summaryrefslogtreecommitdiff
path: root/vp9/decoder/vp9_idct_blk.c
blob: 417f89177978c4b7fc4455f20fcb8c37b65b615c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "vp9_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/decoder/vp9_idct_blk.h"

void vp9_idct_add_y_block_c(int16_t *q, uint8_t *dst, int stride,
                            MACROBLOCKD *xd) {
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      vp9_idct_add(q, dst, stride, xd->plane[0].eobs[i * 4  + j]);
      q   += 16;
      dst += 4;
    }

    dst += 4 * stride - 16;
  }
}

void vp9_idct_add_uv_block_c(int16_t *q, uint8_t *dst, int stride,
                             uint16_t *eobs) {
  int i, j;

  for (i = 0; i < 2; i++) {
    for (j = 0; j < 2; j++) {
      vp9_idct_add(q, dst, stride, eobs[i * 2 + j]);
      q   += 16;
      dst += 4;
    }

    dst += 4 * stride - 8;
  }
}

void vp9_idct_add_y_block_8x8_c(int16_t *q, uint8_t *dst, int stride,
                                MACROBLOCKD *xd) {
  uint8_t *origdest = dst;

  vp9_idct_add_8x8_c(q, dst, stride, xd->plane[0].eobs[0]);
  vp9_idct_add_8x8_c(&q[64], origdest + 8, stride, xd->plane[0].eobs[4]);
  vp9_idct_add_8x8_c(&q[128], origdest + 8 * stride, stride,
                     xd->plane[0].eobs[8]);
  vp9_idct_add_8x8_c(&q[192], origdest + 8 * stride + 8, stride,
                     xd->plane[0].eobs[12]);
}

void vp9_idct_add_y_block_lossless_c(int16_t *q, uint8_t *dst, int stride,
                                     MACROBLOCKD *xd) {
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      vp9_idct_add_lossless_c(q, dst, stride, xd->plane[0].eobs[i * 4 + j]);
      q   += 16;
      dst += 4;
    }

    dst += 4 * stride - 16;
  }
}

void vp9_idct_add_uv_block_lossless_c(int16_t *q, uint8_t *dst, int stride,
                                      uint16_t *eobs) {
  int i, j;

  for (i = 0; i < 2; i++) {
    for (j = 0; j < 2; j++) {
      vp9_idct_add_lossless_c(q, dst, stride, eobs[i * 2 + j]);
      q   += 16;
      dst += 4;
    }

    dst += 4 * stride - 8;
  }
}

static void add_constant_residual(const int16_t diff, uint8_t *dest, int stride,
                                  int width, int height) {
  int r, c;

  for (r = 0; r < height; r++) {
    for (c = 0; c < width; c++)
      dest[c] = clip_pixel(diff + dest[c]);

    dest += stride;
  }
}

void vp9_add_constant_residual_8x8_c(const int16_t diff, uint8_t *dest,
                                     int stride) {
  add_constant_residual(diff, dest, stride, 8, 8);
}

void vp9_add_constant_residual_16x16_c(const int16_t diff, uint8_t *dest,
                                       int stride) {
  add_constant_residual(diff, dest, stride, 16, 16);
}

void vp9_add_constant_residual_32x32_c(const int16_t diff,  uint8_t *dest,
                                       int stride) {
  add_constant_residual(diff, dest, stride, 32, 32);
}

void vp9_iht_add_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest, int stride,
                   int eob) {
  if (tx_type == DCT_DCT) {
    vp9_idct_add(input, dest, stride, eob);
  } else {
    vp9_short_iht4x4_add(input, dest, stride, tx_type);
    vpx_memset(input, 0, 32);
  }
}

void vp9_iht_add_8x8_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest,
                       int stride, int eob) {
  if (tx_type == DCT_DCT) {
    vp9_idct_add_8x8(input, dest, stride, eob);
  } else {
    if (eob > 0) {
      vp9_short_iht8x8_add(input, dest, stride, tx_type);
      vpx_memset(input, 0, 128);
    }
  }
}

void vp9_idct_add_c(int16_t *input, uint8_t *dest, int stride, int eob) {
  if (eob > 1) {
    vp9_short_idct4x4_add(input, dest, stride);
    vpx_memset(input, 0, 32);
  } else {
    vp9_dc_only_idct_add(input[0], dest, dest, stride, stride);
    ((int *)input)[0] = 0;
  }
}

void vp9_idct_add_lossless_c(int16_t *input, uint8_t *dest, int stride,
                             int eob) {
  if (eob > 1) {
    vp9_short_iwalsh4x4_add(input, dest, stride);
    vpx_memset(input, 0, 32);
  } else {
    vp9_short_iwalsh4x4_1_add_c(input, dest, stride);
    ((int *)input)[0] = 0;
  }
}

void vp9_idct_add_8x8_c(int16_t *input, uint8_t *dest, int stride, int eob) {
  // If dc is 1, then input[0] is the reconstructed value, do not need
  // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.

  // The calculation can be simplified if there are not many non-zero dct
  // coefficients. Use eobs to decide what to do.
  // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c.
  // Combine that with code here.
  if (eob) {
    if (eob == 1) {
      // DC only DCT coefficient
      int16_t in = input[0];
      int16_t out;

      // Note: the idct1 will need to be modified accordingly whenever
      // vp9_short_idct8x8_c() is modified.
      vp9_short_idct1_8x8_c(&in, &out);
      input[0] = 0;

      vp9_add_constant_residual_8x8(out, dest, stride);
    } else {
      vp9_short_idct8x8_add(input, dest, stride);
      vpx_memset(input, 0, 128);
    }
  }
}

void vp9_iht_add_16x16_c(TX_TYPE tx_type, int16_t *input, uint8_t *dest,
                         int stride, int eob) {
  if (tx_type == DCT_DCT) {
    vp9_idct_add_16x16(input, dest, stride, eob);
  } else {
    if (eob > 0) {
      vp9_short_iht16x16_add(input, dest, stride, tx_type);
      vpx_memset(input, 0, 512);
    }
  }
}

void vp9_idct_add_16x16_c(int16_t *input, uint8_t *dest, int stride, int eob) {
  /* The calculation can be simplified if there are not many non-zero dct
   * coefficients. Use eobs to separate different cases. */
  if (eob) {
    if (eob == 1) {
      /* DC only DCT coefficient. */
      int16_t in = input[0];
      int16_t out;
      /* Note: the idct1 will need to be modified accordingly whenever
       * vp9_short_idct16x16() is modified. */
      vp9_short_idct1_16x16_c(&in, &out);
      input[0] = 0;

      vp9_add_constant_residual_16x16(out, dest, stride);
    } else {
      vp9_short_idct16x16_add(input, dest, stride);
      vpx_memset(input, 0, 512);
    }
  }
}

void vp9_idct_add_32x32_c(int16_t *input, uint8_t *dest, int stride, int eob) {
  DECLARE_ALIGNED_ARRAY(16, int16_t, output, 1024);

  if (eob) {
    if (eob == 1) {
      vp9_short_idct1_32x32(input, output);
      vp9_add_constant_residual_32x32(output[0], dest, stride);
      input[0] = 0;
    } else {
      vp9_short_idct32x32_add(input, dest, stride);
      vpx_memset(input, 0, 2048);
    }
  }
}