aboutsummaryrefslogtreecommitdiff
path: root/math/k_casinhf.c
diff options
context:
space:
mode:
authorJoseph Myers <joseph@codesourcery.com>2013-01-17 20:25:51 +0000
committerJoseph Myers <joseph@codesourcery.com>2013-01-17 20:25:51 +0000
commit728d7b43fc8a4f9b3ec772fd8b75a39b945e9f04 (patch)
tree4033b2b21fd505dc1b607ea1ed589818fe838ef2 /math/k_casinhf.c
parent2a26ef3a012cc29623423ca52c1cc8001d847d54 (diff)
downloadglibc-728d7b43fc8a4f9b3ec772fd8b75a39b945e9f04.tar
glibc-728d7b43fc8a4f9b3ec772fd8b75a39b945e9f04.tar.gz
glibc-728d7b43fc8a4f9b3ec772fd8b75a39b945e9f04.tar.bz2
glibc-728d7b43fc8a4f9b3ec772fd8b75a39b945e9f04.zip
Fix cacos real-part inaccuracy for result real part near 0 (bug 15023).
Diffstat (limited to 'math/k_casinhf.c')
-rw-r--r--math/k_casinhf.c85
1 files changed, 85 insertions, 0 deletions
diff --git a/math/k_casinhf.c b/math/k_casinhf.c
new file mode 100644
index 0000000000..9401636348
--- /dev/null
+++ b/math/k_casinhf.c
@@ -0,0 +1,85 @@
+/* Return arc hyperbole sine for float value, with the imaginary part
+ of the result possibly adjusted for use in computing other
+ functions.
+ Copyright (C) 1997-2013 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <http://www.gnu.org/licenses/>. */
+
+#include <complex.h>
+#include <math.h>
+#include <math_private.h>
+#include <float.h>
+
+/* Return the complex inverse hyperbolic sine of finite nonzero Z,
+ with the imaginary part of the result subtracted from pi/2 if ADJ
+ is nonzero. */
+
+__complex__ float
+__kernel_casinhf (__complex__ float x, int adj)
+{
+ __complex__ float res;
+ float rx, ix;
+ __complex__ float y;
+
+ /* Avoid cancellation by reducing to the first quadrant. */
+ rx = fabsf (__real__ x);
+ ix = fabsf (__imag__ x);
+
+ if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
+ {
+ /* For large x in the first quadrant, x + csqrt (1 + x * x)
+ is sufficiently close to 2 * x to make no significant
+ difference to the result; avoid possible overflow from
+ the squaring and addition. */
+ __real__ y = rx;
+ __imag__ y = ix;
+
+ if (adj)
+ {
+ float t = __real__ y;
+ __real__ y = __copysignf (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = __clogf (y);
+ __real__ res += (float) M_LN2;
+ }
+ else
+ {
+ __real__ y = (rx - ix) * (rx + ix) + 1.0;
+ __imag__ y = 2.0 * rx * ix;
+
+ y = __csqrtf (y);
+
+ __real__ y += rx;
+ __imag__ y += ix;
+
+ if (adj)
+ {
+ float t = __real__ y;
+ __real__ y = __copysignf (__imag__ y, __imag__ x);
+ __imag__ y = t;
+ }
+
+ res = __clogf (y);
+ }
+
+ /* Give results the correct sign for the original argument. */
+ __real__ res = __copysignf (__real__ res, __real__ x);
+ __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));
+
+ return res;
+}