summaryrefslogtreecommitdiff
path: root/test/fdct8x8_test.cc
blob: 28b6afb0cd0db70c94235431dbf6c4cc56cb4b8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

extern "C" {
#include "vp8/encoder/dct.h"
#include "vp8/common/idct.h"
}

#include "acm_random.h"
#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {

TEST(VP8Fdct8x8Test, SignBiasCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int16_t test_input_block[64];
  int16_t test_output_block[64];
  const int pitch = 16;
  int count_sign_block[64][2];
  const int count_test_block = 100000;

  memset(count_sign_block, 0, sizeof(count_sign_block));

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 64; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    vp8_short_fdct8x8_c(test_input_block, test_output_block, pitch);

    for (int j = 0; j < 64; ++j) {
      if (test_output_block[j] < 0)
        ++count_sign_block[j][0];
      else if (test_output_block[j] > 0)
        ++count_sign_block[j][1];
    }
  }

  for (int j = 0; j < 64; ++j) {
    const bool bias_acceptable = (abs(count_sign_block[j][0] -
                                      count_sign_block[j][1]) < 1000);
    EXPECT_TRUE(bias_acceptable)
        << "Error: 8x8 FDCT has a sign bias > 1%"
        << " for input range [-255, 255] at index " << j;
  }

  memset(count_sign_block, 0, sizeof(count_sign_block));

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-15, 15].
    for (int j = 0; j < 64; ++j)
      test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);

    vp8_short_fdct8x8_c(test_input_block, test_output_block, pitch);

    for (int j = 0; j < 64; ++j) {
      if (test_output_block[j] < 0)
        ++count_sign_block[j][0];
      else if (test_output_block[j] > 0)
        ++count_sign_block[j][1];
    }
  }

  for (int j = 0; j < 64; ++j) {
    const bool bias_acceptable = (abs(count_sign_block[j][0] -
                                      count_sign_block[j][1]) < 10000);
    EXPECT_TRUE(bias_acceptable)
        << "Error: 8x8 FDCT has a sign bias > 10%"
        << " for input range [-15, 15] at index " << j;
  }
};

TEST(VP8Fdct8x8Test, RoundTripErrorCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int max_error = 0;
  double total_error = 0;
  const int count_test_block = 100000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[64];
    int16_t test_temp_block[64];
    int16_t test_output_block[64];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 64; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    const int pitch = 16;
    vp8_short_fdct8x8_c(test_input_block, test_temp_block, pitch);
    vp8_short_idct8x8_c(test_temp_block, test_output_block, pitch);

    for (int j = 0; j < 64; ++j) {
      const int diff = test_input_block[j] - test_output_block[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  EXPECT_GE(1, max_error)
      << "Error: 8x8 FDCT/IDCT has an individual roundtrip error > 1";

  EXPECT_GE(count_test_block/5, total_error)
      << "Error: 8x8 FDCT/IDCT has average roundtrip error > 1/5 per block";
};

TEST(VP8Fdct8x8Test, ExtremalCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int max_error = 0;
  double total_error = 0;
  const int count_test_block = 100000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[64];
    int16_t test_temp_block[64];
    int16_t test_output_block[64];

    // Initialize a test block with input range {-255, 255}.
    for (int j = 0; j < 64; ++j)
      test_input_block[j] = rnd.Rand8() % 2 ? 255 : -255;

    const int pitch = 16;
    vp8_short_fdct8x8_c(test_input_block, test_temp_block, pitch);
    vp8_short_idct8x8_c(test_temp_block, test_output_block, pitch);

    for (int j = 0; j < 64; ++j) {
      const int diff = test_input_block[j] - test_output_block[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }

    EXPECT_GE(1, max_error)
        << "Error: Extremal 8x8 FDCT/IDCT has an"
        << " individual roundtrip error > 1";

    EXPECT_GE(count_test_block/5, total_error)
        << "Error: Extremal 8x8 FDCT/IDCT has average"
        << " roundtrip error > 1/5 per block";
  }
};

}  // namespace