summaryrefslogtreecommitdiff
path: root/vp9/encoder/vp9_ratectrl.c
blob: d631b3145d575602fba0edacdc901692dfe3b7d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <assert.h>
#include <math.h>

#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"

#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1

#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50

// Bits Per MB at different Q (Multiplied by 512)
#define BPER_MB_NORMBITS    9

static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] =
    { 1, 2, 3, 4, 5 };

// Tables relating active max Q to active min Q
static int kf_low_motion_minq[QINDEX_RANGE];
static int kf_high_motion_minq[QINDEX_RANGE];
static int gf_low_motion_minq[QINDEX_RANGE];
static int gf_high_motion_minq[QINDEX_RANGE];
static int inter_minq[QINDEX_RANGE];
static int afq_low_motion_minq[QINDEX_RANGE];
static int afq_high_motion_minq[QINDEX_RANGE];
static int gf_high = 2000;
static int gf_low = 400;
static int kf_high = 5000;
static int kf_low = 400;

// Functions to compute the active minq lookup table entries based on a
// formulaic approach to facilitate easier adjustment of the Q tables.
// The formulae were derived from computing a 3rd order polynomial best
// fit to the original data (after plotting real maxq vs minq (not q index))
static int calculate_minq_index(double maxq,
                                double x3, double x2, double x1, double c) {
  int i;
  const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c,
                                maxq);

  // Special case handling to deal with the step from q2.0
  // down to lossless mode represented by q 1.0.
  if (minqtarget <= 2.0)
    return 0;

  for (i = 0; i < QINDEX_RANGE; i++) {
    if (minqtarget <= vp9_convert_qindex_to_q(i))
      return i;
  }

  return QINDEX_RANGE - 1;
}

void vp9_rc_init_minq_luts(void) {
  int i;

  for (i = 0; i < QINDEX_RANGE; i++) {
    const double maxq = vp9_convert_qindex_to_q(i);


    kf_low_motion_minq[i] = calculate_minq_index(maxq,
                                                 0.000001,
                                                 -0.0004,
                                                 0.15,
                                                 0.0);
    kf_high_motion_minq[i] = calculate_minq_index(maxq,
                                                  0.000002,
                                                  -0.0012,
                                                  0.50,
                                                  0.0);

    gf_low_motion_minq[i] = calculate_minq_index(maxq,
                                                 0.0000015,
                                                 -0.0009,
                                                 0.32,
                                                 0.0);
    gf_high_motion_minq[i] = calculate_minq_index(maxq,
                                                  0.0000021,
                                                  -0.00125,
                                                  0.50,
                                                  0.0);
    afq_low_motion_minq[i] = calculate_minq_index(maxq,
                                                  0.0000015,
                                                  -0.0009,
                                                  0.33,
                                                  0.0);
    afq_high_motion_minq[i] = calculate_minq_index(maxq,
                                                   0.0000021,
                                                   -0.00125,
                                                   0.55,
                                                   0.0);
    inter_minq[i] = calculate_minq_index(maxq,
                                         0.00000271,
                                         -0.00113,
                                         0.75,
                                         0.0);
  }
}

// These functions use formulaic calculations to make playing with the
// quantizer tables easier. If necessary they can be replaced by lookup
// tables if and when things settle down in the experimental bitstream
double vp9_convert_qindex_to_q(int qindex) {
  // Convert the index to a real Q value (scaled down to match old Q values)
  return vp9_ac_quant(qindex, 0) / 4.0;
}

int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
                       double correction_factor) {
  const double q = vp9_convert_qindex_to_q(qindex);
  int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;

  // q based adjustment to baseline enumerator
  enumerator += (int)(enumerator * q) >> 12;
  return (int)(0.5 + (enumerator * correction_factor / q));
}

void vp9_save_coding_context(VP9_COMP *cpi) {
  CODING_CONTEXT *const cc = &cpi->coding_context;
  VP9_COMMON *cm = &cpi->common;

  // Stores a snapshot of key state variables which can subsequently be
  // restored with a call to vp9_restore_coding_context. These functions are
  // intended for use in a re-code loop in vp9_compress_frame where the
  // quantizer value is adjusted between loop iterations.
  vp9_copy(cc->nmvjointcost,  cpi->mb.nmvjointcost);
  vp9_copy(cc->nmvcosts,  cpi->mb.nmvcosts);
  vp9_copy(cc->nmvcosts_hp,  cpi->mb.nmvcosts_hp);

  vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);

  vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
             cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));

  vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
  vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);

  cc->fc = cm->fc;
}

void vp9_restore_coding_context(VP9_COMP *cpi) {
  CODING_CONTEXT *const cc = &cpi->coding_context;
  VP9_COMMON *cm = &cpi->common;

  // Restore key state variables to the snapshot state stored in the
  // previous call to vp9_save_coding_context.
  vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
  vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
  vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);

  vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);

  vpx_memcpy(cm->last_frame_seg_map,
             cpi->coding_context.last_frame_seg_map_copy,
             (cm->mi_rows * cm->mi_cols));

  vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
  vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);

  cm->fc = cc->fc;
}

void vp9_setup_key_frame(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;

  vp9_setup_past_independence(cm);

  // interval before next GF
  cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
  /* All buffers are implicitly updated on key frames. */
  cpi->refresh_golden_frame = 1;
  cpi->refresh_alt_ref_frame = 1;
}

void vp9_setup_inter_frame(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;
  if (cm->error_resilient_mode || cm->intra_only)
    vp9_setup_past_independence(cm);

  assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
  cm->fc = cm->frame_contexts[cm->frame_context_idx];
}

static int estimate_bits_at_q(int frame_kind, int q, int mbs,
                              double correction_factor) {
  const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));

  // Attempt to retain reasonable accuracy without overflow. The cutoff is
  // chosen such that the maximum product of Bpm and MBs fits 31 bits. The
  // largest Bpm takes 20 bits.
  return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs
                           : (bpm * mbs) >> BPER_MB_NORMBITS;
}


static void calc_iframe_target_size(VP9_COMP *cpi) {
  // boost defaults to half second
  int target;

  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();  // __asm emms;

  // New Two pass RC
  target = cpi->rc.per_frame_bandwidth;

  if (cpi->oxcf.rc_max_intra_bitrate_pct) {
    int max_rate = cpi->rc.per_frame_bandwidth
                 * cpi->oxcf.rc_max_intra_bitrate_pct / 100;

    if (target > max_rate)
      target = max_rate;
  }
  cpi->rc.this_frame_target = target;
}

//  Do the best we can to define the parameters for the next GF based
//  on what information we have available.
//
//  In this experimental code only two pass is supported
//  so we just use the interval determined in the two pass code.
static void calc_gf_params(VP9_COMP *cpi) {
  // Set the gf interval
  cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval;
}


static void calc_pframe_target_size(VP9_COMP *cpi) {
  const int min_frame_target = MAX(cpi->rc.min_frame_bandwidth,
                                   cpi->rc.av_per_frame_bandwidth >> 5);
  if (cpi->refresh_alt_ref_frame) {
    // Special alt reference frame case
    // Per frame bit target for the alt ref frame
    cpi->rc.per_frame_bandwidth = cpi->twopass.gf_bits;
    cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
  } else {
    // Normal frames (gf,and inter)
    cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
  }

  // Check that the total sum of adjustments is not above the maximum allowed.
  // That is, having allowed for the KF and GF penalties, we have not pushed
  // the current inter-frame target too low. If the adjustment we apply here is
  // not capable of recovering all the extra bits we have spent in the KF or GF,
  // then the remainder will have to be recovered over a longer time span via
  // other buffer / rate control mechanisms.
  if (cpi->rc.this_frame_target < min_frame_target)
    cpi->rc.this_frame_target = min_frame_target;

  // Adjust target frame size for Golden Frames:
  if (cpi->rc.frames_till_gf_update_due == 0) {
    cpi->refresh_golden_frame = 1;
    calc_gf_params(cpi);
    // If we are using alternate ref instead of gf then do not apply the boost
    // It will instead be applied to the altref update
    // Jims modified boost
    if (!cpi->source_alt_ref_active) {
      // The spend on the GF is defined in the two pass code
      // for two pass encodes
      cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
    } else {
      // If there is an active ARF at this location use the minimum
      // bits on this frame even if it is a constructed arf.
      // The active maximum quantizer insures that an appropriate
      // number of bits will be spent if needed for constructed ARFs.
      cpi->rc.this_frame_target = 0;
    }
  }
}

void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
  const int q = cpi->common.base_qindex;
  int correction_factor = 100;
  double rate_correction_factor;
  double adjustment_limit;

  int projected_size_based_on_q = 0;

  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();  // __asm emms;

  if (cpi->common.frame_type == KEY_FRAME) {
    rate_correction_factor = cpi->rc.key_frame_rate_correction_factor;
  } else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      rate_correction_factor = cpi->rc.gf_rate_correction_factor;
    else
      rate_correction_factor = cpi->rc.rate_correction_factor;
  }

  // Work out how big we would have expected the frame to be at this Q given
  // the current correction factor.
  // Stay in double to avoid int overflow when values are large
  projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
                                                 cpi->common.MBs,
                                                 rate_correction_factor);

  // Work out a size correction factor.
  if (projected_size_based_on_q > 0)
    correction_factor =
        (100 * cpi->rc.projected_frame_size) / projected_size_based_on_q;

  // More heavily damped adjustment used if we have been oscillating either side
  // of target.
  switch (damp_var) {
    case 0:
      adjustment_limit = 0.75;
      break;
    case 1:
      adjustment_limit = 0.375;
      break;
    case 2:
    default:
      adjustment_limit = 0.25;
      break;
  }

  if (correction_factor > 102) {
    // We are not already at the worst allowable quality
    correction_factor =
        (int)(100 + ((correction_factor - 100) * adjustment_limit));
    rate_correction_factor =
        ((rate_correction_factor * correction_factor) / 100);

    // Keep rate_correction_factor within limits
    if (rate_correction_factor > MAX_BPB_FACTOR)
      rate_correction_factor = MAX_BPB_FACTOR;
  } else if (correction_factor < 99) {
    // We are not already at the best allowable quality
    correction_factor =
        (int)(100 - ((100 - correction_factor) * adjustment_limit));
    rate_correction_factor =
        ((rate_correction_factor * correction_factor) / 100);

    // Keep rate_correction_factor within limits
    if (rate_correction_factor < MIN_BPB_FACTOR)
      rate_correction_factor = MIN_BPB_FACTOR;
  }

  if (cpi->common.frame_type == KEY_FRAME) {
    cpi->rc.key_frame_rate_correction_factor = rate_correction_factor;
  } else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      cpi->rc.gf_rate_correction_factor = rate_correction_factor;
    else
      cpi->rc.rate_correction_factor = rate_correction_factor;
  }
}


int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
                      int active_best_quality, int active_worst_quality) {
  int q = active_worst_quality;

  int i;
  int last_error = INT_MAX;
  int target_bits_per_mb;
  int bits_per_mb_at_this_q;
  double correction_factor;

  // Select the appropriate correction factor based upon type of frame.
  if (cpi->common.frame_type == KEY_FRAME) {
    correction_factor = cpi->rc.key_frame_rate_correction_factor;
  } else {
    if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
      correction_factor = cpi->rc.gf_rate_correction_factor;
    else
      correction_factor = cpi->rc.rate_correction_factor;
  }

  // Calculate required scaling factor based on target frame size and size of
  // frame produced using previous Q.
  if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
    target_bits_per_mb =
        (target_bits_per_frame / cpi->common.MBs)
        << BPER_MB_NORMBITS;  // Case where we would overflow int
  else
    target_bits_per_mb =
        (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;

  i = active_best_quality;

  do {
    bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
                                                    correction_factor);

    if (bits_per_mb_at_this_q <= target_bits_per_mb) {
      if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
        q = i;
      else
        q = i - 1;

      break;
    } else {
      last_error = bits_per_mb_at_this_q - target_bits_per_mb;
    }
  } while (++i <= active_worst_quality);

  return q;
}

static int get_active_quality(int q,
                              int gfu_boost,
                              int low,
                              int high,
                              int *low_motion_minq,
                              int *high_motion_minq) {
  int active_best_quality;
  if (gfu_boost > high) {
    active_best_quality = low_motion_minq[q];
  } else if (gfu_boost < low) {
    active_best_quality = high_motion_minq[q];
  } else {
    const int gap = high - low;
    const int offset = high - gfu_boost;
    const int qdiff = high_motion_minq[q] - low_motion_minq[q];
    const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
    active_best_quality = low_motion_minq[q] + adjustment;
  }
  return active_best_quality;
}

int vp9_rc_pick_q_and_adjust_q_bounds(const VP9_COMP *cpi,
                                      int *bottom_index,
                                      int *top_index,
                                      int *top_index_prop) {
  const VP9_COMMON *const cm = &cpi->common;
  int active_best_quality;
  int active_worst_quality = cpi->rc.active_worst_quality;
  int q;

  if (frame_is_intra_only(cm)) {
    active_best_quality = cpi->rc.best_quality;
#if !CONFIG_MULTIPLE_ARF
    // Handle the special case for key frames forced when we have75 reached
    // the maximum key frame interval. Here force the Q to a range
    // based on the ambient Q to reduce the risk of popping.
    if (cpi->this_key_frame_forced) {
      int delta_qindex;
      int qindex = cpi->rc.last_boosted_qindex;
      double last_boosted_q = vp9_convert_qindex_to_q(qindex);

      delta_qindex = vp9_compute_qdelta(cpi, last_boosted_q,
                                        (last_boosted_q * 0.75));
      active_best_quality = MAX(qindex + delta_qindex,
                                cpi->rc.best_quality);
    } else if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
      // not first frame of one pass
      double q_adj_factor = 1.0;
      double q_val;

      // Baseline value derived from cpi->active_worst_quality and kf boost
      active_best_quality = get_active_quality(active_worst_quality,
                                               cpi->rc.kf_boost,
                                               kf_low, kf_high,
                                               kf_low_motion_minq,
                                               kf_high_motion_minq);

      // Allow somewhat lower kf minq with small image formats.
      if ((cm->width * cm->height) <= (352 * 288)) {
        q_adj_factor -= 0.25;
      }

      // Make a further adjustment based on the kf zero motion measure.
      q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct);

      // Convert the adjustment factor to a qindex delta
      // on active_best_quality.
      q_val = vp9_convert_qindex_to_q(active_best_quality);
      active_best_quality +=
          vp9_compute_qdelta(cpi, q_val, (q_val * q_adj_factor));
    }
#else
    double current_q;
    // Force the KF quantizer to be 30% of the active_worst_quality.
    current_q = vp9_convert_qindex_to_q(active_worst_quality);
    active_best_quality = active_worst_quality
        + vp9_compute_qdelta(cpi, current_q, current_q * 0.3);
#endif
  } else if (!cpi->is_src_frame_alt_ref &&
             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {

    // Use the lower of active_worst_quality and recent
    // average Q as basis for GF/ARF best Q limit unless last frame was
    // a key frame.
    if (cpi->frames_since_key > 1 &&
        cpi->rc.avg_frame_qindex < active_worst_quality) {
      q = cpi->rc.avg_frame_qindex;
    } else {
      q = active_worst_quality;
    }
    // For constrained quality dont allow Q less than the cq level
    if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
      if (q < cpi->cq_target_quality)
        q = cpi->cq_target_quality;
      if (cpi->frames_since_key > 1) {
        active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
                                                 gf_low, gf_high,
                                                 afq_low_motion_minq,
                                                 afq_high_motion_minq);
      } else {
        active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
                                                 gf_low, gf_high,
                                                 gf_low_motion_minq,
                                                 gf_high_motion_minq);
      }
      // Constrained quality use slightly lower active best.
      active_best_quality = active_best_quality * 15 / 16;

    } else if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
      if (!cpi->refresh_alt_ref_frame) {
        active_best_quality = cpi->cq_target_quality;
      } else {
        if (cpi->frames_since_key > 1) {
          active_best_quality = get_active_quality(
              q, cpi->rc.gfu_boost, gf_low, gf_high,
              afq_low_motion_minq, afq_high_motion_minq);
        } else {
          active_best_quality = get_active_quality(
              q, cpi->rc.gfu_boost, gf_low, gf_high,
              gf_low_motion_minq, gf_high_motion_minq);
        }
      }
    } else {
      active_best_quality = get_active_quality(
          q, cpi->rc.gfu_boost, gf_low, gf_high,
          gf_low_motion_minq, gf_high_motion_minq);
    }
  } else {
    if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
      active_best_quality = cpi->cq_target_quality;
    } else {
      if (cpi->pass == 0 &&
          cpi->rc.avg_frame_qindex < active_worst_quality)
        // 1-pass: for now, use the average Q for the active_best, if its lower
        // than active_worst.
        active_best_quality = inter_minq[cpi->rc.avg_frame_qindex];
      else
        active_best_quality = inter_minq[active_worst_quality];

      // For the constrained quality mode we don't want
      // q to fall below the cq level.
      if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
          (active_best_quality < cpi->cq_target_quality)) {
        // If we are strongly undershooting the target rate in the last
        // frames then use the user passed in cq value not the auto
        // cq value.
        if (cpi->rc.rolling_actual_bits < cpi->rc.min_frame_bandwidth)
          active_best_quality = cpi->oxcf.cq_level;
        else
          active_best_quality = cpi->cq_target_quality;
      }
    }
  }

  // Clip the active best and worst quality values to limits
  if (active_worst_quality > cpi->rc.worst_quality)
    active_worst_quality = cpi->rc.worst_quality;

  if (active_best_quality < cpi->rc.best_quality)
    active_best_quality = cpi->rc.best_quality;

  if (active_best_quality > cpi->rc.worst_quality)
    active_best_quality = cpi->rc.worst_quality;

  if (active_worst_quality < active_best_quality)
    active_worst_quality = active_best_quality;

  *top_index_prop = active_worst_quality;
  *top_index = active_worst_quality;
  *bottom_index = active_best_quality;

#if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
  // Limit Q range for the adaptive loop.
  if (cm->frame_type == KEY_FRAME && !cpi->this_key_frame_forced) {
    if (!(cpi->pass == 0 && cpi->common.current_video_frame == 0)) {
      *top_index = active_worst_quality;
      *top_index =
          (active_worst_quality + active_best_quality * 3) / 4;
    }
  } else if (!cpi->is_src_frame_alt_ref &&
             (cpi->oxcf.end_usage != USAGE_STREAM_FROM_SERVER) &&
             (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    *top_index =
      (active_worst_quality + active_best_quality) / 2;
  }
#endif

  if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
    q = active_best_quality;
  // Special case code to try and match quality with forced key frames
  } else if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
    q = cpi->rc.last_boosted_qindex;
  } else {
    // Determine initial Q to try.
    if (cpi->pass == 0) {
      // 1-pass: for now, use per-frame-bw for target size of frame, scaled
      // by |x| for key frame.
      int scale = (cm->frame_type == KEY_FRAME) ? 5 : 1;
      q = vp9_rc_regulate_q(cpi, scale * cpi->rc.av_per_frame_bandwidth,
                            active_best_quality, active_worst_quality);
    } else {
      q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target,
                            active_best_quality, active_worst_quality);
    }
    if (q > *top_index)
      q = *top_index;
  }
#if CONFIG_MULTIPLE_ARF
  // Force the quantizer determined by the coding order pattern.
  if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) &&
      cpi->oxcf.end_usage != USAGE_CONSTANT_QUALITY) {
    double new_q;
    double current_q = vp9_convert_qindex_to_q(active_worst_quality);
    int level = cpi->this_frame_weight;
    assert(level >= 0);
    new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level)));
    q = active_worst_quality +
        vp9_compute_qdelta(cpi, current_q, new_q);

    *bottom_index = q;
    *top_index    = q;
    printf("frame:%d q:%d\n", cm->current_video_frame, q);
  }
#endif
  return q;
}

static int estimate_keyframe_frequency(VP9_COMP *cpi) {
  int i;

  // Average key frame frequency
  int av_key_frame_frequency = 0;

  /* First key frame at start of sequence is a special case. We have no
   * frequency data.
   */
  if (cpi->rc.key_frame_count == 1) {
    /* Assume a default of 1 kf every 2 seconds, or the max kf interval,
     * whichever is smaller.
     */
    int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
    av_key_frame_frequency = (int)cpi->output_framerate * 2;

    if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
      av_key_frame_frequency = cpi->oxcf.key_freq;

    cpi->rc.prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
      = av_key_frame_frequency;
  } else {
    unsigned int total_weight = 0;
    int last_kf_interval =
      (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;

    /* reset keyframe context and calculate weighted average of last
     * KEY_FRAME_CONTEXT keyframes
     */
    for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
      if (i < KEY_FRAME_CONTEXT - 1)
        cpi->rc.prior_key_frame_distance[i]
          = cpi->rc.prior_key_frame_distance[i + 1];
      else
        cpi->rc.prior_key_frame_distance[i] = last_kf_interval;

      av_key_frame_frequency += prior_key_frame_weight[i]
                                * cpi->rc.prior_key_frame_distance[i];
      total_weight += prior_key_frame_weight[i];
    }

    av_key_frame_frequency /= total_weight;
  }
  return av_key_frame_frequency;
}


static void adjust_key_frame_context(VP9_COMP *cpi) {
  // Clear down mmx registers to allow floating point in what follows
  vp9_clear_system_state();

  cpi->frames_since_key = 0;
  cpi->rc.key_frame_count++;
}

void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
                                      int this_frame_target,
                                      int *frame_under_shoot_limit,
                                      int *frame_over_shoot_limit) {
  // Set-up bounds on acceptable frame size:
  if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
    *frame_under_shoot_limit = 0;
    *frame_over_shoot_limit  = INT_MAX;
  } else {
    if (cpi->common.frame_type == KEY_FRAME) {
      *frame_over_shoot_limit  = this_frame_target * 9 / 8;
      *frame_under_shoot_limit = this_frame_target * 7 / 8;
    } else {
      if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
        *frame_over_shoot_limit  = this_frame_target * 9 / 8;
        *frame_under_shoot_limit = this_frame_target * 7 / 8;
      } else {
        // Stron overshoot limit for constrained quality
        if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
          *frame_over_shoot_limit  = this_frame_target * 11 / 8;
          *frame_under_shoot_limit = this_frame_target * 2 / 8;
        } else {
          *frame_over_shoot_limit  = this_frame_target * 11 / 8;
          *frame_under_shoot_limit = this_frame_target * 5 / 8;
        }
      }
    }

    // For very small rate targets where the fractional adjustment
    // (eg * 7/8) may be tiny make sure there is at least a minimum
    // range.
    *frame_over_shoot_limit += 200;
    *frame_under_shoot_limit -= 200;
    if (*frame_under_shoot_limit < 0)
      *frame_under_shoot_limit = 0;
  }
}

// return of 0 means drop frame
int vp9_rc_pick_frame_size_target(VP9_COMP *cpi) {
  VP9_COMMON *cm = &cpi->common;

  if (cm->frame_type == KEY_FRAME)
    calc_iframe_target_size(cpi);
  else
    calc_pframe_target_size(cpi);

  // Target rate per SB64 (including partial SB64s.
  cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
                             (cpi->common.width * cpi->common.height);
  return 1;
}

void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used,
                              int worst_q) {
  VP9_COMMON *const cm = &cpi->common;
  // Update rate control heuristics
  cpi->rc.projected_frame_size = (bytes_used << 3);

  // Post encode loop adjustment of Q prediction.
  vp9_rc_update_rate_correction_factors(
      cpi, (cpi->sf.recode_loop ||
            cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);

  cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
  cpi->rc.active_worst_quality = worst_q;

  // Keep record of last boosted (KF/KF/ARF) Q value.
  // If the current frame is coded at a lower Q then we also update it.
  // If all mbs in this group are skipped only update if the Q value is
  // better than that already stored.
  // This is used to help set quality in forced key frames to reduce popping
  if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
      ((cpi->static_mb_pct < 100) &&
       ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
        (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
    cpi->rc.last_boosted_qindex = cm->base_qindex;
  }

  if (cm->frame_type == KEY_FRAME) {
    adjust_key_frame_context(cpi);
  }

  // Keep a record of ambient average Q.
  if (cm->frame_type != KEY_FRAME)
    cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
                            cm->base_qindex) >> 2;

  // Keep a record from which we can calculate the average Q excluding GF
  // updates and key frames.
  if (cm->frame_type != KEY_FRAME &&
      !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) {
    cpi->rc.ni_frames++;
    cpi->rc.tot_q += vp9_convert_qindex_to_q(cm->base_qindex);
    cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;

    // Calculate the average Q for normal inter frames (not key or GFU frames).
    cpi->rc.ni_tot_qi += cm->base_qindex;
    cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
  }

  // Update the buffer level variable.
  // Non-viewable frames are a special case and are treated as pure overhead.
  if (!cm->show_frame)
    cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
  else
    cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
                               cpi->rc.projected_frame_size;

  // Clip the buffer level at the maximum buffer size
  if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
    cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;

  // Rolling monitors of whether we are over or underspending used to help
  // regulate min and Max Q in two pass.
  if (cm->frame_type != KEY_FRAME) {
    cpi->rc.rolling_target_bits =
        ((cpi->rc.rolling_target_bits * 3) +
         cpi->rc.this_frame_target + 2) / 4;
    cpi->rc.rolling_actual_bits =
        ((cpi->rc.rolling_actual_bits * 3) +
         cpi->rc.projected_frame_size + 2) / 4;
    cpi->rc.long_rolling_target_bits =
        ((cpi->rc.long_rolling_target_bits * 31) +
         cpi->rc.this_frame_target + 16) / 32;
    cpi->rc.long_rolling_actual_bits =
        ((cpi->rc.long_rolling_actual_bits * 31) +
         cpi->rc.projected_frame_size + 16) / 32;
  }

  // Actual bits spent
  cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;

  // Debug stats
  cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
                                     cpi->rc.projected_frame_size);

  cpi->rc.buffer_level = cpi->rc.bits_off_target;

#ifndef DISABLE_RC_LONG_TERM_MEM
  // Update bits left to the kf and gf groups to account for overshoot or
  // undershoot on these frames
  if (cm->frame_type == KEY_FRAME) {
    cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
                                  cpi->rc.projected_frame_size;

    cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
  } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
    cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
                                  cpi->rc.projected_frame_size;

    cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
  }
#endif
}