summaryrefslogtreecommitdiff
path: root/vp9/encoder/vp9_svc_layercontext.c
blob: 4ccc2bdc56389b42a6696e6274e9e1a33524be9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*
 *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>

#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_svc_layercontext.h"

void vp9_init_layer_context(VP9_COMP *const cpi) {
  const VP9_CONFIG *const oxcf = &cpi->oxcf;
  int layer;

  cpi->svc.spatial_layer_id = 0;
  cpi->svc.temporal_layer_id = 0;
  for (layer = 0; layer < cpi->svc.number_temporal_layers; ++layer) {
    LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer];
    RATE_CONTROL *const lrc = &lc->rc;

    lrc->avg_frame_qindex[INTER_FRAME] = q_trans[oxcf->worst_allowed_q];
    lrc->last_q[INTER_FRAME] = q_trans[oxcf->worst_allowed_q];
    lrc->ni_av_qi = q_trans[oxcf->worst_allowed_q];
    lrc->total_actual_bits = 0;
    lrc->total_target_vs_actual = 0;
    lrc->ni_tot_qi = 0;
    lrc->tot_q = 0.0;
    lrc->avg_q = 0.0;
    lrc->ni_frames = 0;
    lrc->decimation_count = 0;
    lrc->decimation_factor = 0;
    lrc->rate_correction_factor = 1.0;
    lrc->key_frame_rate_correction_factor = 1.0;
    lc->target_bandwidth = oxcf->ts_target_bitrate[layer] * 1000;
    lrc->buffer_level = vp9_rescale((int)(oxcf->starting_buffer_level),
                                    lc->target_bandwidth, 1000);
    lrc->bits_off_target = lrc->buffer_level;
  }
}

// Update the layer context from a change_config() call.
void vp9_update_layer_context_change_config(VP9_COMP *const cpi,
                                            const int target_bandwidth) {
  const VP9_CONFIG *const oxcf = &cpi->oxcf;
  const RATE_CONTROL *const rc = &cpi->rc;
  int layer;
  float bitrate_alloc = 1.0;

  for (layer = 0; layer < cpi->svc.number_temporal_layers; ++layer) {
    LAYER_CONTEXT *const lc = &cpi->svc.layer_context[layer];
    RATE_CONTROL *const lrc = &lc->rc;
    lc->target_bandwidth = oxcf->ts_target_bitrate[layer] * 1000;
    bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth;
    // Update buffer-related quantities.
    lc->starting_buffer_level =
        (int64_t)(oxcf->starting_buffer_level * bitrate_alloc);
    lc->optimal_buffer_level =
        (int64_t)(oxcf->optimal_buffer_level * bitrate_alloc);
    lc->maximum_buffer_size =
        (int64_t)(oxcf->maximum_buffer_size * bitrate_alloc);
    lrc->bits_off_target = MIN(lrc->bits_off_target, lc->maximum_buffer_size);
    lrc->buffer_level = MIN(lrc->buffer_level, lc->maximum_buffer_size);
    // Update framerate-related quantities.
    lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
    lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
    lrc->max_frame_bandwidth = rc->max_frame_bandwidth;
    // Update qp-related quantities.
    lrc->worst_quality = rc->worst_quality;
    lrc->best_quality = rc->best_quality;
  }
}

static LAYER_CONTEXT *get_temporal_layer_context(SVC *svc) {
  return &svc->layer_context[svc->temporal_layer_id];
}

void vp9_update_layer_framerate(VP9_COMP *const cpi) {
  const int layer = cpi->svc.temporal_layer_id;
  const VP9_CONFIG *const oxcf = &cpi->oxcf;
  LAYER_CONTEXT *const lc = get_temporal_layer_context(&cpi->svc);
  RATE_CONTROL *const lrc = &lc->rc;

  lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer];
  lrc->av_per_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate);
  lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth;
  // Update the average layer frame size (non-cumulative per-frame-bw).
  if (layer == 0) {
    lc->avg_frame_size = lrc->av_per_frame_bandwidth;
  } else {
    const double prev_layer_framerate =
        oxcf->framerate / oxcf->ts_rate_decimator[layer - 1];
    const int prev_layer_target_bandwidth =
        oxcf->ts_target_bitrate[layer - 1] * 1000;
    lc->avg_frame_size =
        (int)((lc->target_bandwidth - prev_layer_target_bandwidth) /
              (lc->framerate - prev_layer_framerate));
  }
}

void vp9_restore_layer_context(VP9_COMP *const cpi) {
  LAYER_CONTEXT *const lc = get_temporal_layer_context(&cpi->svc);
  const int old_frame_since_key = cpi->rc.frames_since_key;
  const int old_frame_to_key = cpi->rc.frames_to_key;

  cpi->rc = lc->rc;
  cpi->oxcf.target_bandwidth = lc->target_bandwidth;
  cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
  cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
  cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
  cpi->output_framerate = lc->framerate;
  // Reset the frames_since_key and frames_to_key counters to their values
  // before the layer restore. Keep these defined for the stream (not layer).
  cpi->rc.frames_since_key = old_frame_since_key;
  cpi->rc.frames_to_key = old_frame_to_key;
}

void vp9_save_layer_context(VP9_COMP *const cpi) {
  const VP9_CONFIG *const oxcf = &cpi->oxcf;
  LAYER_CONTEXT *const lc = get_temporal_layer_context(&cpi->svc);

  lc->rc = cpi->rc;
  lc->target_bandwidth = (int)oxcf->target_bandwidth;
  lc->starting_buffer_level = oxcf->starting_buffer_level;
  lc->optimal_buffer_level = oxcf->optimal_buffer_level;
  lc->maximum_buffer_size = oxcf->maximum_buffer_size;
  lc->framerate = cpi->output_framerate;
}