/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/txfm_common.h" #include "vpx_dsp/arm/mem_neon.h" #include "vpx_dsp/arm/transpose_neon.h" // Some builds of gcc 4.9.2 and .3 have trouble with some of the inline // functions. #if !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && \ __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4 void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) { vpx_fdct16x16_c(input, output, stride); } #else static INLINE void load(const int16_t *a, int stride, int16x8_t *b /*[16]*/) { b[0] = vld1q_s16(a); a += stride; b[1] = vld1q_s16(a); a += stride; b[2] = vld1q_s16(a); a += stride; b[3] = vld1q_s16(a); a += stride; b[4] = vld1q_s16(a); a += stride; b[5] = vld1q_s16(a); a += stride; b[6] = vld1q_s16(a); a += stride; b[7] = vld1q_s16(a); a += stride; b[8] = vld1q_s16(a); a += stride; b[9] = vld1q_s16(a); a += stride; b[10] = vld1q_s16(a); a += stride; b[11] = vld1q_s16(a); a += stride; b[12] = vld1q_s16(a); a += stride; b[13] = vld1q_s16(a); a += stride; b[14] = vld1q_s16(a); a += stride; b[15] = vld1q_s16(a); } // Store 8 16x8 values, assuming stride == 16. static INLINE void store(tran_low_t *a, const int16x8_t *b /*[8]*/) { store_s16q_to_tran_low(a, b[0]); a += 16; store_s16q_to_tran_low(a, b[1]); a += 16; store_s16q_to_tran_low(a, b[2]); a += 16; store_s16q_to_tran_low(a, b[3]); a += 16; store_s16q_to_tran_low(a, b[4]); a += 16; store_s16q_to_tran_low(a, b[5]); a += 16; store_s16q_to_tran_low(a, b[6]); a += 16; store_s16q_to_tran_low(a, b[7]); } // Load step of each pass. Add and subtract clear across the input, requiring // all 16 values to be loaded. For the first pass it also multiplies by 4. // To maybe reduce register usage this could be combined with the load() step to // get the first 4 and last 4 values, cross those, then load the middle 8 values // and cross them. static INLINE void cross_input(const int16x8_t *a /*[16]*/, int16x8_t *b /*[16]*/, const int pass) { if (pass == 0) { b[0] = vshlq_n_s16(vaddq_s16(a[0], a[15]), 2); b[1] = vshlq_n_s16(vaddq_s16(a[1], a[14]), 2); b[2] = vshlq_n_s16(vaddq_s16(a[2], a[13]), 2); b[3] = vshlq_n_s16(vaddq_s16(a[3], a[12]), 2); b[4] = vshlq_n_s16(vaddq_s16(a[4], a[11]), 2); b[5] = vshlq_n_s16(vaddq_s16(a[5], a[10]), 2); b[6] = vshlq_n_s16(vaddq_s16(a[6], a[9]), 2); b[7] = vshlq_n_s16(vaddq_s16(a[7], a[8]), 2); b[8] = vshlq_n_s16(vsubq_s16(a[7], a[8]), 2); b[9] = vshlq_n_s16(vsubq_s16(a[6], a[9]), 2); b[10] = vshlq_n_s16(vsubq_s16(a[5], a[10]), 2); b[11] = vshlq_n_s16(vsubq_s16(a[4], a[11]), 2); b[12] = vshlq_n_s16(vsubq_s16(a[3], a[12]), 2); b[13] = vshlq_n_s16(vsubq_s16(a[2], a[13]), 2); b[14] = vshlq_n_s16(vsubq_s16(a[1], a[14]), 2); b[15] = vshlq_n_s16(vsubq_s16(a[0], a[15]), 2); } else { b[0] = vaddq_s16(a[0], a[15]); b[1] = vaddq_s16(a[1], a[14]); b[2] = vaddq_s16(a[2], a[13]); b[3] = vaddq_s16(a[3], a[12]); b[4] = vaddq_s16(a[4], a[11]); b[5] = vaddq_s16(a[5], a[10]); b[6] = vaddq_s16(a[6], a[9]); b[7] = vaddq_s16(a[7], a[8]); b[8] = vsubq_s16(a[7], a[8]); b[9] = vsubq_s16(a[6], a[9]); b[10] = vsubq_s16(a[5], a[10]); b[11] = vsubq_s16(a[4], a[11]); b[12] = vsubq_s16(a[3], a[12]); b[13] = vsubq_s16(a[2], a[13]); b[14] = vsubq_s16(a[1], a[14]); b[15] = vsubq_s16(a[0], a[15]); } } // Quarter round at the beginning of the second pass. Can't use vrshr (rounding) // because this only adds 1, not 1 << 2. static INLINE void partial_round_shift(int16x8_t *a /*[16]*/) { const int16x8_t one = vdupq_n_s16(1); a[0] = vshrq_n_s16(vaddq_s16(a[0], one), 2); a[1] = vshrq_n_s16(vaddq_s16(a[1], one), 2); a[2] = vshrq_n_s16(vaddq_s16(a[2], one), 2); a[3] = vshrq_n_s16(vaddq_s16(a[3], one), 2); a[4] = vshrq_n_s16(vaddq_s16(a[4], one), 2); a[5] = vshrq_n_s16(vaddq_s16(a[5], one), 2); a[6] = vshrq_n_s16(vaddq_s16(a[6], one), 2); a[7] = vshrq_n_s16(vaddq_s16(a[7], one), 2); a[8] = vshrq_n_s16(vaddq_s16(a[8], one), 2); a[9] = vshrq_n_s16(vaddq_s16(a[9], one), 2); a[10] = vshrq_n_s16(vaddq_s16(a[10], one), 2); a[11] = vshrq_n_s16(vaddq_s16(a[11], one), 2); a[12] = vshrq_n_s16(vaddq_s16(a[12], one), 2); a[13] = vshrq_n_s16(vaddq_s16(a[13], one), 2); a[14] = vshrq_n_s16(vaddq_s16(a[14], one), 2); a[15] = vshrq_n_s16(vaddq_s16(a[15], one), 2); } // fdct_round_shift((a +/- b) * c) static INLINE void butterfly_one_coeff(const int16x8_t a, const int16x8_t b, const tran_high_t c, int16x8_t *add, int16x8_t *sub) { const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c); const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c); const int32x4_t sum0 = vmlal_n_s16(a0, vget_low_s16(b), c); const int32x4_t sum1 = vmlal_n_s16(a1, vget_high_s16(b), c); const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c); const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c); const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14); const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14); const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14); const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14); *add = vcombine_s16(rounded0, rounded1); *sub = vcombine_s16(rounded2, rounded3); } // fdct_round_shift(a * c0 +/- b * c1) static INLINE void butterfly_two_coeff(const int16x8_t a, const int16x8_t b, const tran_high_t c0, const tran_high_t c1, int16x8_t *add, int16x8_t *sub) { const int32x4_t a0 = vmull_n_s16(vget_low_s16(a), c0); const int32x4_t a1 = vmull_n_s16(vget_high_s16(a), c0); const int32x4_t a2 = vmull_n_s16(vget_low_s16(a), c1); const int32x4_t a3 = vmull_n_s16(vget_high_s16(a), c1); const int32x4_t sum0 = vmlal_n_s16(a2, vget_low_s16(b), c0); const int32x4_t sum1 = vmlal_n_s16(a3, vget_high_s16(b), c0); const int32x4_t diff0 = vmlsl_n_s16(a0, vget_low_s16(b), c1); const int32x4_t diff1 = vmlsl_n_s16(a1, vget_high_s16(b), c1); const int16x4_t rounded0 = vqrshrn_n_s32(sum0, 14); const int16x4_t rounded1 = vqrshrn_n_s32(sum1, 14); const int16x4_t rounded2 = vqrshrn_n_s32(diff0, 14); const int16x4_t rounded3 = vqrshrn_n_s32(diff1, 14); *add = vcombine_s16(rounded0, rounded1); *sub = vcombine_s16(rounded2, rounded3); } // Transpose 8x8 to a new location. Don't use transpose_neon.h because those // are all in-place. static INLINE void transpose_8x8(const int16x8_t *a /*[8]*/, int16x8_t *b /*[8]*/) { // Swap 16 bit elements. const int16x8x2_t c0 = vtrnq_s16(a[0], a[1]); const int16x8x2_t c1 = vtrnq_s16(a[2], a[3]); const int16x8x2_t c2 = vtrnq_s16(a[4], a[5]); const int16x8x2_t c3 = vtrnq_s16(a[6], a[7]); // Swap 32 bit elements. const int32x4x2_t d0 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[0]), vreinterpretq_s32_s16(c1.val[0])); const int32x4x2_t d1 = vtrnq_s32(vreinterpretq_s32_s16(c0.val[1]), vreinterpretq_s32_s16(c1.val[1])); const int32x4x2_t d2 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[0]), vreinterpretq_s32_s16(c3.val[0])); const int32x4x2_t d3 = vtrnq_s32(vreinterpretq_s32_s16(c2.val[1]), vreinterpretq_s32_s16(c3.val[1])); // Swap 64 bit elements const int16x8x2_t e0 = vpx_vtrnq_s64_to_s16(d0.val[0], d2.val[0]); const int16x8x2_t e1 = vpx_vtrnq_s64_to_s16(d1.val[0], d3.val[0]); const int16x8x2_t e2 = vpx_vtrnq_s64_to_s16(d0.val[1], d2.val[1]); const int16x8x2_t e3 = vpx_vtrnq_s64_to_s16(d1.val[1], d3.val[1]); b[0] = e0.val[0]; b[1] = e1.val[0]; b[2] = e2.val[0]; b[3] = e3.val[0]; b[4] = e0.val[1]; b[5] = e1.val[1]; b[6] = e2.val[1]; b[7] = e3.val[1]; } // Main body of fdct16x16. static void dct_body(const int16x8_t *in /*[16]*/, int16x8_t *out /*[16]*/) { int16x8_t s[8]; int16x8_t x[4]; int16x8_t step[8]; // stage 1 // From fwd_txfm.c: Work on the first eight values; fdct8(input, // even_results);" s[0] = vaddq_s16(in[0], in[7]); s[1] = vaddq_s16(in[1], in[6]); s[2] = vaddq_s16(in[2], in[5]); s[3] = vaddq_s16(in[3], in[4]); s[4] = vsubq_s16(in[3], in[4]); s[5] = vsubq_s16(in[2], in[5]); s[6] = vsubq_s16(in[1], in[6]); s[7] = vsubq_s16(in[0], in[7]); // fdct4(step, step); x[0] = vaddq_s16(s[0], s[3]); x[1] = vaddq_s16(s[1], s[2]); x[2] = vsubq_s16(s[1], s[2]); x[3] = vsubq_s16(s[0], s[3]); // out[0] = fdct_round_shift((x0 + x1) * cospi_16_64) // out[8] = fdct_round_shift((x0 - x1) * cospi_16_64) butterfly_one_coeff(x[0], x[1], cospi_16_64, &out[0], &out[8]); // out[4] = fdct_round_shift(x3 * cospi_8_64 + x2 * cospi_24_64); // out[12] = fdct_round_shift(x3 * cospi_24_64 - x2 * cospi_8_64); butterfly_two_coeff(x[3], x[2], cospi_24_64, cospi_8_64, &out[4], &out[12]); // Stage 2 // Re-using source s5/s6 // s5 = fdct_round_shift((s6 - s5) * cospi_16_64) // s6 = fdct_round_shift((s6 + s5) * cospi_16_64) butterfly_one_coeff(s[6], s[5], cospi_16_64, &s[6], &s[5]); // Stage 3 x[0] = vaddq_s16(s[4], s[5]); x[1] = vsubq_s16(s[4], s[5]); x[2] = vsubq_s16(s[7], s[6]); x[3] = vaddq_s16(s[7], s[6]); // Stage 4 // out[2] = fdct_round_shift(x0 * cospi_28_64 + x3 * cospi_4_64) // out[14] = fdct_round_shift(x3 * cospi_28_64 + x0 * -cospi_4_64) butterfly_two_coeff(x[3], x[0], cospi_28_64, cospi_4_64, &out[2], &out[14]); // out[6] = fdct_round_shift(x1 * cospi_12_64 + x2 * cospi_20_64) // out[10] = fdct_round_shift(x2 * cospi_12_64 + x1 * -cospi_20_64) butterfly_two_coeff(x[2], x[1], cospi_12_64, cospi_20_64, &out[10], &out[6]); // step 2 // From fwd_txfm.c: Work on the next eight values; step1 -> odd_results" // That file distinguished between "in_high" and "step1" but the only // difference is that "in_high" is the first 8 values and "step 1" is the // second. Here, since they are all in one array, "step1" values are += 8. // step2[2] = fdct_round_shift((step1[5] - step1[2]) * cospi_16_64) // step2[3] = fdct_round_shift((step1[4] - step1[3]) * cospi_16_64) // step2[4] = fdct_round_shift((step1[4] + step1[3]) * cospi_16_64) // step2[5] = fdct_round_shift((step1[5] + step1[2]) * cospi_16_64) butterfly_one_coeff(in[13], in[10], cospi_16_64, &s[5], &s[2]); butterfly_one_coeff(in[12], in[11], cospi_16_64, &s[4], &s[3]); // step 3 s[0] = vaddq_s16(in[8], s[3]); s[1] = vaddq_s16(in[9], s[2]); x[0] = vsubq_s16(in[9], s[2]); x[1] = vsubq_s16(in[8], s[3]); x[2] = vsubq_s16(in[15], s[4]); x[3] = vsubq_s16(in[14], s[5]); s[6] = vaddq_s16(in[14], s[5]); s[7] = vaddq_s16(in[15], s[4]); // step 4 // step2[1] = fdct_round_shift(step3[1] *-cospi_8_64 + step3[6] * cospi_24_64) // step2[6] = fdct_round_shift(step3[1] * cospi_24_64 + step3[6] * cospi_8_64) butterfly_two_coeff(s[6], s[1], cospi_24_64, cospi_8_64, &s[6], &s[1]); // step2[2] = fdct_round_shift(step3[2] * cospi_24_64 + step3[5] * cospi_8_64) // step2[5] = fdct_round_shift(step3[2] * cospi_8_64 - step3[5] * cospi_24_64) butterfly_two_coeff(x[0], x[3], cospi_8_64, cospi_24_64, &s[2], &s[5]); // step 5 step[0] = vaddq_s16(s[0], s[1]); step[1] = vsubq_s16(s[0], s[1]); step[2] = vaddq_s16(x[1], s[2]); step[3] = vsubq_s16(x[1], s[2]); step[4] = vsubq_s16(x[2], s[5]); step[5] = vaddq_s16(x[2], s[5]); step[6] = vsubq_s16(s[7], s[6]); step[7] = vaddq_s16(s[7], s[6]); // step 6 // out[1] = fdct_round_shift(step1[0] * cospi_30_64 + step1[7] * cospi_2_64) // out[9] = fdct_round_shift(step1[1] * cospi_14_64 + step1[6] * cospi_18_64) // out[5] = fdct_round_shift(step1[2] * cospi_22_64 + step1[5] * cospi_10_64) // out[13] = fdct_round_shift(step1[3] * cospi_6_64 + step1[4] * cospi_26_64) // out[3] = fdct_round_shift(step1[3] * -cospi_26_64 + step1[4] * cospi_6_64) // out[11] = fdct_round_shift(step1[2] * -cospi_10_64 + step1[5] * // cospi_22_64) // out[7] = fdct_round_shift(step1[1] * -cospi_18_64 + step1[6] * cospi_14_64) // out[15] = fdct_round_shift(step1[0] * -cospi_2_64 + step1[7] * cospi_30_64) butterfly_two_coeff(step[6], step[1], cospi_14_64, cospi_18_64, &out[9], &out[7]); butterfly_two_coeff(step[7], step[0], cospi_30_64, cospi_2_64, &out[1], &out[15]); butterfly_two_coeff(step[4], step[3], cospi_6_64, cospi_26_64, &out[13], &out[3]); butterfly_two_coeff(step[5], step[2], cospi_22_64, cospi_10_64, &out[5], &out[11]); } void vpx_fdct16x16_neon(const int16_t *input, tran_low_t *output, int stride) { int16x8_t temp0[16]; int16x8_t temp1[16]; int16x8_t temp2[16]; int16x8_t temp3[16]; // Left half. load(input, stride, temp0); cross_input(temp0, temp1, 0); dct_body(temp1, temp0); // Right half. load(input + 8, stride, temp1); cross_input(temp1, temp2, 0); dct_body(temp2, temp1); // Transpose top left and top right quarters into one contiguous location to // process to the top half. transpose_8x8(&temp0[0], &temp2[0]); transpose_8x8(&temp1[0], &temp2[8]); partial_round_shift(temp2); cross_input(temp2, temp3, 1); dct_body(temp3, temp2); transpose_s16_8x8(&temp2[0], &temp2[1], &temp2[2], &temp2[3], &temp2[4], &temp2[5], &temp2[6], &temp2[7]); transpose_s16_8x8(&temp2[8], &temp2[9], &temp2[10], &temp2[11], &temp2[12], &temp2[13], &temp2[14], &temp2[15]); store(output, temp2); store(output + 8, temp2 + 8); output += 8 * 16; // Transpose bottom left and bottom right quarters into one contiguous // location to process to the bottom half. transpose_8x8(&temp0[8], &temp1[0]); transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12], &temp1[13], &temp1[14], &temp1[15]); partial_round_shift(temp1); cross_input(temp1, temp0, 1); dct_body(temp0, temp1); transpose_s16_8x8(&temp1[0], &temp1[1], &temp1[2], &temp1[3], &temp1[4], &temp1[5], &temp1[6], &temp1[7]); transpose_s16_8x8(&temp1[8], &temp1[9], &temp1[10], &temp1[11], &temp1[12], &temp1[13], &temp1[14], &temp1[15]); store(output, temp1); store(output + 8, temp1 + 8); } #endif // !defined(__clang__) && !defined(__ANDROID__) && defined(__GNUC__) && // __GNUC__ == 4 && __GNUC_MINOR__ == 9 && __GNUC_PATCHLEVEL__ < 4