summaryrefslogtreecommitdiff
path: root/vp8/common/findnearmv.c
blob: cf10a261edf01efe3a8c32aa807790fa9f489fd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include "findnearmv.h"
#include "vp8/common/sadmxn.h"
#include <limits.h>

const unsigned char vp8_mbsplit_offset[4][16] = {
  { 0,  8,  0,  0,  0,  0,  0,  0,  0,  0,   0,  0,  0,  0,  0,  0},
  { 0,  2,  0,  0,  0,  0,  0,  0,  0,  0,   0,  0,  0,  0,  0,  0},
  { 0,  2,  8, 10,  0,  0,  0,  0,  0,  0,   0,  0,  0,  0,  0,  0},
  { 0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15}
};

static void lower_mv_precision(int_mv *mv, int usehp)
{
  if (!usehp || !vp8_use_nmv_hp(&mv->as_mv)) {
    if (mv->as_mv.row & 1)
      mv->as_mv.row += (mv->as_mv.row > 0 ? -1 : 1);
    if (mv->as_mv.col & 1)
      mv->as_mv.col += (mv->as_mv.col > 0 ? -1 : 1);
  }
}

/* Predict motion vectors using those from already-decoded nearby blocks.
   Note that we only consider one 4x4 subblock from each candidate 16x16
   macroblock.   */

void vp8_find_near_mvs
(
  MACROBLOCKD *xd,
  const MODE_INFO *here,
  const MODE_INFO *lf_here,
  int_mv *nearest,
  int_mv *nearby,
  int_mv *best_mv,
  int cnt[4],
  int refframe,
  int *ref_frame_sign_bias) {
  const MODE_INFO *above = here - xd->mode_info_stride;
  const MODE_INFO *left = here - 1;
  const MODE_INFO *aboveleft = above - 1;
  const MODE_INFO *third = NULL;
  int_mv            near_mvs[4];
  int_mv           *mv = near_mvs;
  int             *cntx = cnt;
  enum {CNT_INTRA, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};

  /* Zero accumulators */
  mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;
  cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;

  /* Process above */
  if (above->mbmi.ref_frame != INTRA_FRAME) {
    if (above->mbmi.mv[0].as_int) {
      ++ mv;
      mv->as_int = above->mbmi.mv[0].as_int;
      mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame],
              refframe, mv, ref_frame_sign_bias);
      ++cntx;
    }
    *cntx += 2;
  }

  /* Process left */
  if (left->mbmi.ref_frame != INTRA_FRAME) {
    if (left->mbmi.mv[0].as_int) {
      int_mv this_mv;
      this_mv.as_int = left->mbmi.mv[0].as_int;
      mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame],
              refframe, &this_mv, ref_frame_sign_bias);

      if (this_mv.as_int != mv->as_int) {
        ++ mv;
        mv->as_int = this_mv.as_int;
        ++ cntx;
      }
      *cntx += 2;
    } else
      cnt[CNT_INTRA] += 2;
  }
  /* Process above left or the one from last frame */
  if (aboveleft->mbmi.ref_frame != INTRA_FRAME ||
      (lf_here->mbmi.ref_frame == LAST_FRAME && refframe == LAST_FRAME)) {
    if (aboveleft->mbmi.mv[0].as_int) {
      third = aboveleft;
    } else if (lf_here->mbmi.mv[0].as_int) {
      third = lf_here;
    }
    if (third) {
      int_mv this_mv;
      this_mv.as_int = third->mbmi.mv[0].as_int;
      mv_bias(ref_frame_sign_bias[third->mbmi.ref_frame],
              refframe, &this_mv, ref_frame_sign_bias);

      if (this_mv.as_int != mv->as_int) {
        ++ mv;
        mv->as_int = this_mv.as_int;
        ++ cntx;
      }
      *cntx += 1;
    } else
      cnt[CNT_INTRA] += 1;
  }

  /* If we have three distinct MV's ... */
  if (cnt[CNT_SPLITMV]) {
    /* See if the third MV can be merged with NEAREST */
    if (mv->as_int == near_mvs[CNT_NEAREST].as_int)
      cnt[CNT_NEAREST] += 1;
  }

  cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)
                      + (left->mbmi.mode == SPLITMV)) * 2
                     + (
                       lf_here->mbmi.mode == SPLITMV ||
                       aboveleft->mbmi.mode == SPLITMV);

  /* Swap near and nearest if necessary */
  if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
    int tmp;
    tmp = cnt[CNT_NEAREST];
    cnt[CNT_NEAREST] = cnt[CNT_NEAR];
    cnt[CNT_NEAR] = tmp;
    tmp = near_mvs[CNT_NEAREST].as_int;
    near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;
    near_mvs[CNT_NEAR].as_int = tmp;
  }

  /* Use near_mvs[0] to store the "best" MV */
  if (cnt[CNT_NEAREST] >= cnt[CNT_INTRA])
    near_mvs[CNT_INTRA] = near_mvs[CNT_NEAREST];

  /* Set up return values */
  best_mv->as_int = near_mvs[0].as_int;
  nearest->as_int = near_mvs[CNT_NEAREST].as_int;
  nearby->as_int = near_mvs[CNT_NEAR].as_int;

  /* Make sure that the 1/8th bits of the Mvs are zero if high_precision
   * is not being used, by truncating the last bit towards 0
   */
  lower_mv_precision(best_mv, xd->allow_high_precision_mv);
  lower_mv_precision(nearest, xd->allow_high_precision_mv);
  lower_mv_precision(nearby, xd->allow_high_precision_mv);

  // TODO: move clamp outside findnearmv
  vp8_clamp_mv2(nearest, xd);
  vp8_clamp_mv2(nearby, xd);
  vp8_clamp_mv2(best_mv, xd);
}

vp8_prob *vp8_mv_ref_probs(VP8_COMMON *pc,
                           vp8_prob p[VP8_MVREFS - 1], const int near_mv_ref_ct[4]
                          ) {
  p[0] = pc->fc.vp8_mode_contexts [near_mv_ref_ct[0]] [0];
  p[1] = pc->fc.vp8_mode_contexts [near_mv_ref_ct[1]] [1];
  p[2] = pc->fc.vp8_mode_contexts [near_mv_ref_ct[2]] [2];
  p[3] = pc->fc.vp8_mode_contexts [near_mv_ref_ct[3]] [3];
  return p;
}

#if CONFIG_NEWBESTREFMV
#define SP(x) (((x) & 7) << 1)
unsigned int vp8_sad3x16_c(
  const unsigned char *src_ptr,
  int  src_stride,
  const unsigned char *ref_ptr,
  int  ref_stride,
  int max_sad) {
  return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 3, 16);
}
unsigned int vp8_sad16x3_c(
  const unsigned char *src_ptr,
  int  src_stride,
  const unsigned char *ref_ptr,
  int  ref_stride,
  int max_sad) {
  return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 16, 3);
}

/* check a list of motion vectors by sad score using a number rows of pixels
 * above and a number cols of pixels in the left to select the one with best
 * score to use as ref motion vector
 */
void vp8_find_best_ref_mvs(MACROBLOCKD *xd,
                           unsigned char *ref_y_buffer,
                           int ref_y_stride,
                           int_mv *mvlist,
                           int_mv *best_mv,
                           int_mv *nearest,
                           int_mv *near) {
  int i, j;
  unsigned char *above_src;
  unsigned char *left_src;
  unsigned char *above_ref;
  unsigned char *left_ref;
  int score;
  int sse;
  int ref_scores[MAX_MV_REFS] = {0};
  int_mv sorted_mvs[MAX_MV_REFS];
  int zero_seen = FALSE;

  // Default all to 0,0 if nothing else available
  best_mv->as_int = nearest->as_int = near->as_int = 0;
  vpx_memset(sorted_mvs, 0, sizeof(sorted_mvs));

#if CONFIG_SUBPELREFMV
  above_src = xd->dst.y_buffer - xd->dst.y_stride * 2;
  left_src  = xd->dst.y_buffer - 2;
  above_ref = ref_y_buffer - ref_y_stride * 2;
  left_ref  = ref_y_buffer - 2;
#else
  above_src = xd->dst.y_buffer - xd->dst.y_stride * 3;
  left_src  = xd->dst.y_buffer - 3;
  above_ref = ref_y_buffer - ref_y_stride * 3;
  left_ref  = ref_y_buffer - 3;
#endif

  //for(i = 0; i < MAX_MV_REFS; ++i) {
  // Limit search to the predicted best 4
  for(i = 0; i < 4; ++i) {
    int_mv this_mv;
    int offset = 0;
    int row_offset, col_offset;

    this_mv.as_int = mvlist[i].as_int;

    // If we see a 0,0 vector for a second time we have reached the end of
    // the list of valid candidate vectors.
    if (!this_mv.as_int && zero_seen)
      break;

    zero_seen = zero_seen || !this_mv.as_int;

    vp8_clamp_mv(&this_mv,
                 xd->mb_to_left_edge - LEFT_TOP_MARGIN + 24,
                 xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
                 xd->mb_to_top_edge - LEFT_TOP_MARGIN + 24,
                 xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
#if CONFIG_SUBPELREFMV
    row_offset = this_mv.as_mv.row >> 3;
    col_offset = this_mv.as_mv.col >> 3;
    offset = ref_y_stride * row_offset + col_offset;
    score = 0;
    if (xd->up_available) {
      vp8_sub_pixel_variance16x2_c(above_ref + offset, ref_y_stride,
                                   SP(this_mv.as_mv.col), SP(this_mv.as_mv.row),
                                   above_src, xd->dst.y_stride, &sse);
      score += sse;
    }
    if (xd->left_available) {
      vp8_sub_pixel_variance2x16_c(left_ref + offset, ref_y_stride,
                                   SP(this_mv.as_mv.col), SP(this_mv.as_mv.row),
                                   left_src, xd->dst.y_stride, &sse);
      score += sse;
    }
#else
    row_offset = (this_mv.as_mv.row > 0) ?
      ((this_mv.as_mv.row + 3) >> 3):((this_mv.as_mv.row + 4) >> 3);
    col_offset = (this_mv.as_mv.col > 0) ?
      ((this_mv.as_mv.col + 3) >> 3):((this_mv.as_mv.col + 4) >> 3);
    offset = ref_y_stride * row_offset + col_offset;
    score = 0;
    if (xd->up_available) {
      score += vp8_sad16x3(above_src, xd->dst.y_stride,
                           above_ref + offset, ref_y_stride, INT_MAX);
    }
    if (xd->left_available) {
      score += vp8_sad3x16(left_src, xd->dst.y_stride,
                           left_ref + offset, ref_y_stride, INT_MAX);
    }
#endif
    // Add the entry to our list and then resort the list on score.
    ref_scores[i] = score;
    sorted_mvs[i].as_int = this_mv.as_int;
    j = i;
    while (j > 0) {
      if (ref_scores[j] < ref_scores[j-1]) {
        ref_scores[j] = ref_scores[j-1];
        sorted_mvs[j].as_int = sorted_mvs[j-1].as_int;
        ref_scores[j-1] = score;
        sorted_mvs[j-1].as_int = this_mv.as_int;
        j--;
      } else
        break;
    }
  }

  // Make sure all the candidates are properly clamped etc
  for (i = 0; i < 4; ++i) {
    lower_mv_precision(&sorted_mvs[i], xd->allow_high_precision_mv);
    vp8_clamp_mv2(&sorted_mvs[i], xd);
  }

  // Set the best mv to the first entry in the sorted list
  best_mv->as_int = sorted_mvs[0].as_int;

  // Provided that there are non zero vectors available there will not
  // be more than one 0,0 entry in the sorted list.
  // The best ref mv is always set to the first entry (which gave the best
  // results. The nearest is set to the first non zero vector if available and
  // near to the second non zero vector if available.
  // We do not use 0,0 as a nearest or near as 0,0 has its own mode.
  if ( sorted_mvs[0].as_int ) {
    nearest->as_int = sorted_mvs[0].as_int;
    if ( sorted_mvs[1].as_int )
      near->as_int = sorted_mvs[1].as_int;
    else
      near->as_int = sorted_mvs[2].as_int;
  } else {
      nearest->as_int = sorted_mvs[1].as_int;
      near->as_int = sorted_mvs[2].as_int;
  }

  // Copy back the re-ordered mv list
  vpx_memcpy(mvlist, sorted_mvs, sizeof(sorted_mvs));
}

#endif  // CONFIG_NEWBESTREFMV