summaryrefslogtreecommitdiff
path: root/vp9/decoder/vp9_decodemv.c
blob: d9c8d8d440147acf845cb0bb76e7f2d74c72c1a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/*
  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include "vp9/decoder/vp9_treereader.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif

// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif

// #define DEC_DEBUG
#ifdef DEC_DEBUG
extern int dec_debug;
#endif

static MB_PREDICTION_MODE read_bmode(vp9_reader *r, const vp9_prob *p) {
  MB_PREDICTION_MODE m = treed_read(r, vp9_bmode_tree, p);
  return m;
}

static MB_PREDICTION_MODE read_kf_bmode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_bmode_tree, p);
}

static MB_PREDICTION_MODE read_ymode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_ymode_tree, p);
}

static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_sb_ymode_tree, p);
}

static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p);
}

static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_kf_ymode_tree, p);
}

static MB_PREDICTION_MODE read_uv_mode(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p);
}

static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) {
  return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs);
}

static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi,
                           int mi_row, int mi_col, int segment_id) {
  const int mi_index = mi_row * cm->mi_cols + mi_col;
  const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type;
  const int bw = 1 << mi_width_log2(sb_type);
  const int bh = 1 << mi_height_log2(sb_type);
  const int ymis = MIN(cm->mi_rows - mi_row, bh);
  const int xmis = MIN(cm->mi_cols - mi_col, bw);
  int x, y;

  for (y = 0; y < ymis; y++) {
    for (x = 0; x < xmis; x++) {
      const int index = mi_index + (y * cm->mi_cols + x);
      cm->last_frame_seg_map[index] = segment_id;
    }
  }
}

static TX_SIZE select_txfm_size(VP9_COMMON *cm, vp9_reader *r,
                                int allow_16x16, int allow_32x32) {
  TX_SIZE txfm_size = vp9_read(r, cm->prob_tx[0]);  // TX_4X4 or >TX_4X4
  if (txfm_size != TX_4X4 && allow_16x16) {
    txfm_size += vp9_read(r, cm->prob_tx[1]);       // TX_8X8 or >TX_8X8
    if (txfm_size != TX_8X8 && allow_32x32)
      txfm_size += vp9_read(r, cm->prob_tx[2]);     // TX_16X16 or >TX_16X16
  }
  return txfm_size;
}


static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m,
                         int mi_row, int mi_col,
                         vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;
  const int mis = cm->mode_info_stride;
  m->mbmi.ref_frame = INTRA_FRAME;

  // Read segmentation map if it is being updated explicitly this frame
  m->mbmi.segment_id = 0;
  if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
    m->mbmi.segment_id = read_mb_segid(r, xd);
    set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id);
  }

  m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id,
                                                SEG_LVL_SKIP);
  if (!m->mbmi.mb_skip_coeff)
    m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));

  // luma mode
  if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis);
    const MB_PREDICTION_MODE L = xd->left_available ?
                                  left_block_mode(m, 0) : DC_PRED;
    m->mbmi.mode = read_kf_bmode(r, cm->kf_bmode_prob[A][L]);
  } else {
     m->mbmi.mode = I4X4_PRED;
  }

  m->mbmi.ref_frame = INTRA_FRAME;

  if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) {
    int idx, idy;
    int bw = 1 << b_width_log2(m->mbmi.sb_type);
    int bh = 1 << b_height_log2(m->mbmi.sb_type);

    for (idy = 0; idy < 2; idy += bh) {
      for (idx = 0; idx < 2; idx += bw) {
        int ib = idy * 2 + idx;
        int k;
        const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis);
        const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
                                      left_block_mode(m, ib) : DC_PRED;
        m->bmi[ib].as_mode.first =
            read_kf_bmode(r, cm->kf_bmode_prob[A][L]);
        for (k = 1; k < bh; ++k)
          m->bmi[ib + k * 2].as_mode.first = m->bmi[ib].as_mode.first;
        for (k = 1; k < bw; ++k)
          m->bmi[ib + k].as_mode.first = m->bmi[ib].as_mode.first;
      }
    }
  }

  m->mbmi.uv_mode = read_uv_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]);

  if (cm->txfm_mode == TX_MODE_SELECT &&
      m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    const int allow_16x16 = m->mbmi.sb_type >= BLOCK_SIZE_MB16X16;
    const int allow_32x32 = m->mbmi.sb_type >= BLOCK_SIZE_SB32X32;
    m->mbmi.txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32);
  } else if (cm->txfm_mode >= ALLOW_32X32 &&
             m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) {
    m->mbmi.txfm_size = TX_32X32;
  } else if (cm->txfm_mode >= ALLOW_16X16 &&
             m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 &&
             m->mbmi.mode <= TM_PRED) {
    m->mbmi.txfm_size = TX_16X16;
  } else if (cm->txfm_mode >= ALLOW_8X8 &&
             m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    m->mbmi.txfm_size = TX_8X8;
  } else {
    m->mbmi.txfm_size = TX_4X4;
  }
}

static int read_mv_component(vp9_reader *r,
                             const nmv_component *mvcomp, int usehp) {

  int mag, d, fr, hp;
  const int sign = vp9_read(r, mvcomp->sign);
  const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);

  // Integer part
  if (mv_class == MV_CLASS_0) {
    d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
  } else {
    int i;
    const int n = mv_class + CLASS0_BITS - 1;  // number of bits

    d = 0;
    for (i = 0; i < n; ++i)
      d |= vp9_read(r, mvcomp->bits[i]) << i;
  }

  // Fractional part
  fr = treed_read(r, vp9_mv_fp_tree,
                  mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp);


  // High precision part (if hp is not used, the default value of the hp is 1)
  hp = usehp ? vp9_read(r,
                        mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp)
             : 1;

  // result
  mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
  return sign ? -mag : mag;
}

static void update_nmv(vp9_reader *r, vp9_prob *const p,
                       const vp9_prob upd_p) {
  if (vp9_read(r, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
    *p = (vp9_read_literal(r, 7) << 1) | 1;
#else
    *p = (vp9_read_literal(r, 8));
#endif
  }
}

static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx,
                          int usehp) {
  int i, j, k;

#ifdef MV_GROUP_UPDATE
  if (!vp9_read_bit(r))
    return;
#endif
  for (j = 0; j < MV_JOINTS - 1; ++j)
    update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB);

  for (i = 0; i < 2; ++i) {
    update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB);
    for (j = 0; j < MV_CLASSES - 1; ++j)
      update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < CLASS0_SIZE - 1; ++j)
      update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < MV_OFFSET_BITS; ++j)
      update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB);
  }

  for (i = 0; i < 2; ++i) {
    for (j = 0; j < CLASS0_SIZE; ++j)
      for (k = 0; k < 3; ++k)
        update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < 3; ++j)
      update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB);
  }

  if (usehp) {
    for (i = 0; i < 2; ++i) {
      update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB);
      update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB);
    }
  }
}

// Read the referncence frame
static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi,
                                         vp9_reader *r,
                                         int segment_id) {
  MV_REFERENCE_FRAME ref_frame;
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;

  int seg_ref_count = 0;
  const int seg_ref_active = vp9_segfeature_active(xd, segment_id,
                                                   SEG_LVL_REF_FRAME);

  const int intra = vp9_check_segref(xd, segment_id, INTRA_FRAME);
  const int last = vp9_check_segref(xd, segment_id, LAST_FRAME);
  const int golden = vp9_check_segref(xd, segment_id, GOLDEN_FRAME);
  const int altref = vp9_check_segref(xd, segment_id, ALTREF_FRAME);

  // If segment coding enabled does the segment allow for more than one
  // possible reference frame
  if (seg_ref_active)
    seg_ref_count = intra + last + golden + altref;

  // Segment reference frame features not available or allows for
  // multiple reference frame options
  if (!seg_ref_active || seg_ref_count > 1) {
    // Values used in prediction model coding
    MV_REFERENCE_FRAME pred_ref;

    // Get the context probability the prediction flag
    vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF);

    // Read the prediction status flag
    unsigned char prediction_flag = vp9_read(r, pred_prob);

    // Store the prediction flag.
    vp9_set_pred_flag(xd, PRED_REF, prediction_flag);

    // Get the predicted reference frame.
    pred_ref = vp9_get_pred_ref(cm, xd);

    // If correctly predicted then use the predicted value
    if (prediction_flag) {
      ref_frame = pred_ref;
    } else {
      // decode the explicitly coded value
      vp9_prob mod_refprobs[PREDICTION_PROBS];
      vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_ref],
                 sizeof(mod_refprobs));

      // If segment coding enabled blank out options that cant occur by
      // setting the branch probability to 0.
      if (seg_ref_active) {
        mod_refprobs[INTRA_FRAME] *= intra;
        mod_refprobs[LAST_FRAME] *= last;
        mod_refprobs[GOLDEN_FRAME] *= golden * altref;
      }

      // Default to INTRA_FRAME (value 0)
      ref_frame = INTRA_FRAME;

      // Do we need to decode the Intra/Inter branch
      if (mod_refprobs[0])
        ref_frame = vp9_read(r, mod_refprobs[0]);
      else
        ref_frame++;

      if (ref_frame) {
        // Do we need to decode the Last/Gf_Arf branch
        if (mod_refprobs[1])
          ref_frame += vp9_read(r, mod_refprobs[1]);
        else
          ref_frame++;

        if (ref_frame > 1) {
          // Do we need to decode the GF/Arf branch
          if (mod_refprobs[2]) {
            ref_frame += vp9_read(r, mod_refprobs[2]);
          } else {
            if (seg_ref_active)
              ref_frame = pred_ref == GOLDEN_FRAME || !golden ? ALTREF_FRAME
                                                              : GOLDEN_FRAME;
            else
              ref_frame = pred_ref == GOLDEN_FRAME ? ALTREF_FRAME
                                                   : GOLDEN_FRAME;
          }
        }
      }
    }
  } else {
    // Segment reference frame features are enabled
    // The reference frame for the mb is considered as correclty predicted
    // if it is signaled at the segment level for the purposes of the
    // common prediction model
    vp9_set_pred_flag(xd, PRED_REF, 1);
    ref_frame = vp9_get_pred_ref(cm, xd);
  }

  return ref_frame;
}

static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p);
}

static MB_PREDICTION_MODE read_mv_ref(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE) treed_read(r, vp9_mv_ref_tree, p);
}

#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 }
};
#endif

static void read_switchable_interp_probs(VP9D_COMP* const pbi, vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  int i, j;
  for (j = 0; j < VP9_SWITCHABLE_FILTERS + 1; ++j)
    for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i)
      cm->fc.switchable_interp_prob[j][i] = vp9_read_prob(r);
}

static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
  COMPPREDMODE_TYPE mode = vp9_read_bit(r);
  if (mode)
     mode += vp9_read_bit(r);
  return mode;
}

static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;

  if (cm->frame_type == KEY_FRAME) {
    if (!cm->kf_ymode_probs_update)
      cm->kf_ymode_probs_index = vp9_read_literal(r, 3);
  } else {
    nmv_context *const nmvc = &pbi->common.fc.nmvc;
    MACROBLOCKD *const xd = &pbi->mb;
    int i, j;

    if (cm->mcomp_filter_type == SWITCHABLE)
      read_switchable_interp_probs(pbi, r);

    // Baseline probabilities for decoding reference frame
    cm->prob_intra_coded = vp9_read_prob(r);
    cm->prob_last_coded  = vp9_read_prob(r);
    cm->prob_gf_coded    = vp9_read_prob(r);

    // Computes a modified set of probabilities for use when reference
    // frame prediction fails.
    vp9_compute_mod_refprobs(cm);

    cm->comp_pred_mode = read_comp_pred_mode(r);
    if (cm->comp_pred_mode == HYBRID_PREDICTION)
      for (i = 0; i < COMP_PRED_CONTEXTS; i++)
        cm->prob_comppred[i] = vp9_read_prob(r);

    // VP9_YMODES
    if (vp9_read_bit(r))
      for (i = 0; i < VP9_YMODES - 1; ++i)
        cm->fc.ymode_prob[i] = vp9_read_prob(r);

    // VP9_I32X32_MODES
    if (vp9_read_bit(r))
      for (i = 0; i < VP9_I32X32_MODES - 1; ++i)
        cm->fc.sb_ymode_prob[i] = vp9_read_prob(r);

    for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j)
      if (vp9_read_bit(r))
        for (i = 0; i < PARTITION_TYPES - 1; ++i)
          cm->fc.partition_prob[j][i] = vp9_read_prob(r);

    read_nmvprobs(r, nmvc, xd->allow_high_precision_mv);
  }
}

// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
                              vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;
  MODE_INFO *const mi = xd->mode_info_context;
  MB_MODE_INFO *const mbmi = &mi->mbmi;

  if (!xd->segmentation_enabled)
    return 0;  // Default for disabled segmentation

  if (xd->update_mb_segmentation_map) {
    int segment_id;

    if (cm->temporal_update) {
      // Temporal coding of the segment id for this mb is enabled.
      // Get the context based probability for reading the
      // prediction status flag
      const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
      const int pred_flag = vp9_read(r, pred_prob);
      vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag);

      // If the value is flagged as correctly predicted
      // then use the predicted value, otherwise decode it explicitly
      segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type,
                                                     mi_row, mi_col)
                             : read_mb_segid(r, xd);
    } else {
      segment_id = read_mb_segid(r, xd);  // Normal unpredicted coding mode
    }

    set_segment_id(cm, mbmi, mi_row, mi_col, segment_id);  // Side effect
    return segment_id;
  } else {
    return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col);
  }
}


static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src,
                                       int mb_to_left_edge,
                                       int mb_to_right_edge,
                                       int mb_to_top_edge,
                                       int mb_to_bottom_edge) {
  dst->as_int = src->as_int;
  clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge,
           mb_to_bottom_edge);
}

static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref,
                             const nmv_context *ctx,
                             nmv_context_counts *counts,
                             int usehp) {
  const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
  MV diff = {0, 0};

  usehp = usehp && vp9_use_nmv_hp(ref);
  if (mv_joint_vertical(j))
    diff.row = read_mv_component(r, &ctx->comps[0], usehp);

  if (mv_joint_horizontal(j))
    diff.col = read_mv_component(r, &ctx->comps[1], usehp);

  vp9_increment_nmv(&diff, ref, counts, usehp);

  mv->row = diff.row + ref->row;
  mv->col = diff.col + ref->col;
}

static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type(
    VP9D_COMP *pbi, vp9_reader *r) {
  const int index = treed_read(r, vp9_switchable_interp_tree,
                               vp9_get_pred_probs(&pbi->common, &pbi->mb,
                                                  PRED_SWITCHABLE_INTERP));
  return vp9_switchable_interp[index];
}

static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
                             int mi_row, int mi_col,
                             vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  nmv_context *const nmvc = &cm->fc.nmvc;
  MACROBLOCKD *const xd = &pbi->mb;

  int_mv *const mv0 = &mbmi->mv[0];
  int_mv *const mv1 = &mbmi->mv[1];
  BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type;
  int bw = 1 << b_width_log2(bsize);
  int bh = 1 << b_height_log2(bsize);

  const int use_prev_in_find_mv_refs = cm->width == cm->last_width &&
                                       cm->height == cm->last_height &&
                                       !cm->error_resilient_mode &&
                                       cm->last_show_frame;

  int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge;
  int j, idx, idy;

  mbmi->need_to_clamp_mvs = 0;
  mbmi->need_to_clamp_secondmv = 0;
  mbmi->second_ref_frame = NONE;

  // Make sure the MACROBLOCKD mode info pointer is pointed at the
  // correct entry for the current macroblock.
  xd->mode_info_context = mi;

  // Distance of Mb to the various image edges.
  // These specified to 8th pel as they are always compared to MV values
  // that are in 1/8th pel units
  set_mi_row_col(cm, xd, mi_row, 1 << mi_height_log2(bsize),
                         mi_col, 1 << mi_width_log2(bsize));

  mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
  mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
  mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
  mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

  // Read the macroblock segment id.
  mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r);

  mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id,
                                              SEG_LVL_SKIP);
  if (!mbmi->mb_skip_coeff)
    mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));

  // Read the reference frame
  mbmi->ref_frame = read_ref_frame(pbi, r, mbmi->segment_id);

  // If reference frame is an Inter frame
  if (mbmi->ref_frame) {
    int_mv nearest, nearby, best_mv;
    int_mv nearest_second, nearby_second, best_mv_second;
    vp9_prob mv_ref_p[VP9_MVREFS - 1];

    const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame;
    struct scale_factors *sf0 = &xd->scale_factor[0];
    *sf0 = cm->active_ref_scale[mbmi->ref_frame - 1];

    {
      // Select the appropriate reference frame for this MB
      const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1];

      setup_pre_planes(xd, &cm->yv12_fb[ref_fb_idx], NULL,
                       mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);

#ifdef DEC_DEBUG
      if (dec_debug)
        printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row,
               xd->mode_info_context->mbmi.mv[0].as_mv.col);
#endif
      vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ?
                       xd->prev_mode_info_context : NULL,
                       ref_frame, mbmi->ref_mvs[ref_frame],
                       cm->ref_frame_sign_bias);

      vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[ref_frame]);

      // If the segment level skip mode enabled
      if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) {
        mbmi->mode = ZEROMV;
      } else {
        if (bsize >= BLOCK_SIZE_SB8X8)
          mbmi->mode = read_sb_mv_ref(r, mv_ref_p);
        else
          mbmi->mode = SPLITMV;
        vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[ref_frame]);
      }

      if (mbmi->mode != ZEROMV) {
        vp9_find_best_ref_mvs(xd,
                              mbmi->ref_mvs[ref_frame],
                              &nearest, &nearby);

        best_mv.as_int = mbmi->ref_mvs[ref_frame][0].as_int;
      }

#ifdef DEC_DEBUG
      if (dec_debug)
        printf("[D %d %d] %d %d %d %d\n", ref_frame,
               mbmi->mb_mode_context[ref_frame],
               mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]);
#endif
    }

    mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE
                              ? read_switchable_filter_type(pbi, r)
                              : cm->mcomp_filter_type;

    if (cm->comp_pred_mode == COMP_PREDICTION_ONLY ||
        (cm->comp_pred_mode == HYBRID_PREDICTION &&
         vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_COMP)))) {
      /* Since we have 3 reference frames, we can only have 3 unique
       * combinations of combinations of 2 different reference frames
       * (A-G, G-L or A-L). In the bitstream, we use this to simply
       * derive the second reference frame from the first reference
       * frame, by saying it's the next one in the enumerator, and
       * if that's > n_refs, then the second reference frame is the
       * first one in the enumerator. */
      mbmi->second_ref_frame = mbmi->ref_frame + 1;
      if (mbmi->second_ref_frame == 4)
        mbmi->second_ref_frame = 1;
      if (mbmi->second_ref_frame > 0) {
        const MV_REFERENCE_FRAME second_ref_frame = mbmi->second_ref_frame;
        struct scale_factors *sf1 = &xd->scale_factor[1];
        const int second_ref_fb_idx = cm->active_ref_idx[second_ref_frame - 1];
        *sf1 = cm->active_ref_scale[second_ref_frame - 1];

        setup_pre_planes(xd, NULL, &cm->yv12_fb[second_ref_fb_idx],
                         mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv);

        vp9_find_mv_refs(cm, xd, mi,
                         use_prev_in_find_mv_refs ?
                         xd->prev_mode_info_context : NULL,
                         second_ref_frame, mbmi->ref_mvs[second_ref_frame],
                         cm->ref_frame_sign_bias);

        if (mbmi->mode != ZEROMV) {
          vp9_find_best_ref_mvs(xd,
                                mbmi->ref_mvs[second_ref_frame],
                                &nearest_second,
                                &nearby_second);
          best_mv_second.as_int = mbmi->ref_mvs[second_ref_frame][0].as_int;
        }
      }

    }

    mbmi->uv_mode = DC_PRED;
    switch (mbmi->mode) {
      case SPLITMV:
        mbmi->need_to_clamp_mvs = 0;
        for (idy = 0; idy < 2; idy += bh) {
          for (idx = 0; idx < 2; idx += bw) {
            int_mv blockmv, secondmv;
            int blockmode;
            int i;
            j = idy * 2 + idx;

            blockmode = read_sb_mv_ref(r, mv_ref_p);
            vp9_accum_mv_refs(cm, blockmode, mbmi->mb_mode_context[ref_frame]);
            if (blockmode == NEARESTMV || blockmode == NEARMV) {
              MV_REFERENCE_FRAME rf2 = mbmi->second_ref_frame;
              vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0);
              if (rf2 > 0) {
                vp9_append_sub8x8_mvs_for_idx(cm, xd,  &nearest_second,
                                              &nearby_second, j, 1);
              }
            }

            switch (blockmode) {
              case NEWMV:
                decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc,
                           &cm->fc.NMVcount, xd->allow_high_precision_mv);

                if (mbmi->second_ref_frame > 0)
                  decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
                            &cm->fc.NMVcount, xd->allow_high_precision_mv);

  #ifdef VPX_MODE_COUNT
                vp9_mv_cont_count[mv_contz][3]++;
  #endif
                break;
              case NEARESTMV:
                blockmv.as_int = nearest.as_int;
                if (mbmi->second_ref_frame > 0)
                  secondmv.as_int = nearest_second.as_int;
  #ifdef VPX_MODE_COUNT
                vp9_mv_cont_count[mv_contz][0]++;
  #endif
                break;
              case NEARMV:
                blockmv.as_int = nearby.as_int;
                if (mbmi->second_ref_frame > 0)
                  secondmv.as_int = nearby_second.as_int;
  #ifdef VPX_MODE_COUNT
                vp9_mv_cont_count[mv_contz][1]++;
  #endif
                break;
              case ZEROMV:
                blockmv.as_int = 0;
                if (mbmi->second_ref_frame > 0)
                  secondmv.as_int = 0;
  #ifdef VPX_MODE_COUNT
                vp9_mv_cont_count[mv_contz][2]++;
  #endif
                break;
              default:
                break;
            }
            mi->bmi[j].as_mv[0].as_int = blockmv.as_int;
            if (mbmi->second_ref_frame > 0)
              mi->bmi[j].as_mv[1].as_int = secondmv.as_int;

            for (i = 1; i < bh; ++i)
              vpx_memcpy(&mi->bmi[j + i * 2], &mi->bmi[j], sizeof(mi->bmi[j]));
            for (i = 1; i < bw; ++i)
              vpx_memcpy(&mi->bmi[j + i], &mi->bmi[j], sizeof(mi->bmi[j]));
          }
        }

        mv0->as_int = mi->bmi[3].as_mv[0].as_int;
        mv1->as_int = mi->bmi[3].as_mv[1].as_int;
        break;  /* done with SPLITMV */

      case NEARMV:
        // Clip "next_nearest" so that it does not extend to far out of image
        assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge,
                                          mb_to_right_edge,
                                          mb_to_top_edge,
                                          mb_to_bottom_edge);
        if (mbmi->second_ref_frame > 0)
          assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge,
                                                   mb_to_right_edge,
                                                   mb_to_top_edge,
                                                   mb_to_bottom_edge);
        break;

      case NEARESTMV:
        // Clip "next_nearest" so that it does not extend to far out of image
        assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge,
                                           mb_to_right_edge,
                                           mb_to_top_edge,
                                           mb_to_bottom_edge);
        if (mbmi->second_ref_frame > 0)
          assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge,
                                                    mb_to_right_edge,
                                                    mb_to_top_edge,
                                                    mb_to_bottom_edge);
        break;

      case ZEROMV:
        mv0->as_int = 0;
        if (mbmi->second_ref_frame > 0)
          mv1->as_int = 0;
        break;

      case NEWMV:
        decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount,
                  xd->allow_high_precision_mv);
        mbmi->need_to_clamp_mvs = check_mv_bounds(mv0,
                                                  mb_to_left_edge,
                                                  mb_to_right_edge,
                                                  mb_to_top_edge,
                                                  mb_to_bottom_edge);

        if (mbmi->second_ref_frame > 0) {
          decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc,
                    &cm->fc.NMVcount, xd->allow_high_precision_mv);
          mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1,
                                                         mb_to_left_edge,
                                                         mb_to_right_edge,
                                                         mb_to_top_edge,
                                                         mb_to_bottom_edge);
        }
        break;
      default:
;
#if CONFIG_DEBUG
        assert(0);
#endif
    }
  } else {
    // required for left and above block mv
    mv0->as_int = 0;

    if (bsize >= BLOCK_SIZE_SB8X8) {
      mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob);
      cm->fc.sb_ymode_counts[mbmi->mode]++;
    } else {
      mbmi->mode = I4X4_PRED;
    }

    // If MB mode is I4X4_PRED read the block modes
    if (bsize < BLOCK_SIZE_SB8X8) {
      int idx, idy;
      for (idy = 0; idy < 2; idy += bh) {
        for (idx = 0; idx < 2; idx += bw) {
          int ib = idy * 2 + idx, k;
          int m = read_sb_ymode(r, cm->fc.sb_ymode_prob);
          mi->bmi[ib].as_mode.first = m;
          cm->fc.sb_ymode_counts[m]++;
          for (k = 1; k < bh; ++k)
            mi->bmi[ib + k * 2].as_mode.first = m;
          for (k = 1; k < bw; ++k)
            mi->bmi[ib + k].as_mode.first = m;
        }
      }
    }

    mbmi->uv_mode = read_uv_mode(r, cm->fc.uv_mode_prob[mbmi->mode]);
    cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
  }

  if (cm->txfm_mode == TX_MODE_SELECT &&
      (mbmi->mb_skip_coeff == 0 || mbmi->ref_frame == INTRA_FRAME) &&
      bsize >= BLOCK_SIZE_SB8X8) {
    const int allow_16x16 = bsize >= BLOCK_SIZE_MB16X16;
    const int allow_32x32 = bsize >= BLOCK_SIZE_SB32X32;
    mbmi->txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32);
  } else if (bsize >= BLOCK_SIZE_SB32X32 &&
             cm->txfm_mode >= ALLOW_32X32) {
    mbmi->txfm_size = TX_32X32;
  } else if (cm->txfm_mode >= ALLOW_16X16 &&
             bsize >= BLOCK_SIZE_MB16X16) {
    mbmi->txfm_size = TX_16X16;
  } else if (cm->txfm_mode >= ALLOW_8X8 && (bsize >= BLOCK_SIZE_SB8X8)) {
    mbmi->txfm_size = TX_8X8;
  } else {
    mbmi->txfm_size = TX_4X4;
  }
}

void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) {
  VP9_COMMON *cm = &pbi->common;
  int k;

  // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove.
  vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs));
  for (k = 0; k < MBSKIP_CONTEXTS; ++k)
    cm->mbskip_pred_probs[k] = vp9_read_prob(r);

  mb_mode_mv_init(pbi, r);
}

void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
                           MACROBLOCKD* const xd,
                           int mi_row,
                           int mi_col,
                           vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MODE_INFO *mi = xd->mode_info_context;
  MB_MODE_INFO *const mbmi = &mi->mbmi;

  if (cm->frame_type == KEY_FRAME) {
    kfread_modes(pbi, mi, mi_row, mi_col, r);
  } else {
    read_mb_modes_mv(pbi, mi, &mi->mbmi, mi_row, mi_col, r);
    set_scale_factors(xd,
                      mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1,
                      cm->active_ref_scale);
  }

  if (1) {
    const int bw = 1 << mi_width_log2(mbmi->sb_type);
    const int bh = 1 << mi_height_log2(mbmi->sb_type);
    const int y_mis = MIN(bh, cm->mi_rows - mi_row);
    const int x_mis = MIN(bw, cm->mi_cols - mi_col);
    const int mis = cm->mode_info_stride;
    int x, y;

    for (y = 0; y < y_mis; y++)
      for (x = !y; x < x_mis; x++)
        mi[y * mis + x] = *mi;
  }
}