summaryrefslogtreecommitdiff
path: root/test/dct16x16_test.cc
blob: 9fb45d6b7e666f9ac981f8a0f3b8fde372088aef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "third_party/googletest/src/include/gtest/gtest.h"

extern "C" {
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
void vp9_short_idct16x16_add_c(short *input, uint8_t *output, int pitch);
}

#include "acm_random.h"
#include "vpx/vpx_integer.h"

using libvpx_test::ACMRandom;

namespace {

#ifdef _MSC_VER
static int round(double x) {
  if (x < 0)
    return (int)ceil(x - 0.5);
  else
    return (int)floor(x + 0.5);
}
#endif

const double PI = 3.1415926535898;
void reference2_16x16_idct_2d(double *input, double *output) {
  double x;
  for (int l = 0; l < 16; ++l) {
    for (int k = 0; k < 16; ++k) {
      double s = 0;
      for (int i = 0; i < 16; ++i) {
        for (int j = 0; j < 16; ++j) {
          x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/256;
          if (i != 0)
            x *= sqrt(2.0);
          if (j != 0)
            x *= sqrt(2.0);
          s += x;
        }
      }
      output[k*16+l] = s;
    }
  }
}


static const double C1 = 0.995184726672197;
static const double C2 = 0.98078528040323;
static const double C3 = 0.956940335732209;
static const double C4 = 0.923879532511287;
static const double C5 = 0.881921264348355;
static const double C6 = 0.831469612302545;
static const double C7 = 0.773010453362737;
static const double C8 = 0.707106781186548;
static const double C9 = 0.634393284163646;
static const double C10 = 0.555570233019602;
static const double C11 = 0.471396736825998;
static const double C12 = 0.38268343236509;
static const double C13 = 0.290284677254462;
static const double C14 = 0.195090322016128;
static const double C15 = 0.098017140329561;

static void butterfly_16x16_dct_1d(double input[16], double output[16]) {
  double step[16];
  double intermediate[16];
  double temp1, temp2;

  // step 1
  step[ 0] = input[0] + input[15];
  step[ 1] = input[1] + input[14];
  step[ 2] = input[2] + input[13];
  step[ 3] = input[3] + input[12];
  step[ 4] = input[4] + input[11];
  step[ 5] = input[5] + input[10];
  step[ 6] = input[6] + input[ 9];
  step[ 7] = input[7] + input[ 8];
  step[ 8] = input[7] - input[ 8];
  step[ 9] = input[6] - input[ 9];
  step[10] = input[5] - input[10];
  step[11] = input[4] - input[11];
  step[12] = input[3] - input[12];
  step[13] = input[2] - input[13];
  step[14] = input[1] - input[14];
  step[15] = input[0] - input[15];

  // step 2
  output[0] = step[0] + step[7];
  output[1] = step[1] + step[6];
  output[2] = step[2] + step[5];
  output[3] = step[3] + step[4];
  output[4] = step[3] - step[4];
  output[5] = step[2] - step[5];
  output[6] = step[1] - step[6];
  output[7] = step[0] - step[7];

  temp1 = step[ 8]*C7;
  temp2 = step[15]*C9;
  output[ 8] = temp1 + temp2;

  temp1 = step[ 9]*C11;
  temp2 = step[14]*C5;
  output[ 9] = temp1 - temp2;

  temp1 = step[10]*C3;
  temp2 = step[13]*C13;
  output[10] = temp1 + temp2;

  temp1 = step[11]*C15;
  temp2 = step[12]*C1;
  output[11] = temp1 - temp2;

  temp1 = step[11]*C1;
  temp2 = step[12]*C15;
  output[12] = temp2 + temp1;

  temp1 = step[10]*C13;
  temp2 = step[13]*C3;
  output[13] = temp2 - temp1;

  temp1 = step[ 9]*C5;
  temp2 = step[14]*C11;
  output[14] = temp2 + temp1;

  temp1 = step[ 8]*C9;
  temp2 = step[15]*C7;
  output[15] = temp2 - temp1;

  // step 3
  step[ 0] = output[0] + output[3];
  step[ 1] = output[1] + output[2];
  step[ 2] = output[1] - output[2];
  step[ 3] = output[0] - output[3];

  temp1 = output[4]*C14;
  temp2 = output[7]*C2;
  step[ 4] = temp1 + temp2;

  temp1 = output[5]*C10;
  temp2 = output[6]*C6;
  step[ 5] = temp1 + temp2;

  temp1 = output[5]*C6;
  temp2 = output[6]*C10;
  step[ 6] = temp2 - temp1;

  temp1 = output[4]*C2;
  temp2 = output[7]*C14;
  step[ 7] = temp2 - temp1;

  step[ 8] = output[ 8] + output[11];
  step[ 9] = output[ 9] + output[10];
  step[10] = output[ 9] - output[10];
  step[11] = output[ 8] - output[11];

  step[12] = output[12] + output[15];
  step[13] = output[13] + output[14];
  step[14] = output[13] - output[14];
  step[15] = output[12] - output[15];

  // step 4
  output[ 0] = (step[ 0] + step[ 1]);
  output[ 8] = (step[ 0] - step[ 1]);

  temp1 = step[2]*C12;
  temp2 = step[3]*C4;
  temp1 = temp1 + temp2;
  output[ 4] = 2*(temp1*C8);

  temp1 = step[2]*C4;
  temp2 = step[3]*C12;
  temp1 = temp2 - temp1;
  output[12] = 2*(temp1*C8);

  output[ 2] = 2*((step[4] + step[ 5])*C8);
  output[14] = 2*((step[7] - step[ 6])*C8);

  temp1 = step[4] - step[5];
  temp2 = step[6] + step[7];
  output[ 6] = (temp1 + temp2);
  output[10] = (temp1 - temp2);

  intermediate[8] = step[8] + step[14];
  intermediate[9] = step[9] + step[15];

  temp1 = intermediate[8]*C12;
  temp2 = intermediate[9]*C4;
  temp1 = temp1 - temp2;
  output[3] = 2*(temp1*C8);

  temp1 = intermediate[8]*C4;
  temp2 = intermediate[9]*C12;
  temp1 = temp2 + temp1;
  output[13] = 2*(temp1*C8);

  output[ 9] = 2*((step[10] + step[11])*C8);

  intermediate[11] = step[10] - step[11];
  intermediate[12] = step[12] + step[13];
  intermediate[13] = step[12] - step[13];
  intermediate[14] = step[ 8] - step[14];
  intermediate[15] = step[ 9] - step[15];

  output[15] = (intermediate[11] + intermediate[12]);
  output[ 1] = -(intermediate[11] - intermediate[12]);

  output[ 7] = 2*(intermediate[13]*C8);

  temp1 = intermediate[14]*C12;
  temp2 = intermediate[15]*C4;
  temp1 = temp1 - temp2;
  output[11] = -2*(temp1*C8);

  temp1 = intermediate[14]*C4;
  temp2 = intermediate[15]*C12;
  temp1 = temp2 + temp1;
  output[ 5] = 2*(temp1*C8);
}

static void reference_16x16_dct_1d(double in[16], double out[16]) {
  const double kPi = 3.141592653589793238462643383279502884;
  const double kInvSqrt2 = 0.707106781186547524400844362104;
  for (int k = 0; k < 16; k++) {
    out[k] = 0.0;
    for (int n = 0; n < 16; n++)
      out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0);
    if (k == 0)
      out[k] = out[k]*kInvSqrt2;
  }
}

void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) {
  // First transform columns
  for (int i = 0; i < 16; ++i) {
    double temp_in[16], temp_out[16];
    for (int j = 0; j < 16; ++j)
      temp_in[j] = input[j*16 + i];
    butterfly_16x16_dct_1d(temp_in, temp_out);
    for (int j = 0; j < 16; ++j)
      output[j*16 + i] = temp_out[j];
  }
  // Then transform rows
  for (int i = 0; i < 16; ++i) {
    double temp_in[16], temp_out[16];
    for (int j = 0; j < 16; ++j)
      temp_in[j] = output[j + i*16];
    butterfly_16x16_dct_1d(temp_in, temp_out);
    // Scale by some magic number
    for (int j = 0; j < 16; ++j)
      output[j + i*16] = temp_out[j]/2;
  }
}


TEST(VP9Idct16x16Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t in[256], coeff[256];
    uint8_t dst[256], src[256];
    double out_r[256];

    for (int j = 0; j < 256; ++j) {
      src[j] = rnd.Rand8();
      dst[j] = rnd.Rand8();
    }
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j)
      in[j] = src[j] - dst[j];

    reference_16x16_dct_2d(in, out_r);
    for (int j = 0; j < 256; j++)
      coeff[j] = round(out_r[j]);
    vp9_short_idct16x16_add_c(coeff, dst, 16);
    for (int j = 0; j < 256; ++j) {
      const int diff = dst[j] - src[j];
      const int error = diff * diff;
      EXPECT_GE(1, error)
          << "Error: 16x16 IDCT has error " << error
          << " at index " << j;
    }
  }
}

// we need enable fdct test once we re-do the 16 point fdct.
TEST(VP9Fdct16x16Test, AccuracyCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int max_error = 0;
  double total_error = 0;
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[256];
    int16_t test_temp_block[256];
    uint8_t dst[256], src[256];

    for (int j = 0; j < 256; ++j) {
      src[j] = rnd.Rand8();
      dst[j] = rnd.Rand8();
    }
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j)
      test_input_block[j] = src[j] - dst[j];

    const int pitch = 32;
    vp9_short_fdct16x16_c(test_input_block, test_temp_block, pitch);
    vp9_short_idct16x16_add_c(test_temp_block, dst, 16);

    for (int j = 0; j < 256; ++j) {
      const int diff = dst[j] - src[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  EXPECT_GE(1, max_error)
      << "Error: 16x16 FDCT/IDCT has an individual round trip error > 1";

  EXPECT_GE(count_test_block , total_error)
      << "Error: 16x16 FDCT/IDCT has average round trip error > 1 per block";
}

TEST(VP9Fdct16x16Test, CoeffSizeCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  const int count_test_block = 1000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t input_block[256], input_extreme_block[256];
    int16_t output_block[256], output_extreme_block[256];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 256; ++j) {
      input_block[j] = rnd.Rand8() - rnd.Rand8();
      input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255;
    }
    if (i == 0)
      for (int j = 0; j < 256; ++j)
        input_extreme_block[j] = 255;

    const int pitch = 32;
    vp9_short_fdct16x16_c(input_block, output_block, pitch);
    vp9_short_fdct16x16_c(input_extreme_block, output_extreme_block, pitch);

    // The minimum quant value is 4.
    for (int j = 0; j < 256; ++j) {
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j]))
          << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
      EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j]))
          << "Error: 16x16 FDCT extreme has coefficient larger than 4*DCT_MAX_VALUE";
    }
  }
}
}  // namespace