diff options
author | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-06-28 14:28:04 -0500 |
---|---|---|
committer | Paul E. Murphy <murphyp@linux.vnet.ibm.com> | 2016-08-29 12:43:38 -0500 |
commit | feb62ddacb7b1d772d7383de0228a3977f07fc1e (patch) | |
tree | 963280635eb242a98f191744c196d55fadc2550f /math/s_clog10l.c | |
parent | 1dbc54f61e281d3f2c1712dadd12864c42f8a64a (diff) | |
download | glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.gz glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.tar.bz2 glibc-feb62ddacb7b1d772d7383de0228a3977f07fc1e.zip |
Convert remaining complex function to generated files
Convert cpow, clog, clog10, cexp, csqrt, and cproj functions
into generated templates. Note, ldbl-opt still retains
s_clog10l.c as the aliasing rules are non-trivial.
Diffstat (limited to 'math/s_clog10l.c')
-rw-r--r-- | math/s_clog10l.c | 127 |
1 files changed, 0 insertions, 127 deletions
diff --git a/math/s_clog10l.c b/math/s_clog10l.c deleted file mode 100644 index da40477a80..0000000000 --- a/math/s_clog10l.c +++ /dev/null @@ -1,127 +0,0 @@ -/* Compute complex base 10 logarithm. - Copyright (C) 1997-2016 Free Software Foundation, Inc. - This file is part of the GNU C Library. - Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. - - The GNU C Library is free software; you can redistribute it and/or - modify it under the terms of the GNU Lesser General Public - License as published by the Free Software Foundation; either - version 2.1 of the License, or (at your option) any later version. - - The GNU C Library is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - Lesser General Public License for more details. - - You should have received a copy of the GNU Lesser General Public - License along with the GNU C Library; if not, see - <http://www.gnu.org/licenses/>. */ - -#include <complex.h> -#include <math.h> -#include <math_private.h> -#include <float.h> - -/* To avoid spurious underflows, use this definition to treat IBM long - double as approximating an IEEE-style format. */ -#if LDBL_MANT_DIG == 106 -# undef LDBL_EPSILON -# define LDBL_EPSILON 0x1p-106L -#endif - -/* log_10 (2). */ -#define M_LOG10_2l 0.3010299956639811952137388947244930267682L - -/* pi * log10 (e). */ -#define M_PI_LOG10El 1.364376353841841347485783625431355770210L - -__complex__ long double -__clog10l (__complex__ long double x) -{ - __complex__ long double result; - int rcls = fpclassify (__real__ x); - int icls = fpclassify (__imag__ x); - - if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) - { - /* Real and imaginary part are 0.0. */ - __imag__ result = signbit (__real__ x) ? M_PI_LOG10El : 0.0; - __imag__ result = __copysignl (__imag__ result, __imag__ x); - /* Yes, the following line raises an exception. */ - __real__ result = -1.0 / fabsl (__real__ x); - } - else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) - { - /* Neither real nor imaginary part is NaN. */ - long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x); - int scale = 0; - - if (absx < absy) - { - long double t = absx; - absx = absy; - absy = t; - } - - if (absx > LDBL_MAX / 2.0L) - { - scale = -1; - absx = __scalbnl (absx, scale); - absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L); - } - else if (absx < LDBL_MIN && absy < LDBL_MIN) - { - scale = LDBL_MANT_DIG; - absx = __scalbnl (absx, scale); - absy = __scalbnl (absy, scale); - } - - if (absx == 1.0L && scale == 0) - { - __real__ result = __log1pl (absy * absy) * (M_LOG10El / 2.0L); - math_check_force_underflow_nonneg (__real__ result); - } - else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0) - { - long double d2m1 = (absx - 1.0L) * (absx + 1.0L); - if (absy >= LDBL_EPSILON) - d2m1 += absy * absy; - __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); - } - else if (absx < 1.0L - && absx >= 0.5L - && absy < LDBL_EPSILON / 2.0L - && scale == 0) - { - long double d2m1 = (absx - 1.0L) * (absx + 1.0L); - __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); - } - else if (absx < 1.0L - && absx >= 0.5L - && scale == 0 - && absx * absx + absy * absy >= 0.5L) - { - long double d2m1 = __x2y2m1l (absx, absy); - __real__ result = __log1pl (d2m1) * (M_LOG10El / 2.0L); - } - else - { - long double d = __ieee754_hypotl (absx, absy); - __real__ result = __ieee754_log10l (d) - scale * M_LOG10_2l; - } - - __imag__ result = M_LOG10El * __ieee754_atan2l (__imag__ x, __real__ x); - } - else - { - __imag__ result = __nanl (""); - if (rcls == FP_INFINITE || icls == FP_INFINITE) - /* Real or imaginary part is infinite. */ - __real__ result = HUGE_VALL; - else - __real__ result = __nanl (""); - } - - return result; -} -weak_alias (__clog10l, clog10l) |