/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "./vpx_dsp_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/sum_neon.h" #include "vpx_ports/mem.h" #if defined(__ARM_FEATURE_DOTPROD) // Process a block of width 4 four rows at a time. static INLINE void variance_4xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = h; do { const uint8x16_t s = load_unaligned_u8q(src_ptr, src_stride); const uint8x16_t r = load_unaligned_u8q(ref_ptr, ref_stride); const uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); src_ptr += 4 * src_stride; ref_ptr += 4 * ref_stride; i -= 4; } while (i != 0); *sum = horizontal_add_int32x4( vreinterpretq_s32_u32(vsubq_u32(src_sum, ref_sum))); *sse = horizontal_add_uint32x4(sse_u32); } // Process a block of width 8 two rows at a time. static INLINE void variance_8xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = h; do { const uint8x16_t s = vcombine_u8(vld1_u8(src_ptr), vld1_u8(src_ptr + src_stride)); const uint8x16_t r = vcombine_u8(vld1_u8(ref_ptr), vld1_u8(ref_ptr + ref_stride)); const uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); src_ptr += 2 * src_stride; ref_ptr += 2 * ref_stride; i -= 2; } while (i != 0); *sum = horizontal_add_int32x4( vreinterpretq_s32_u32(vsubq_u32(src_sum, ref_sum))); *sse = horizontal_add_uint32x4(sse_u32); } // Process a block of width 16 one row at a time. static INLINE void variance_16xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = h; do { const uint8x16_t s = vld1q_u8(src_ptr); const uint8x16_t r = vld1q_u8(ref_ptr); const uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sum = horizontal_add_int32x4( vreinterpretq_s32_u32(vsubq_u32(src_sum, ref_sum))); *sse = horizontal_add_uint32x4(sse_u32); } // Process a block of any size where the width is divisible by 16. static INLINE void variance_large_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int w, int h, uint32_t *sse, int *sum) { uint32x4_t src_sum = vdupq_n_u32(0); uint32x4_t ref_sum = vdupq_n_u32(0); uint32x4_t sse_u32 = vdupq_n_u32(0); int i = h; do { int j = 0; do { const uint8x16_t s = vld1q_u8(src_ptr + j); const uint8x16_t r = vld1q_u8(ref_ptr + j); const uint8x16_t abs_diff = vabdq_u8(s, r); sse_u32 = vdotq_u32(sse_u32, abs_diff, abs_diff); src_sum = vdotq_u32(src_sum, s, vdupq_n_u8(1)); ref_sum = vdotq_u32(ref_sum, r, vdupq_n_u8(1)); j += 16; } while (j < w); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sum = horizontal_add_int32x4( vreinterpretq_s32_u32(vsubq_u32(src_sum, ref_sum))); *sse = horizontal_add_uint32x4(sse_u32); } static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 32, h, sse, sum); } static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 64, h, sse, sum); } #else // !defined(__ARM_FEATURE_DOTPROD) // Process a block of width 4 two rows at a time. static INLINE void variance_4xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32 = vdupq_n_s32(0); int i = h; // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128, but we use an 8-wide accumulator; so 256 4-wide rows. assert(h <= 256); do { const uint8x8_t s = load_unaligned_u8(src_ptr, src_stride); const uint8x8_t r = load_unaligned_u8(ref_ptr, ref_stride); const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32 = vmlal_s16(sse_s32, vget_low_s16(diff), vget_low_s16(diff)); sse_s32 = vmlal_s16(sse_s32, vget_high_s16(diff), vget_high_s16(diff)); src_ptr += 2 * src_stride; ref_ptr += 2 * ref_stride; i -= 2; } while (i != 0); *sum = horizontal_add_int16x8(sum_s16); *sse = (uint32_t)horizontal_add_int32x4(sse_s32); } // Process a block of width 8 one row at a time. static INLINE void variance_8xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16 = vdupq_n_s16(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int i = h; // Number of rows we can process before 'sum_s16' overflows: // 32767 / 255 ~= 128 assert(h <= 128); do { const uint8x8_t s = vld1_u8(src_ptr); const uint8x8_t r = vld1_u8(ref_ptr); const int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(s, r)); sum_s16 = vaddq_s16(sum_s16, diff); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff), vget_low_s16(diff)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff), vget_high_s16(diff)); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sum = horizontal_add_int16x8(sum_s16); *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } // Process a block of width 16 one row at a time. static INLINE void variance_16xh_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int h, uint32_t *sse, int *sum) { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; int i = h; // Number of rows we can process before 'sum_s16' accumulators overflow: // 32767 / 255 ~= 128, so 128 16-wide rows. assert(h <= 128); do { const uint8x16_t s = vld1q_u8(src_ptr); const uint8x16_t r = vld1q_u8(ref_ptr); const int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); const int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); src_ptr += src_stride; ref_ptr += ref_stride; } while (--i != 0); *sum = horizontal_add_int16x8(vaddq_s16(sum_s16[0], sum_s16[1])); *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } // Process a block of any size where the width is divisible by 16. static INLINE void variance_large_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, int w, int h, int h_limit, unsigned int *sse, int *sum) { int32x4_t sum_s32 = vdupq_n_s32(0); int32x4_t sse_s32[2] = { vdupq_n_s32(0), vdupq_n_s32(0) }; // 'h_limit' is the number of 'w'-width rows we can process before our 16-bit // accumulator overflows. After hitting this limit we accumulate into 32-bit // elements. int h_tmp = h > h_limit ? h_limit : h; int i = 0; do { int16x8_t sum_s16[2] = { vdupq_n_s16(0), vdupq_n_s16(0) }; do { int j = 0; do { const uint8x16_t s = vld1q_u8(src_ptr + j); const uint8x16_t r = vld1q_u8(ref_ptr + j); const int16x8_t diff_l = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(s), vget_low_u8(r))); const int16x8_t diff_h = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(s), vget_high_u8(r))); sum_s16[0] = vaddq_s16(sum_s16[0], diff_l); sum_s16[1] = vaddq_s16(sum_s16[1], diff_h); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_l), vget_low_s16(diff_l)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_l), vget_high_s16(diff_l)); sse_s32[0] = vmlal_s16(sse_s32[0], vget_low_s16(diff_h), vget_low_s16(diff_h)); sse_s32[1] = vmlal_s16(sse_s32[1], vget_high_s16(diff_h), vget_high_s16(diff_h)); j += 16; } while (j < w); src_ptr += src_stride; ref_ptr += ref_stride; i++; } while (i < h_tmp); sum_s32 = vpadalq_s16(sum_s32, sum_s16[0]); sum_s32 = vpadalq_s16(sum_s32, sum_s16[1]); h_tmp += h_limit; } while (i < h); *sum = horizontal_add_int32x4(sum_s32); *sse = (uint32_t)horizontal_add_int32x4(vaddq_s32(sse_s32[0], sse_s32[1])); } static INLINE void variance_32xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 32, h, 64, sse, sum); } static INLINE void variance_64xh_neon(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int h, uint32_t *sse, int *sum) { variance_large_neon(src, src_stride, ref, ref_stride, 64, h, 32, sse, sum); } #endif // defined(__ARM_FEATURE_DOTPROD) void vpx_get8x8var_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, int *sum) { variance_8xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 8, sse, sum); } void vpx_get16x16var_neon(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride, unsigned int *sse, int *sum) { variance_16xh_neon(src_ptr, src_stride, ref_ptr, ref_stride, 16, sse, sum); } #define VARIANCE_WXH_NEON(w, h, shift) \ unsigned int vpx_variance##w##x##h##_neon( \ const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \ unsigned int *sse) { \ int sum; \ variance_##w##xh_neon(src, src_stride, ref, ref_stride, h, sse, &sum); \ return *sse - (uint32_t)(((int64_t)sum * sum) >> shift); \ } VARIANCE_WXH_NEON(4, 4, 4) VARIANCE_WXH_NEON(4, 8, 5) VARIANCE_WXH_NEON(8, 4, 5) VARIANCE_WXH_NEON(8, 8, 6) VARIANCE_WXH_NEON(8, 16, 7) VARIANCE_WXH_NEON(16, 8, 7) VARIANCE_WXH_NEON(16, 16, 8) VARIANCE_WXH_NEON(16, 32, 9) VARIANCE_WXH_NEON(32, 16, 9) VARIANCE_WXH_NEON(32, 32, 10) VARIANCE_WXH_NEON(32, 64, 11) VARIANCE_WXH_NEON(64, 32, 11) VARIANCE_WXH_NEON(64, 64, 12) #if defined(__ARM_FEATURE_DOTPROD) unsigned int vpx_mse16x16_neon(const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride, unsigned int *sse) { int i; uint8x16_t a[2], b[2], abs_diff[2]; uint32x4_t sse_vec[2] = { vdupq_n_u32(0), vdupq_n_u32(0) }; for (i = 0; i < 8; i++) { a[0] = vld1q_u8(src_ptr); src_ptr += src_stride; a[1] = vld1q_u8(src_ptr); src_ptr += src_stride; b[0] = vld1q_u8(ref_ptr); ref_ptr += ref_stride; b[1] = vld1q_u8(ref_ptr); ref_ptr += ref_stride; abs_diff[0] = vabdq_u8(a[0], b[0]); abs_diff[1] = vabdq_u8(a[1], b[1]); sse_vec[0] = vdotq_u32(sse_vec[0], abs_diff[0], abs_diff[0]); sse_vec[1] = vdotq_u32(sse_vec[1], abs_diff[1], abs_diff[1]); } *sse = horizontal_add_uint32x4(vaddq_u32(sse_vec[0], sse_vec[1])); return horizontal_add_uint32x4(vaddq_u32(sse_vec[0], sse_vec[1])); } unsigned int vpx_get4x4sse_cs_neon(const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride) { uint8x8_t a[4], b[4], abs_diff[4]; uint32x2_t sse = vdup_n_u32(0); a[0] = vld1_u8(src_ptr); src_ptr += src_stride; b[0] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[1] = vld1_u8(src_ptr); src_ptr += src_stride; b[1] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[2] = vld1_u8(src_ptr); src_ptr += src_stride; b[2] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[3] = vld1_u8(src_ptr); b[3] = vld1_u8(ref_ptr); abs_diff[0] = vabd_u8(a[0], b[0]); abs_diff[1] = vabd_u8(a[1], b[1]); abs_diff[2] = vabd_u8(a[2], b[2]); abs_diff[3] = vabd_u8(a[3], b[3]); sse = vdot_u32(sse, abs_diff[0], abs_diff[0]); sse = vdot_u32(sse, abs_diff[1], abs_diff[1]); sse = vdot_u32(sse, abs_diff[2], abs_diff[2]); sse = vdot_u32(sse, abs_diff[3], abs_diff[3]); return vget_lane_u32(sse, 0); } #else // !defined(__ARM_FEATURE_DOTPROD) unsigned int vpx_mse16x16_neon(const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride, unsigned int *sse) { int i; uint8x16_t a[2], b[2]; int16x4_t diff_lo[4], diff_hi[4]; uint16x8_t diff[4]; int32x4_t sse_vec[4] = { vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0) }; for (i = 0; i < 8; i++) { a[0] = vld1q_u8(src_ptr); src_ptr += src_stride; a[1] = vld1q_u8(src_ptr); src_ptr += src_stride; b[0] = vld1q_u8(ref_ptr); ref_ptr += ref_stride; b[1] = vld1q_u8(ref_ptr); ref_ptr += ref_stride; diff[0] = vsubl_u8(vget_low_u8(a[0]), vget_low_u8(b[0])); diff[1] = vsubl_u8(vget_high_u8(a[0]), vget_high_u8(b[0])); diff[2] = vsubl_u8(vget_low_u8(a[1]), vget_low_u8(b[1])); diff[3] = vsubl_u8(vget_high_u8(a[1]), vget_high_u8(b[1])); diff_lo[0] = vreinterpret_s16_u16(vget_low_u16(diff[0])); diff_lo[1] = vreinterpret_s16_u16(vget_low_u16(diff[1])); sse_vec[0] = vmlal_s16(sse_vec[0], diff_lo[0], diff_lo[0]); sse_vec[1] = vmlal_s16(sse_vec[1], diff_lo[1], diff_lo[1]); diff_lo[2] = vreinterpret_s16_u16(vget_low_u16(diff[2])); diff_lo[3] = vreinterpret_s16_u16(vget_low_u16(diff[3])); sse_vec[2] = vmlal_s16(sse_vec[2], diff_lo[2], diff_lo[2]); sse_vec[3] = vmlal_s16(sse_vec[3], diff_lo[3], diff_lo[3]); diff_hi[0] = vreinterpret_s16_u16(vget_high_u16(diff[0])); diff_hi[1] = vreinterpret_s16_u16(vget_high_u16(diff[1])); sse_vec[0] = vmlal_s16(sse_vec[0], diff_hi[0], diff_hi[0]); sse_vec[1] = vmlal_s16(sse_vec[1], diff_hi[1], diff_hi[1]); diff_hi[2] = vreinterpret_s16_u16(vget_high_u16(diff[2])); diff_hi[3] = vreinterpret_s16_u16(vget_high_u16(diff[3])); sse_vec[2] = vmlal_s16(sse_vec[2], diff_hi[2], diff_hi[2]); sse_vec[3] = vmlal_s16(sse_vec[3], diff_hi[3], diff_hi[3]); } sse_vec[0] = vaddq_s32(sse_vec[0], sse_vec[1]); sse_vec[2] = vaddq_s32(sse_vec[2], sse_vec[3]); sse_vec[0] = vaddq_s32(sse_vec[0], sse_vec[2]); *sse = horizontal_add_uint32x4(vreinterpretq_u32_s32(sse_vec[0])); return horizontal_add_uint32x4(vreinterpretq_u32_s32(sse_vec[0])); } unsigned int vpx_get4x4sse_cs_neon(const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride) { uint8x8_t a[4], b[4]; int16x4_t diff_lo[4]; uint16x8_t diff[4]; int32x4_t sse; a[0] = vld1_u8(src_ptr); src_ptr += src_stride; b[0] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[1] = vld1_u8(src_ptr); src_ptr += src_stride; b[1] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[2] = vld1_u8(src_ptr); src_ptr += src_stride; b[2] = vld1_u8(ref_ptr); ref_ptr += ref_stride; a[3] = vld1_u8(src_ptr); b[3] = vld1_u8(ref_ptr); diff[0] = vsubl_u8(a[0], b[0]); diff[1] = vsubl_u8(a[1], b[1]); diff[2] = vsubl_u8(a[2], b[2]); diff[3] = vsubl_u8(a[3], b[3]); diff_lo[0] = vget_low_s16(vreinterpretq_s16_u16(diff[0])); diff_lo[1] = vget_low_s16(vreinterpretq_s16_u16(diff[1])); diff_lo[2] = vget_low_s16(vreinterpretq_s16_u16(diff[2])); diff_lo[3] = vget_low_s16(vreinterpretq_s16_u16(diff[3])); sse = vmull_s16(diff_lo[0], diff_lo[0]); sse = vmlal_s16(sse, diff_lo[1], diff_lo[1]); sse = vmlal_s16(sse, diff_lo[2], diff_lo[2]); sse = vmlal_s16(sse, diff_lo[3], diff_lo[3]); return horizontal_add_uint32x4(vreinterpretq_u32_s32(sse)); } #endif // defined(__ARM_FEATURE_DOTPROD)