summaryrefslogtreecommitdiff
path: root/vp9/encoder/ppc/vp9_quantize_vsx.c
blob: f552c3462f191eb30633ccb650b1819901863b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
 *  Copyright (c) 2018 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "./vpx_config.h"

#include "./vp9_rtcd.h"
#include "vpx_dsp/ppc/types_vsx.h"

// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit
// integers, and return the high 16 bits of the intermediate integers.
// (a * b) >> 16
// Note: Because this is done in 2 operations, a and b cannot both be UINT16_MIN
static INLINE int16x8_t vec_mulhi(int16x8_t a, int16x8_t b) {
  // madds does ((A * B) >> 15) + C, we need >> 16, so we perform an extra right
  // shift.
  return vec_sra(vec_madds(a, b, vec_zeros_s16), vec_ones_u16);
}

// Negate 16-bit integers in a when the corresponding signed 16-bit
// integer in b is negative.
static INLINE int16x8_t vec_sign(int16x8_t a, int16x8_t b) {
  const int16x8_t mask = vec_sra(b, vec_shift_sign_s16);
  return vec_xor(vec_add(a, mask), mask);
}

// Compare packed 16-bit integers across a, and return the maximum value in
// every element. Returns a vector containing the biggest value across vector a.
static INLINE int16x8_t vec_max_across(int16x8_t a) {
  a = vec_max(a, vec_perm(a, a, vec_perm64));
  a = vec_max(a, vec_perm(a, a, vec_perm32));
  return vec_max(a, vec_perm(a, a, vec_perm16));
}

void vp9_quantize_fp_vsx(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
                         int skip_block, const int16_t *round_ptr,
                         const int16_t *quant_ptr, tran_low_t *qcoeff_ptr,
                         tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
                         uint16_t *eob_ptr, const int16_t *scan_ptr,
                         const int16_t *iscan_ptr) {
  int16x8_t qcoeff0, qcoeff1, dqcoeff0, dqcoeff1, eob;
  bool16x8_t zero_coeff0, zero_coeff1;

  int16x8_t round = vec_vsx_ld(0, round_ptr);
  int16x8_t quant = vec_vsx_ld(0, quant_ptr);
  int16x8_t dequant = vec_vsx_ld(0, dequant_ptr);
  int16x8_t coeff0 = vec_vsx_ld(0, coeff_ptr);
  int16x8_t coeff1 = vec_vsx_ld(16, coeff_ptr);
  int16x8_t scan0 = vec_vsx_ld(0, iscan_ptr);
  int16x8_t scan1 = vec_vsx_ld(16, iscan_ptr);

  (void)scan_ptr;
  (void)skip_block;
  assert(!skip_block);

  // First set of 8 coeff starts with DC + 7 AC
  qcoeff0 = vec_mulhi(vec_vaddshs(vec_abs(coeff0), round), quant);
  zero_coeff0 = vec_cmpeq(qcoeff0, vec_zeros_s16);
  qcoeff0 = vec_sign(qcoeff0, coeff0);
  vec_vsx_st(qcoeff0, 0, qcoeff_ptr);

  dqcoeff0 = vec_mladd(qcoeff0, dequant, vec_zeros_s16);
  vec_vsx_st(dqcoeff0, 0, dqcoeff_ptr);

  // Remove DC value from round and quant
  round = vec_splat(round, 1);
  quant = vec_splat(quant, 1);

  // Remove DC value from dequant
  dequant = vec_splat(dequant, 1);

  // Second set of 8 coeff starts with (all AC)
  qcoeff1 = vec_mulhi(vec_vaddshs(vec_abs(coeff1), round), quant);
  zero_coeff1 = vec_cmpeq(qcoeff1, vec_zeros_s16);
  qcoeff1 = vec_sign(qcoeff1, coeff1);
  vec_vsx_st(qcoeff1, 16, qcoeff_ptr);

  dqcoeff1 = vec_mladd(qcoeff1, dequant, vec_zeros_s16);
  vec_vsx_st(dqcoeff1, 16, dqcoeff_ptr);

  eob = vec_max(vec_or(scan0, zero_coeff0), vec_or(scan1, zero_coeff1));

  // We quantize 16 coeff up front (enough for a 4x4) and process 24 coeff per
  // loop iteration.
  // for 8x8: 16 + 2 x 24 = 64
  // for 16x16: 16 + 10 x 24 = 256
  if (n_coeffs > 16) {
    int16x8_t coeff2, qcoeff2, dqcoeff2, eob2, scan2;
    bool16x8_t zero_coeff2;

    int index = 16;
    int off0 = 32;
    int off1 = 48;
    int off2 = 64;

    do {
      coeff0 = vec_vsx_ld(off0, coeff_ptr);
      coeff1 = vec_vsx_ld(off1, coeff_ptr);
      coeff2 = vec_vsx_ld(off2, coeff_ptr);
      scan0 = vec_vsx_ld(off0, iscan_ptr);
      scan1 = vec_vsx_ld(off1, iscan_ptr);
      scan2 = vec_vsx_ld(off2, iscan_ptr);

      qcoeff0 = vec_mulhi(vec_vaddshs(vec_abs(coeff0), round), quant);
      zero_coeff0 = vec_cmpeq(qcoeff0, vec_zeros_s16);
      qcoeff0 = vec_sign(qcoeff0, coeff0);
      vec_vsx_st(qcoeff0, off0, qcoeff_ptr);
      dqcoeff0 = vec_mladd(qcoeff0, dequant, vec_zeros_s16);
      vec_vsx_st(dqcoeff0, off0, dqcoeff_ptr);

      qcoeff1 = vec_mulhi(vec_vaddshs(vec_abs(coeff1), round), quant);
      zero_coeff1 = vec_cmpeq(qcoeff1, vec_zeros_s16);
      qcoeff1 = vec_sign(qcoeff1, coeff1);
      vec_vsx_st(qcoeff1, off1, qcoeff_ptr);
      dqcoeff1 = vec_mladd(qcoeff1, dequant, vec_zeros_s16);
      vec_vsx_st(dqcoeff1, off1, dqcoeff_ptr);

      qcoeff2 = vec_mulhi(vec_vaddshs(vec_abs(coeff2), round), quant);
      zero_coeff2 = vec_cmpeq(qcoeff2, vec_zeros_s16);
      qcoeff2 = vec_sign(qcoeff2, coeff2);
      vec_vsx_st(qcoeff2, off2, qcoeff_ptr);
      dqcoeff2 = vec_mladd(qcoeff2, dequant, vec_zeros_s16);
      vec_vsx_st(dqcoeff2, off2, dqcoeff_ptr);

      eob = vec_max(eob, vec_or(scan0, zero_coeff0));
      eob2 = vec_max(vec_or(scan1, zero_coeff1), vec_or(scan2, zero_coeff2));
      eob = vec_max(eob, eob2);

      index += 24;
      off0 += 48;
      off1 += 48;
      off2 += 48;
    } while (index < n_coeffs);
  }

  eob = vec_max_across(eob);
  *eob_ptr = eob[0] + 1;
}