summaryrefslogtreecommitdiff
path: root/vp9/common/vp9_mvref_common.c
blob: bfdc1af328ac3f16a0a5e2452dbe39bfdfa1ee82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "vp9/common/vp9_mvref_common.h"

#define MVREF_NEIGHBOURS 8
static int mb_mv_ref_search[MVREF_NEIGHBOURS][2] = {
    {0, -1}, {-1, 0}, {-1, -1}, {0, -2},
    {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}
};
static int mb_ref_distance_weight[MVREF_NEIGHBOURS] =
  { 3, 3, 2, 1, 1, 1, 1, 1 };
#if CONFIG_SUPERBLOCKS
static int sb_mv_ref_search[MVREF_NEIGHBOURS][2] = {
    {0, -1}, {-1, 0}, {1, -1}, {-1, 1},
    {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}
};
static int sb_ref_distance_weight[MVREF_NEIGHBOURS] =
  { 3, 3, 2, 2, 2, 1, 1, 1 };
#endif

// clamp_mv
#define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units
static void clamp_mv(const MACROBLOCKD *xd, int_mv *mv) {

  if (mv->as_mv.col < (xd->mb_to_left_edge - MV_BORDER))
    mv->as_mv.col = xd->mb_to_left_edge - MV_BORDER;
  else if (mv->as_mv.col > xd->mb_to_right_edge + MV_BORDER)
    mv->as_mv.col = xd->mb_to_right_edge + MV_BORDER;

  if (mv->as_mv.row < (xd->mb_to_top_edge - MV_BORDER))
    mv->as_mv.row = xd->mb_to_top_edge - MV_BORDER;
  else if (mv->as_mv.row > xd->mb_to_bottom_edge + MV_BORDER)
    mv->as_mv.row = xd->mb_to_bottom_edge + MV_BORDER;
}

// Gets a candidate refenence motion vector from the given mode info
// structure if one exists that matches the given reference frame.
static int get_matching_candidate(
  const MODE_INFO *candidate_mi,
  MV_REFERENCE_FRAME ref_frame,
  int_mv *c_mv
) {
  int ret_val = TRUE;

  if (ref_frame == candidate_mi->mbmi.ref_frame) {
    c_mv->as_int = candidate_mi->mbmi.mv[0].as_int;
  } else if (ref_frame == candidate_mi->mbmi.second_ref_frame) {
    c_mv->as_int = candidate_mi->mbmi.mv[1].as_int;
  } else {
    ret_val = FALSE;
  }

  return ret_val;
}

// Gets candidate refenence motion vector(s) from the given mode info
// structure if they exists and do NOT match the given reference frame.
static void get_non_matching_candidates(
  const MODE_INFO *candidate_mi,
  MV_REFERENCE_FRAME ref_frame,
  MV_REFERENCE_FRAME *c_ref_frame,
  int_mv *c_mv,
  MV_REFERENCE_FRAME *c2_ref_frame,
  int_mv *c2_mv
) {

  c_mv->as_int = 0;
  c2_mv->as_int = 0;
  *c_ref_frame = INTRA_FRAME;
  *c2_ref_frame = INTRA_FRAME;

  // If first candidate not valid neither will be.
  if (candidate_mi->mbmi.ref_frame > INTRA_FRAME) {
    // First candidate
    if (candidate_mi->mbmi.ref_frame != ref_frame) {
      *c_ref_frame = candidate_mi->mbmi.ref_frame;
      c_mv->as_int = candidate_mi->mbmi.mv[0].as_int;
    }

    // Second candidate
    if ((candidate_mi->mbmi.second_ref_frame > INTRA_FRAME) &&
        (candidate_mi->mbmi.second_ref_frame != ref_frame)) {  // &&
        // (candidate_mi->mbmi.mv[1].as_int != 0) &&
        // (candidate_mi->mbmi.mv[1].as_int !=
        // candidate_mi->mbmi.mv[0].as_int)) {
      *c2_ref_frame = candidate_mi->mbmi.second_ref_frame;
      c2_mv->as_int = candidate_mi->mbmi.mv[1].as_int;
    }
  }
}

// Performs mv adjustment based on reference frame and clamps the MV
// if it goes off the edge of the buffer.
static void scale_mv(
  MACROBLOCKD *xd,
  MV_REFERENCE_FRAME this_ref_frame,
  MV_REFERENCE_FRAME candidate_ref_frame,
  int_mv *candidate_mv,
  int *ref_sign_bias
) {

  if (candidate_ref_frame != this_ref_frame) {

    //int frame_distances[MAX_REF_FRAMES];
    //int last_distance = 1;
    //int gf_distance = xd->frames_since_golden;
    //int arf_distance = xd->frames_till_alt_ref_frame;

    // Sign inversion where appropriate.
    if (ref_sign_bias[candidate_ref_frame] != ref_sign_bias[this_ref_frame]) {
      candidate_mv->as_mv.row = -candidate_mv->as_mv.row;
      candidate_mv->as_mv.col = -candidate_mv->as_mv.col;
    }

    // Scale based on frame distance if the reference frames not the same.
    /*frame_distances[INTRA_FRAME] = 1;   // should never be used
    frame_distances[LAST_FRAME] = 1;
    frame_distances[GOLDEN_FRAME] =
      (xd->frames_since_golden) ? xd->frames_since_golden : 1;
    frame_distances[ALTREF_FRAME] =
      (xd->frames_till_alt_ref_frame) ? xd->frames_till_alt_ref_frame : 1;

    if (frame_distances[this_ref_frame] &&
        frame_distances[candidate_ref_frame]) {
      candidate_mv->as_mv.row =
        (short)(((int)(candidate_mv->as_mv.row) *
                 frame_distances[this_ref_frame]) /
                frame_distances[candidate_ref_frame]);

      candidate_mv->as_mv.col =
        (short)(((int)(candidate_mv->as_mv.col) *
                 frame_distances[this_ref_frame]) /
                frame_distances[candidate_ref_frame]);
    }
    */
  }

  // Clamp the MV so it does not point out of the frame buffer
  clamp_mv(xd, candidate_mv);
}

// Adds a new candidate reference vector to the list if indeed it is new.
// If it is not new then the score of the existing candidate that it matches
// is increased and the list is resorted.
static void addmv_and_shuffle(
  int_mv *mv_list,
  int *mv_scores,
  int *index,
  int_mv candidate_mv,
  int weight
) {

  int i;
  int insert_point;
  int duplicate_found = FALSE;

  // Check for duplicates. If there is one increase its score.
  // We only compare vs the current top candidates.
  insert_point = (*index < (MAX_MV_REF_CANDIDATES - 1))
                 ? *index : (MAX_MV_REF_CANDIDATES - 1);

  i = insert_point;
  if (*index > i)
    i++;
  while (i > 0) {
    i--;
    if (candidate_mv.as_int == mv_list[i].as_int) {
      duplicate_found = TRUE;
      mv_scores[i] += weight;
      break;
    }
  }

  // If no duplicate and the new candidate is good enough then add it.
  if (!duplicate_found ) {
    if (weight > mv_scores[insert_point]) {
      mv_list[insert_point].as_int = candidate_mv.as_int;
      mv_scores[insert_point] = weight;
      i = insert_point;
    }
    (*index)++;
  }

  // Reshuffle the list so that highest scoring mvs at the top.
  while (i > 0) {
    if (mv_scores[i] > mv_scores[i-1]) {
      int tmp_score = mv_scores[i-1];
      int_mv tmp_mv = mv_list[i-1];

      mv_scores[i-1] = mv_scores[i];
      mv_list[i-1] = mv_list[i];
      mv_scores[i] = tmp_score;
      mv_list[i] = tmp_mv;
      i--;
    } else
      break;
  }
}

// This function searches the neighbourhood of a given MB/SB and populates a
// list of candidate reference vectors.
//
void vp9_find_mv_refs(
  MACROBLOCKD *xd,
  MODE_INFO *here,
  MODE_INFO *lf_here,
  MV_REFERENCE_FRAME ref_frame,
  int_mv *mv_ref_list,
  int *ref_sign_bias
) {

  int i;
  MODE_INFO *candidate_mi;
  MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi;
  int_mv candidate_mvs[MAX_MV_REF_CANDIDATES];
  int_mv c_refmv;
  int_mv c2_refmv;
  MV_REFERENCE_FRAME c_ref_frame;
  MV_REFERENCE_FRAME c2_ref_frame;
  int candidate_scores[MAX_MV_REF_CANDIDATES];
  int index = 0;
  int split_count = 0;
  int (*mv_ref_search)[2];
  int *ref_distance_weight;

  // Blank the reference vector lists and other local structures.
  vpx_memset(mv_ref_list, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES);
  vpx_memset(candidate_mvs, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES);
  vpx_memset(candidate_scores, 0, sizeof(candidate_scores));

#if CONFIG_SUPERBLOCKS
  if (mbmi->sb_type) {
    mv_ref_search = sb_mv_ref_search;
    ref_distance_weight = sb_ref_distance_weight;
  } else {
    mv_ref_search = mb_mv_ref_search;
    ref_distance_weight = mb_ref_distance_weight;
  }
#else
  mv_ref_search = mb_mv_ref_search;
  ref_distance_weight = mb_ref_distance_weight;
#endif

  // We first scan for candidate vectors that match the current reference frame
  // Look at nearest neigbours
  for (i = 0; i < 2; ++i) {
    if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) &&
        ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) {

      candidate_mi = here + mv_ref_search[i][0] +
                     (mv_ref_search[i][1] * xd->mode_info_stride);

      if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) {
        clamp_mv(xd, &c_refmv);
        addmv_and_shuffle(candidate_mvs, candidate_scores,
                          &index, c_refmv, ref_distance_weight[i] + 16);
      }
      split_count += (candidate_mi->mbmi.mode == SPLITMV);
    }
  }
  // Look in the last frame
  candidate_mi = lf_here;
  if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) {
    clamp_mv(xd, &c_refmv);
    addmv_and_shuffle(candidate_mvs, candidate_scores,
                      &index, c_refmv, 18);
  }
  // More distant neigbours
  for (i = 2; (i < MVREF_NEIGHBOURS) &&
              (index < (MAX_MV_REF_CANDIDATES - 1)); ++i) {
    if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) &&
        ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) {
      candidate_mi = here + mv_ref_search[i][0] +
                     (mv_ref_search[i][1] * xd->mode_info_stride);

      if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) {
        clamp_mv(xd, &c_refmv);
        addmv_and_shuffle(candidate_mvs, candidate_scores,
                          &index, c_refmv, ref_distance_weight[i] + 16);
      }
    }
  }

  // If we have not found enough candidates consider ones where the
  // reference frame does not match. Break out when we have
  // MAX_MV_REF_CANDIDATES candidates.
  // Look first at spatial neighbours
  if (index < (MAX_MV_REF_CANDIDATES - 1)) {
    for (i = 0; i < MVREF_NEIGHBOURS; ++i) {
      if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) &&
          ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) {

        candidate_mi = here + mv_ref_search[i][0] +
                       (mv_ref_search[i][1] * xd->mode_info_stride);

        get_non_matching_candidates(candidate_mi, ref_frame,
                                    &c_ref_frame, &c_refmv,
                                    &c2_ref_frame, &c2_refmv);

        if (c_ref_frame != INTRA_FRAME) {
          scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias);
          addmv_and_shuffle(candidate_mvs, candidate_scores,
                            &index, c_refmv, ref_distance_weight[i]);
        }

        if (c2_ref_frame != INTRA_FRAME) {
          scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias);
          addmv_and_shuffle(candidate_mvs, candidate_scores,
                            &index, c2_refmv, ref_distance_weight[i]);
        }
      }

      if (index >= (MAX_MV_REF_CANDIDATES - 1)) {
        break;
      }
    }
  }
  // Look at the last frame
  if (index < (MAX_MV_REF_CANDIDATES - 1)) {
    candidate_mi = lf_here;
    get_non_matching_candidates(candidate_mi, ref_frame,
                                &c_ref_frame, &c_refmv,
                                &c2_ref_frame, &c2_refmv);

    if (c_ref_frame != INTRA_FRAME) {
      scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias);
      addmv_and_shuffle(candidate_mvs, candidate_scores,
                        &index, c_refmv, 2);
    }

    if (c2_ref_frame != INTRA_FRAME) {
      scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias);
      addmv_and_shuffle(candidate_mvs, candidate_scores,
                        &index, c2_refmv, 2);
    }
  }

  // Define inter mode coding context.
  // 0,0 was best
  if (candidate_mvs[0].as_int == 0) {
    // 0,0 is only candidate
    if (index <= 1) {
      mbmi->mb_mode_context[ref_frame] = 0;
    // non zero candidates candidates available
    } else if (split_count == 0) {
      mbmi->mb_mode_context[ref_frame] = 1;
    } else {
      mbmi->mb_mode_context[ref_frame] = 2;
    }
  // Non zero best, No Split MV cases
  } else if (split_count == 0) {
    if (candidate_scores[0] >= 32) {
      mbmi->mb_mode_context[ref_frame] = 3;
    } else {
      mbmi->mb_mode_context[ref_frame] = 4;
    }
  // Non zero best, some split mv
  } else {
    if (candidate_scores[0] >= 32) {
      mbmi->mb_mode_context[ref_frame] = 5;
    } else {
      mbmi->mb_mode_context[ref_frame] = 6;
    }
  }

  // 0,0 is always a valid reference.
  for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) {
    if (candidate_mvs[i].as_int == 0)
      break;
  }
  if (i == MAX_MV_REF_CANDIDATES) {
    candidate_mvs[MAX_MV_REF_CANDIDATES-1].as_int = 0;
  }

  // Copy over the candidate list.
  vpx_memcpy(mv_ref_list, candidate_mvs, sizeof(candidate_mvs));
}