summaryrefslogtreecommitdiff
path: root/test/idct8x8_test.cc
blob: 7cf7aa0eae147fc4d57c5462b5d13191a5f69bb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

extern "C" {
#include "vp9_rtcd.h"
}

#include "acm_random.h"
#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {

void reference_dct_1d(double input[8], double output[8]) {
  const double kPi = 3.141592653589793238462643383279502884;
  const double kInvSqrt2 = 0.707106781186547524400844362104;
  for (int k = 0; k < 8; k++) {
    output[k] = 0.0;
    for (int n = 0; n < 8; n++)
      output[k] += input[n]*cos(kPi*(2*n+1)*k/16.0);
    if (k == 0)
      output[k] = output[k]*kInvSqrt2;
  }
}

void reference_dct_2d(int16_t input[64], double output[64]) {
  // First transform columns
  for (int i = 0; i < 8; ++i) {
    double temp_in[8], temp_out[8];
    for (int j = 0; j < 8; ++j)
      temp_in[j] = input[j*8 + i];
    reference_dct_1d(temp_in, temp_out);
    for (int j = 0; j < 8; ++j)
      output[j*8 + i] = temp_out[j];
  }
  // Then transform rows
  for (int i = 0; i < 8; ++i) {
    double temp_in[8], temp_out[8];
    for (int j = 0; j < 8; ++j)
      temp_in[j] = output[j + i*8];
    reference_dct_1d(temp_in, temp_out);
    for (int j = 0; j < 8; ++j)
      output[j + i*8] = temp_out[j];
  }
  // Scale by some magic number
  for (int i = 0; i < 64; ++i)
    output[i] *= 2;
}

void reference_idct_1d(double input[8], double output[8]) {
  const double kPi = 3.141592653589793238462643383279502884;
  const double kSqrt2 = 1.414213562373095048801688724209698;
  for (int k = 0; k < 8; k++) {
    output[k] = 0.0;
    for (int n = 0; n < 8; n++) {
      output[k] += input[n]*cos(kPi*(2*k+1)*n/16.0);
      if (n == 0)
        output[k] = output[k]/kSqrt2;
    }
  }
}

void reference_idct_2d(double input[64], int16_t output[64]) {
  double out[64], out2[64];
  // First transform rows
  for (int i = 0; i < 8; ++i) {
    double temp_in[8], temp_out[8];
    for (int j = 0; j < 8; ++j)
      temp_in[j] = input[j + i*8];
    reference_idct_1d(temp_in, temp_out);
    for (int j = 0; j < 8; ++j)
      out[j + i*8] = temp_out[j];
  }
  // Then transform columns
  for (int i = 0; i < 8; ++i) {
    double temp_in[8], temp_out[8];
    for (int j = 0; j < 8; ++j)
      temp_in[j] = out[j*8 + i];
    reference_idct_1d(temp_in, temp_out);
    for (int j = 0; j < 8; ++j)
      out2[j*8 + i] = temp_out[j];
  }
  for (int i = 0; i < 64; ++i)
    output[i] = round(out2[i]/32);
}

TEST(VP9Idct8x8Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 10000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t input[64], coeff[64];
    int16_t output_c[64];
    double output_r[64];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 64; ++j)
      input[j] = rnd.Rand8() - rnd.Rand8();

    const int pitch = 16;
    vp9_short_fdct8x8_c(input, output_c, pitch);
    reference_dct_2d(input, output_r);

    for (int j = 0; j < 64; ++j) {
      const double diff = output_c[j] - output_r[j];
      const double error = diff * diff;
      // An error in a DCT coefficient isn't that bad.
      // We care more about the reconstructed pixels.
      EXPECT_GE(2.0, error)
          << "Error: 8x8 FDCT/IDCT has error " << error
          << " at index " << j;
    }

#if 0
    // Tests that the reference iDCT and fDCT match.
    reference_dct_2d(input, output_r);
    reference_idct_2d(output_r, output_c);
    for (int j = 0; j < 64; ++j) {
      const int diff = output_c[j] -input[j];
      const int error = diff * diff;
      EXPECT_EQ(0, error)
          << "Error: 8x8 FDCT/IDCT has error " << error
          << " at index " << j;
    }
#endif
    reference_dct_2d(input, output_r);
    for (int j = 0; j < 64; ++j)
      coeff[j] = round(output_r[j]);
    vp9_short_idct8x8_c(coeff, output_c, pitch);
    for (int j = 0; j < 64; ++j) {
      const int diff = output_c[j] -input[j];
      const int error = diff * diff;
      EXPECT_GE(1, error)
          << "Error: 8x8 FDCT/IDCT has error " << error
          << " at index " << j;
    }
  }
}

}  // namespace