-3, 0x1.9b674f8f2f3f5p-1, + -0x1.dffffffffff7fp-3, 0x1.95067c7837a0cp-1, + -0x1.fffffffffff7ap-3, 0x1.8ebef9eac8225p-1, + -0x1.0fffffffffffep-2, 0x1.8890636e31f55p-1, + -0x1.1ffffffffff41p-2, 0x1.827a56188975ep-1, + -0x1.2ffffffffffbap-2, 0x1.7c7c708877656p-1, + -0x1.3fffffffffff8p-2, 0x1.769652df22f81p-1, + -0x1.4ffffffffff90p-2, 0x1.70c79eba33c2fp-1, + -0x1.5ffffffffffdbp-2, 0x1.6b0ff72deb8aap-1, + -0x1.6ffffffffff9ap-2, 0x1.656f00bf5798ep-1, + -0x1.7ffffffffff9fp-2, 0x1.5fe4615e98eb0p-1, + -0x1.8ffffffffffeep-2, 0x1.5a6fc061433cep-1, + -0x1.9fffffffffc4ap-2, 0x1.5510c67cd26cdp-1, + -0x1.affffffffff30p-2, 0x1.4fc71dc13566bp-1, + -0x1.bfffffffffff0p-2, 0x1.4a9271936fd0ep-1, + -0x1.cfffffffffff3p-2, 0x1.45726ea84fb8cp-1, + -0x1.dfffffffffff3p-2, 0x1.4066c2ff3912bp-1, + -0x1.effffffffff80p-2, 0x1.3b6f1ddd05ab9p-1, + -0x1.fffffffffffdfp-2, 0x1.368b2fc6f9614p-1, + -0x1.0800000000000p-1, 0x1.31baaa7dca843p-1, + -0x1.0ffffffffffa4p-1, 0x1.2cfd40f8bdce4p-1, + -0x1.17fffffffff0ap-1, 0x1.2852a760d5ce7p-1, + -0x1.2000000000000p-1, 0x1.23ba930c1568bp-1, + -0x1.27fffffffffbbp-1, 0x1.1f34ba78d568dp-1, + -0x1.2fffffffffe32p-1, 0x1.1ac0d5492c1dbp-1, + -0x1.37ffffffff042p-1, 0x1.165e9c3e67ef2p-1, + -0x1.3ffffffffff77p-1, 0x1.120dc93499431p-1, + -0x1.47fffffffff6bp-1, 0x1.0dce171e34ecep-1, + -0x1.4fffffffffff1p-1, 0x1.099f41ffbe588p-1, + -0x1.57ffffffffe02p-1, 0x1.058106eb8a7aep-1, + -0x1.5ffffffffffe5p-1, 0x1.017323fd9002ep-1, + -0x1.67fffffffffb0p-1, 0x1.faeab0ae9386cp-2, + -0x1.6ffffffffffb2p-1, 0x1.f30ec837503d7p-2, + -0x1.77fffffffff7fp-1, 0x1.eb5210d627133p-2, + -0x1.7ffffffffffe8p-1, 0x1.e3b40ebefcd95p-2, + -0x1.87fffffffffc8p-1, 0x1.dc3448110dae2p-2, + -0x1.8fffffffffb30p-1, 0x1.d4d244cf4ef06p-2, + -0x1.97fffffffffefp-1, 0x1.cd8d8ed8ee395p-2, + -0x1.9ffffffffffa7p-1, 0x1.c665b1e1f1e5cp-2, + -0x1.a7fffffffffdcp-1, 0x1.bf5a3b6bf18d6p-2, + -0x1.affffffffff95p-1, 0x1.b86ababeef93bp-2, + -0x1.b7fffffffffcbp-1, 0x1.b196c0e24d256p-2, + -0x1.bffffffffff32p-1, 0x1.aadde095dadf7p-2, + -0x1.c7fffffffff6ap-1, 0x1.a43fae4b047c9p-2, + -0x1.cffffffffffb6p-1, 0x1.9dbbc01e182a4p-2, + -0x1.d7fffffffffcap-1, 0x1.9751adcfa81ecp-2, + -0x1.dffffffffffcdp-1, 0x1.910110be0699ep-2, + -0x1.e7ffffffffffbp-1, 0x1.8ac983dedbc69p-2, + -0x1.effffffffff88p-1, 0x1.84aaa3b8d51a9p-2, + -0x1.f7fffffffffbbp-1, 0x1.7ea40e5d6d92ep-2, + -0x1.fffffffffffdbp-1, 0x1.78b56362cef53p-2, + -0x1.03fffffffff00p+0, 0x1.72de43ddcb1f2p-2, + -0x1.07ffffffffe6fp+0, 0x1.6d1e525bed085p-2, + -0x1.0bfffffffffd6p+0, 0x1.677532dda1c57p-2}; + +static const double + half = 0.5, + one = 1.0, +/* t2-t5 terms used for polynomial computation. */ + t2 = 0x1.5555555555555p-3, /* 1.6666666666666665741e-1 */ + t3 = 0x1.5555555555555p-5, /* 4.1666666666666664354e-2 */ + t4 = 0x1.1111111111111p-7, /* 8.3333333333333332177e-3 */ + t5 = 0x1.6c16c16c16c17p-10; /* 1.3888888888888889419e-3 */ |