summaryrefslogtreecommitdiff
path: root/vp9/common/vp9_pred_common.c
blob: cb65d72828dd8ff9e45bd554d6624905310e0743 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"

// TBD prediction functions for various bitstream signals

// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
                                   const MACROBLOCKD *const xd,
                                   PRED_ID pred_id) {
  int pred_context;
  MODE_INFO *m = xd->mode_info_context;

  // Note:
  // The mode info data structure has a one element border above and to the
  // left of the entries correpsonding to real macroblocks.
  // The prediction flags in these dummy entries are initialised to 0.
  switch (pred_id) {
    case PRED_SEG_ID:
      pred_context = (m - 1)->mbmi.seg_id_predicted +
                     (m - cm->mode_info_stride)->mbmi.seg_id_predicted;
      break;


    case PRED_REF:
      pred_context = (m - 1)->mbmi.ref_predicted +
                     (m - cm->mode_info_stride)->mbmi.ref_predicted;
      break;

    case PRED_COMP:
      // Context based on use of comp pred flag by neighbours
      // pred_context =
      //   ((m - 1)->mbmi.second_ref_frame > INTRA_FRAME) +
      //    ((m - cm->mode_info_stride)->mbmi.second_ref_frame > INTRA_FRAME);

      // Context based on mode and reference frame
      // if ( m->mbmi.ref_frame == LAST_FRAME )
      //    pred_context = 0 + (m->mbmi.mode != ZEROMV);
      // else if ( m->mbmi.ref_frame == GOLDEN_FRAME )
      //    pred_context = 2 + (m->mbmi.mode != ZEROMV);
      // else
      //    pred_context = 4 + (m->mbmi.mode != ZEROMV);

      if (m->mbmi.ref_frame == LAST_FRAME)
        pred_context = 0;
      else
        pred_context = 1;

      break;

    case PRED_MBSKIP:
      pred_context = (m - 1)->mbmi.mb_skip_coeff +
                     (m - cm->mode_info_stride)->mbmi.mb_skip_coeff;
      break;

    case PRED_SWITCHABLE_INTERP:
      {
        int left_in_image = (m - 1)->mbmi.mb_in_image;
        int above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
        int left_mode = (m - 1)->mbmi.mode;
        int above_mode = (m - cm->mode_info_stride)->mbmi.mode;
        int left_interp, above_interp;
        if (left_in_image && left_mode >= NEARESTMV && left_mode <= SPLITMV)
          left_interp = vp9_switchable_interp_map[(m - 1)->mbmi.interp_filter];
        else
          left_interp = VP9_SWITCHABLE_FILTERS;
        if (above_in_image && above_mode >= NEARESTMV && above_mode <= SPLITMV)
          above_interp = vp9_switchable_interp_map[
              (m - cm->mode_info_stride)->mbmi.interp_filter];
        else
          above_interp = VP9_SWITCHABLE_FILTERS;

        if (left_interp == above_interp)
          pred_context = left_interp;
        else if (left_interp == VP9_SWITCHABLE_FILTERS &&
                 above_interp != VP9_SWITCHABLE_FILTERS)
          pred_context = above_interp;
        else if (left_interp != VP9_SWITCHABLE_FILTERS &&
                 above_interp == VP9_SWITCHABLE_FILTERS)
          pred_context = left_interp;
        else
          pred_context = VP9_SWITCHABLE_FILTERS;
      }
      break;

    default:
      // TODO *** add error trap code.
      pred_context = 0;
      break;
  }

  return pred_context;
}

// This function returns a context probability for coding a given
// prediction signal
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
                          const MACROBLOCKD *const xd,
                          PRED_ID pred_id) {
  vp9_prob pred_probability;
  int pred_context;

  // Get the appropriate prediction context
  pred_context = vp9_get_pred_context(cm, xd, pred_id);

  switch (pred_id) {
    case PRED_SEG_ID:
      pred_probability = cm->segment_pred_probs[pred_context];
      break;

    case PRED_REF:
      pred_probability = cm->ref_pred_probs[pred_context];
      break;

    case PRED_COMP:
      // In keeping with convention elsewhre the probability returned is
      // the probability of a "0" outcome which in this case means the
      // probability of comp pred off.
      pred_probability = cm->prob_comppred[pred_context];
      break;

    case PRED_MBSKIP:
      pred_probability = cm->mbskip_pred_probs[pred_context];
      break;

    default:
      // TODO *** add error trap code.
      pred_probability = 128;
      break;
  }

  return pred_probability;
}

// This function returns a context probability ptr for coding a given
// prediction signal
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
                                   const MACROBLOCKD *const xd,
                                   PRED_ID pred_id) {
  const vp9_prob *pred_probability;
  int pred_context;

  // Get the appropriate prediction context
  pred_context = vp9_get_pred_context(cm, xd, pred_id);

  switch (pred_id) {
    case PRED_SEG_ID:
      pred_probability = &cm->segment_pred_probs[pred_context];
      break;

    case PRED_REF:
      pred_probability = &cm->ref_pred_probs[pred_context];
      break;

    case PRED_COMP:
      // In keeping with convention elsewhre the probability returned is
      // the probability of a "0" outcome which in this case means the
      // probability of comp pred off.
      pred_probability = &cm->prob_comppred[pred_context];
      break;

    case PRED_MBSKIP:
      pred_probability = &cm->mbskip_pred_probs[pred_context];
      break;

    case PRED_SWITCHABLE_INTERP:
      pred_probability = &cm->fc.switchable_interp_prob[pred_context][0];
      break;

    default:
      // TODO *** add error trap code.
      pred_probability = NULL;
      break;
  }

  return pred_probability;
}

// This function returns the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
                                PRED_ID pred_id) {
  unsigned char pred_flag = 0;

  switch (pred_id) {
    case PRED_SEG_ID:
      pred_flag = xd->mode_info_context->mbmi.seg_id_predicted;
      break;

    case PRED_REF:
      pred_flag = xd->mode_info_context->mbmi.ref_predicted;
      break;

    case PRED_MBSKIP:
      pred_flag = xd->mode_info_context->mbmi.mb_skip_coeff;
      break;

    default:
      // TODO *** add error trap code.
      pred_flag = 0;
      break;
  }

  return pred_flag;
}

// This function sets the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
void vp9_set_pred_flag(MACROBLOCKD *const xd,
                       PRED_ID pred_id,
                       unsigned char pred_flag) {
#if CONFIG_SUPERBLOCKS
  const int mis = xd->mode_info_stride;
#endif

  switch (pred_id) {
    case PRED_SEG_ID:
      xd->mode_info_context->mbmi.seg_id_predicted = pred_flag;
#if CONFIG_SUPERBLOCKS
      if (xd->mode_info_context->mbmi.encoded_as_sb) {
        if (xd->mb_to_right_edge >= 0)
          xd->mode_info_context[1].mbmi.seg_id_predicted = pred_flag;
        if (xd->mb_to_bottom_edge >= 0) {
          xd->mode_info_context[mis].mbmi.seg_id_predicted = pred_flag;
          if (xd->mb_to_right_edge >= 0)
            xd->mode_info_context[mis + 1].mbmi.seg_id_predicted = pred_flag;
        }
      }
#endif
      break;

    case PRED_REF:
      xd->mode_info_context->mbmi.ref_predicted = pred_flag;
#if CONFIG_SUPERBLOCKS
      if (xd->mode_info_context->mbmi.encoded_as_sb) {
        if (xd->mb_to_right_edge >= 0)
          xd->mode_info_context[1].mbmi.ref_predicted = pred_flag;
        if (xd->mb_to_bottom_edge >= 0) {
          xd->mode_info_context[mis].mbmi.ref_predicted = pred_flag;
          if (xd->mb_to_right_edge >= 0)
            xd->mode_info_context[mis + 1].mbmi.ref_predicted = pred_flag;
        }
      }
#endif
      break;

    case PRED_MBSKIP:
      xd->mode_info_context->mbmi.mb_skip_coeff = pred_flag;
#if CONFIG_SUPERBLOCKS
      if (xd->mode_info_context->mbmi.encoded_as_sb) {
        if (xd->mb_to_right_edge >= 0)
          xd->mode_info_context[1].mbmi.mb_skip_coeff = pred_flag;
        if (xd->mb_to_bottom_edge >= 0) {
          xd->mode_info_context[mis].mbmi.mb_skip_coeff = pred_flag;
          if (xd->mb_to_right_edge >= 0)
            xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = pred_flag;
        }
      }
#endif
      break;

    default:
      // TODO *** add error trap code.
      break;
  }
}


// The following contain the guts of the prediction code used to
// peredict various bitstream signals.

// Macroblock segment id prediction function
unsigned char vp9_get_pred_mb_segid(const VP9_COMMON *const cm,
                                    const MACROBLOCKD *const xd, int MbIndex) {
  // Currently the prediction for the macroblock segment ID is
  // the value stored for this macroblock in the previous frame.
#if CONFIG_SUPERBLOCKS
  if (!xd->mode_info_context->mbmi.encoded_as_sb) {
#endif
    return cm->last_frame_seg_map[MbIndex];
#if CONFIG_SUPERBLOCKS
  } else {
    int seg_id = cm->last_frame_seg_map[MbIndex];
    int mb_col = MbIndex % cm->mb_cols;
    int mb_row = MbIndex / cm->mb_cols;
    if (mb_col + 1 < cm->mb_cols)
      seg_id = seg_id && cm->last_frame_seg_map[MbIndex + 1];
    if (mb_row + 1 < cm->mb_rows) {
      seg_id = seg_id && cm->last_frame_seg_map[MbIndex + cm->mb_cols];
      if (mb_col + 1 < cm->mb_cols)
        seg_id = seg_id && cm->last_frame_seg_map[MbIndex + cm->mb_cols + 1];
    }
    return seg_id;
  }
#endif
}

MV_REFERENCE_FRAME vp9_get_pred_ref(const VP9_COMMON *const cm,
                                    const MACROBLOCKD *const xd) {
  MODE_INFO *m = xd->mode_info_context;

  MV_REFERENCE_FRAME left;
  MV_REFERENCE_FRAME above;
  MV_REFERENCE_FRAME above_left;
  MV_REFERENCE_FRAME pred_ref = LAST_FRAME;

  int segment_id = xd->mode_info_context->mbmi.segment_id;
  int seg_ref_active;
  int i;

  unsigned char frame_allowed[MAX_REF_FRAMES] = {1, 1, 1, 1};
  unsigned char ref_score[MAX_REF_FRAMES];
  unsigned char best_score = 0;
  unsigned char left_in_image;
  unsigned char above_in_image;
  unsigned char above_left_in_image;

  // Is segment coding ennabled
  seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);

  // Special case treatment if segment coding is enabled.
  // Dont allow prediction of a reference frame that the segment
  // does not allow
  if (seg_ref_active) {
    for (i = 0; i < MAX_REF_FRAMES; i++) {
      frame_allowed[i] =
        vp9_check_segref(xd, segment_id, i);

      // Score set to 0 if ref frame not allowed
      ref_score[i] = cm->ref_scores[i] * frame_allowed[i];
    }
  } else
    vpx_memcpy(ref_score, cm->ref_scores, sizeof(ref_score));

  // Reference frames used by neighbours
  left = (m - 1)->mbmi.ref_frame;
  above = (m - cm->mode_info_stride)->mbmi.ref_frame;
  above_left = (m - 1 - cm->mode_info_stride)->mbmi.ref_frame;

  // Are neighbours in image
  left_in_image = (m - 1)->mbmi.mb_in_image;
  above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
  above_left_in_image = (m - 1 - cm->mode_info_stride)->mbmi.mb_in_image;

  // Adjust scores for candidate reference frames based on neigbours
  if (frame_allowed[left] && left_in_image) {
    ref_score[left] += 16;
    if (above_left_in_image && (left == above_left))
      ref_score[left] += 4;
  }
  if (frame_allowed[above] && above_in_image) {
    ref_score[above] += 16;
    if (above_left_in_image && (above == above_left))
      ref_score[above] += 4;
  }

  // Now choose the candidate with the highest score
  for (i = 0; i < MAX_REF_FRAMES; i++) {
    if (ref_score[i] > best_score) {
      pred_ref = i;
      best_score = ref_score[i];
    }
  }

  return pred_ref;
}

// Functions to computes a set of modified reference frame probabilities
// to use when the prediction of the reference frame value fails
void vp9_calc_ref_probs(int *count, vp9_prob *probs) {
  int tot_count;

  tot_count = count[0] + count[1] + count[2] + count[3];
  if (tot_count) {
    probs[0] = (vp9_prob)((count[0] * 255 + (tot_count >> 1)) / tot_count);
    probs[0] += !probs[0];
  } else
    probs[0] = 128;

  tot_count -= count[0];
  if (tot_count) {
    probs[1] = (vp9_prob)((count[1] * 255 + (tot_count >> 1)) / tot_count);
    probs[1] += !probs[1];
  } else
    probs[1] = 128;

  tot_count -= count[1];
  if (tot_count) {
    probs[2] = (vp9_prob)((count[2] * 255 + (tot_count >> 1)) / tot_count);
    probs[2] += !probs[2];
  } else
    probs[2] = 128;

}

// Computes a set of modified conditional probabilities for the reference frame
// Values willbe set to 0 for reference frame options that are not possible
// because wither they were predicted and prediction has failed or because
// they are not allowed for a given segment.
void vp9_compute_mod_refprobs(VP9_COMMON *const cm) {
  int norm_cnt[MAX_REF_FRAMES];
  int intra_count;
  int inter_count;
  int last_count;
  int gfarf_count;
  int gf_count;
  int arf_count;

  intra_count = cm->prob_intra_coded;
  inter_count = (255 - intra_count);
  last_count = (inter_count * cm->prob_last_coded) / 255;
  gfarf_count = inter_count - last_count;
  gf_count = (gfarf_count * cm->prob_gf_coded) / 255;
  arf_count = gfarf_count - gf_count;

  // Work out modified reference frame probabilities to use where prediction
  // of the reference frame fails
  norm_cnt[0] = 0;
  norm_cnt[1] = last_count;
  norm_cnt[2] = gf_count;
  norm_cnt[3] = arf_count;
  vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[INTRA_FRAME]);
  cm->mod_refprobs[INTRA_FRAME][0] = 0;    // This branch implicit

  norm_cnt[0] = intra_count;
  norm_cnt[1] = 0;
  norm_cnt[2] = gf_count;
  norm_cnt[3] = arf_count;
  vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[LAST_FRAME]);
  cm->mod_refprobs[LAST_FRAME][1] = 0;    // This branch implicit

  norm_cnt[0] = intra_count;
  norm_cnt[1] = last_count;
  norm_cnt[2] = 0;
  norm_cnt[3] = arf_count;
  vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[GOLDEN_FRAME]);
  cm->mod_refprobs[GOLDEN_FRAME][2] = 0;  // This branch implicit

  norm_cnt[0] = intra_count;
  norm_cnt[1] = last_count;
  norm_cnt[2] = gf_count;
  norm_cnt[3] = 0;
  vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[ALTREF_FRAME]);
  cm->mod_refprobs[ALTREF_FRAME][2] = 0;  // This branch implicit

  // Score the reference frames based on overal frequency.
  // These scores contribute to the prediction choices.
  // Max score 17 min 1
  cm->ref_scores[INTRA_FRAME] = 1 + (intra_count * 16 / 255);
  cm->ref_scores[LAST_FRAME] = 1 + (last_count * 16 / 255);
  cm->ref_scores[GOLDEN_FRAME] = 1 + (gf_count * 16 / 255);
  cm->ref_scores[ALTREF_FRAME] = 1 + (arf_count * 16 / 255);
}