/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_tokenize.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_entropy.h" /* Global event counters used for accumulating statistics across several compressions, then generating vp9_context.c = initial stats. */ #ifdef ENTROPY_STATS vp9_coeff_accum context_counters_4x4[BLOCK_TYPES_4X4]; vp9_coeff_accum hybrid_context_counters_4x4[BLOCK_TYPES_4X4_HYBRID]; vp9_coeff_accum context_counters_8x8[BLOCK_TYPES_8X8]; vp9_coeff_accum hybrid_context_counters_8x8[BLOCK_TYPES_8X8_HYBRID]; vp9_coeff_accum context_counters_16x16[BLOCK_TYPES_16X16]; vp9_coeff_accum hybrid_context_counters_16x16[BLOCK_TYPES_16X16_HYBRID]; vp9_coeff_accum context_counters_32x32[BLOCK_TYPES_32X32]; extern vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES_4X4]; extern vp9_coeff_stats hybrid_tree_update_hist_4x4[BLOCK_TYPES_4X4_HYBRID]; extern vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES_8X8]; extern vp9_coeff_stats hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8_HYBRID]; extern vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES_16X16]; extern vp9_coeff_stats hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16_HYBRID]; extern vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES_32X32]; #endif /* ENTROPY_STATS */ static TOKENVALUE dct_value_tokens[DCT_MAX_VALUE * 2]; const TOKENVALUE *vp9_dct_value_tokens_ptr; static int dct_value_cost[DCT_MAX_VALUE * 2]; const int *vp9_dct_value_cost_ptr; static void fill_value_tokens() { TOKENVALUE *const t = dct_value_tokens + DCT_MAX_VALUE; vp9_extra_bit_struct *const e = vp9_extra_bits; int i = -DCT_MAX_VALUE; int sign = 1; do { if (!i) sign = 0; { const int a = sign ? -i : i; int eb = sign; if (a > 4) { int j = 4; while (++j < 11 && e[j].base_val <= a) {} t[i].Token = --j; eb |= (a - e[j].base_val) << 1; } else t[i].Token = a; t[i].Extra = eb; } // initialize the cost for extra bits for all possible coefficient value. { int cost = 0; vp9_extra_bit_struct *p = vp9_extra_bits + t[i].Token; if (p->base_val) { const int extra = t[i].Extra; const int Length = p->Len; if (Length) cost += treed_cost(p->tree, p->prob, extra >> 1, Length); cost += vp9_cost_bit(vp9_prob_half, extra & 1); /* sign */ dct_value_cost[i + DCT_MAX_VALUE] = cost; } } } while (++i < DCT_MAX_VALUE); vp9_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE; vp9_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE; } static void tokenize_b(VP9_COMP *cpi, MACROBLOCKD *xd, const int ib, TOKENEXTRA **tp, PLANE_TYPE type, TX_SIZE tx_size, int dry_run) { int pt; /* near block/prev token context index */ int c = 0; int recent_energy = 0; const BLOCKD * const b = xd->block + ib; const int eob = b->eob; /* one beyond last nonzero coeff */ TOKENEXTRA *t = *tp; /* store tokens starting here */ int16_t *qcoeff_ptr = b->qcoeff; int seg_eob; const int segment_id = xd->mode_info_context->mbmi.segment_id; const int *scan; vp9_coeff_count *counts; vp9_coeff_probs *probs; const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type(xd, b) : DCT_DCT; ENTROPY_CONTEXT *const a = (ENTROPY_CONTEXT *)xd->above_context + vp9_block2above[tx_size][ib]; ENTROPY_CONTEXT *const l = (ENTROPY_CONTEXT *)xd->left_context + vp9_block2left[tx_size][ib]; ENTROPY_CONTEXT a_ec = *a, l_ec = *l; ENTROPY_CONTEXT *const a1 = (ENTROPY_CONTEXT *)(&xd->above_context[1]) + vp9_block2above[tx_size][ib]; ENTROPY_CONTEXT *const l1 = (ENTROPY_CONTEXT *)(&xd->left_context[1]) + vp9_block2left[tx_size][ib]; switch (tx_size) { default: case TX_4X4: seg_eob = 16; scan = vp9_default_zig_zag1d_4x4; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_4x4; probs = cpi->common.fc.hybrid_coef_probs_4x4; if (tx_type == ADST_DCT) { scan = vp9_row_scan_4x4; } else if (tx_type == DCT_ADST) { scan = vp9_col_scan_4x4; } } else { counts = cpi->coef_counts_4x4; probs = cpi->common.fc.coef_probs_4x4; } break; case TX_8X8: #if CONFIG_CNVCONTEXT a_ec = (a[0] + a[1]) != 0; l_ec = (l[0] + l[1]) != 0; #endif seg_eob = 64; scan = vp9_default_zig_zag1d_8x8; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_8x8; probs = cpi->common.fc.hybrid_coef_probs_8x8; } else { counts = cpi->coef_counts_8x8; probs = cpi->common.fc.coef_probs_8x8; } break; case TX_16X16: #if CONFIG_CNVCONTEXT if (type != PLANE_TYPE_UV) { a_ec = (a[0] + a[1] + a[2] + a[3]) != 0; l_ec = (l[0] + l[1] + l[2] + l[3]) != 0; } else { a_ec = (a[0] + a[1] + a1[0] + a1[1]) != 0; l_ec = (l[0] + l[1] + l1[0] + l1[1]) != 0; } #endif seg_eob = 256; scan = vp9_default_zig_zag1d_16x16; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_16x16; probs = cpi->common.fc.hybrid_coef_probs_16x16; } else { counts = cpi->coef_counts_16x16; probs = cpi->common.fc.coef_probs_16x16; } if (type == PLANE_TYPE_UV) { int uv_idx = (ib - 16) >> 2; qcoeff_ptr = xd->sb_coeff_data.qcoeff + 1024 + 256 * uv_idx; } break; case TX_32X32: #if CONFIG_CNVCONTEXT a_ec = a[0] + a[1] + a[2] + a[3] + a1[0] + a1[1] + a1[2] + a1[3]; l_ec = l[0] + l[1] + l[2] + l[3] + l1[0] + l1[1] + l1[2] + l1[3]; a_ec = a_ec != 0; l_ec = l_ec != 0; #endif seg_eob = 1024; scan = vp9_default_zig_zag1d_32x32; counts = cpi->coef_counts_32x32; probs = cpi->common.fc.coef_probs_32x32; qcoeff_ptr = xd->sb_coeff_data.qcoeff; break; } VP9_COMBINEENTROPYCONTEXTS(pt, a_ec, l_ec); if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) seg_eob = 0; do { const int band = get_coef_band(c); int token; if (c < eob) { const int rc = scan[c]; const int v = qcoeff_ptr[rc]; assert(-DCT_MAX_VALUE <= v && v < DCT_MAX_VALUE); t->Extra = vp9_dct_value_tokens_ptr[v].Extra; token = vp9_dct_value_tokens_ptr[v].Token; } else { token = DCT_EOB_TOKEN; } t->Token = token; t->context_tree = probs[type][band][pt]; t->skip_eob_node = (pt == 0) && (band > 0); assert(vp9_coef_encodings[t->Token].Len - t->skip_eob_node > 0); if (!dry_run) { ++counts[type][band][pt][token]; } pt = vp9_get_coef_context(&recent_energy, token); ++t; } while (c < eob && ++c < seg_eob); *tp = t; a_ec = l_ec = (c > 0); /* 0 <-> all coeff data is zero */ a[0] = a_ec; l[0] = l_ec; if (tx_size == TX_8X8) { a[1] = a_ec; l[1] = l_ec; } else if (tx_size == TX_16X16) { if (type != PLANE_TYPE_UV) { a[1] = a[2] = a[3] = a_ec; l[1] = l[2] = l[3] = l_ec; } else { a1[0] = a1[1] = a[1] = a_ec; l1[0] = l1[1] = l[1] = l_ec; } } else if (tx_size == TX_32X32) { a[1] = a[2] = a[3] = a_ec; l[1] = l[2] = l[3] = l_ec; a1[0] = a1[1] = a1[2] = a1[3] = a_ec; l1[0] = l1[1] = l1[2] = l1[3] = l_ec; } } int vp9_mby_is_skippable_4x4(MACROBLOCKD *xd) { int skip = 1; int i = 0; for (i = 0; i < 16; i++) skip &= (!xd->block[i].eob); return skip; } int vp9_mbuv_is_skippable_4x4(MACROBLOCKD *xd) { int skip = 1; int i; for (i = 16; i < 24; i++) skip &= (!xd->block[i].eob); return skip; } static int mb_is_skippable_4x4(MACROBLOCKD *xd) { return (vp9_mby_is_skippable_4x4(xd) & vp9_mbuv_is_skippable_4x4(xd)); } int vp9_mby_is_skippable_8x8(MACROBLOCKD *xd) { int skip = 1; int i = 0; for (i = 0; i < 16; i += 4) skip &= (!xd->block[i].eob); return skip; } int vp9_mbuv_is_skippable_8x8(MACROBLOCKD *xd) { return (!xd->block[16].eob) & (!xd->block[20].eob); } static int mb_is_skippable_8x8(MACROBLOCKD *xd) { return (vp9_mby_is_skippable_8x8(xd) & vp9_mbuv_is_skippable_8x8(xd)); } static int mb_is_skippable_8x8_4x4uv(MACROBLOCKD *xd) { return (vp9_mby_is_skippable_8x8(xd) & vp9_mbuv_is_skippable_4x4(xd)); } int vp9_mby_is_skippable_16x16(MACROBLOCKD *xd) { int skip = 1; skip &= !xd->block[0].eob; return skip; } static int mb_is_skippable_16x16(MACROBLOCKD *xd) { return (vp9_mby_is_skippable_16x16(xd) & vp9_mbuv_is_skippable_8x8(xd)); } int vp9_sby_is_skippable_32x32(MACROBLOCKD *xd) { int skip = 1; skip &= !xd->block[0].eob; return skip; } int vp9_sbuv_is_skippable_16x16(MACROBLOCKD *xd) { return (!xd->block[16].eob) & (!xd->block[20].eob); } static int sb_is_skippable_32x32(MACROBLOCKD *xd) { return vp9_sby_is_skippable_32x32(xd) && vp9_sbuv_is_skippable_16x16(xd); } void vp9_tokenize_sb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { VP9_COMMON * const cm = &cpi->common; MB_MODE_INFO * const mbmi = &xd->mode_info_context->mbmi; TOKENEXTRA *t_backup = *t; const int mb_skip_context = vp9_get_pred_context(cm, xd, PRED_MBSKIP); const int segment_id = mbmi->segment_id; const int skip_inc = !vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP); int b; mbmi->mb_skip_coeff = sb_is_skippable_32x32(xd); if (mbmi->mb_skip_coeff) { if (!dry_run) cpi->skip_true_count[mb_skip_context] += skip_inc; if (!cm->mb_no_coeff_skip) { vp9_stuff_sb(cpi, xd, t, dry_run); } else { vp9_fix_contexts_sb(xd); } if (dry_run) *t = t_backup; return; } if (!dry_run) cpi->skip_false_count[mb_skip_context] += skip_inc; tokenize_b(cpi, xd, 0, t, PLANE_TYPE_Y_WITH_DC, TX_32X32, dry_run); for (b = 16; b < 24; b += 4) { tokenize_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_16X16, dry_run); } if (dry_run) *t = t_backup; } void vp9_tokenize_mb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; int tx_size = xd->mode_info_context->mbmi.txfm_size; int mb_skip_context = vp9_get_pred_context(&cpi->common, xd, PRED_MBSKIP); TOKENEXTRA *t_backup = *t; // If the MB is going to be skipped because of a segment level flag // exclude this from the skip count stats used to calculate the // transmitted skip probability; int skip_inc; int segment_id = xd->mode_info_context->mbmi.segment_id; if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { skip_inc = 1; } else skip_inc = 0; switch (tx_size) { case TX_16X16: xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_16x16(xd); break; case TX_8X8: if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8_4x4uv(xd); else xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8(xd); break; default: xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_4x4(xd); break; } if (xd->mode_info_context->mbmi.mb_skip_coeff) { if (!dry_run) cpi->skip_true_count[mb_skip_context] += skip_inc; if (!cpi->common.mb_no_coeff_skip) { vp9_stuff_mb(cpi, xd, t, dry_run); } else { vp9_reset_mb_tokens_context(xd); } if (dry_run) *t = t_backup; return; } if (!dry_run) cpi->skip_false_count[mb_skip_context] += skip_inc; if (tx_size == TX_16X16) { tokenize_b(cpi, xd, 0, t, PLANE_TYPE_Y_WITH_DC, TX_16X16, dry_run); for (b = 16; b < 24; b += 4) { tokenize_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_8X8, dry_run); } } else if (tx_size == TX_8X8) { for (b = 0; b < 16; b += 4) { tokenize_b(cpi, xd, b, t, PLANE_TYPE_Y_WITH_DC, TX_8X8, dry_run); } if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) { for (b = 16; b < 24; b++) { tokenize_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_4X4, dry_run); } } else { for (b = 16; b < 24; b += 4) { tokenize_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_8X8, dry_run); } } } else { for (b = 0; b < 16; b++) tokenize_b(cpi, xd, b, t, PLANE_TYPE_Y_WITH_DC, TX_4X4, dry_run); for (b = 16; b < 24; b++) tokenize_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_4X4, dry_run); } if (dry_run) *t = t_backup; } #ifdef ENTROPY_STATS void init_context_counters(void) { FILE *f = fopen("context.bin", "rb"); if (!f) { vpx_memset(context_counters_4x4, 0, sizeof(context_counters_4x4)); vpx_memset(hybrid_context_counters_4x4, 0, sizeof(hybrid_context_counters_4x4)); vpx_memset(context_counters_8x8, 0, sizeof(context_counters_8x8)); vpx_memset(hybrid_context_counters_8x8, 0, sizeof(hybrid_context_counters_8x8)); vpx_memset(context_counters_16x16, 0, sizeof(context_counters_16x16)); vpx_memset(hybrid_context_counters_16x16, 0, sizeof(hybrid_context_counters_16x16)); vpx_memset(context_counters_32x32, 0, sizeof(context_counters_32x32)); } else { fread(context_counters_4x4, sizeof(context_counters_4x4), 1, f); fread(hybrid_context_counters_4x4, sizeof(hybrid_context_counters_4x4), 1, f); fread(context_counters_8x8, sizeof(context_counters_8x8), 1, f); fread(hybrid_context_counters_8x8, sizeof(hybrid_context_counters_8x8), 1, f); fread(context_counters_16x16, sizeof(context_counters_16x16), 1, f); fread(hybrid_context_counters_16x16, sizeof(hybrid_context_counters_16x16), 1, f); fread(context_counters_32x32, sizeof(context_counters_32x32), 1, f); fclose(f); } f = fopen("treeupdate.bin", "rb"); if (!f) { vpx_memset(tree_update_hist_4x4, 0, sizeof(tree_update_hist_4x4)); vpx_memset(hybrid_tree_update_hist_4x4, 0, sizeof(hybrid_tree_update_hist_4x4)); vpx_memset(tree_update_hist_8x8, 0, sizeof(tree_update_hist_8x8)); vpx_memset(hybrid_tree_update_hist_8x8, 0, sizeof(hybrid_tree_update_hist_8x8)); vpx_memset(tree_update_hist_16x16, 0, sizeof(tree_update_hist_16x16)); vpx_memset(hybrid_tree_update_hist_16x16, 0, sizeof(hybrid_tree_update_hist_16x16)); vpx_memset(tree_update_hist_32x32, 0, sizeof(tree_update_hist_32x32)); } else { fread(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f); fread(hybrid_tree_update_hist_4x4, sizeof(hybrid_tree_update_hist_4x4), 1, f); fread(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); fread(hybrid_tree_update_hist_8x8, sizeof(hybrid_tree_update_hist_8x8), 1, f); fread(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); fread(hybrid_tree_update_hist_16x16, sizeof(hybrid_tree_update_hist_16x16), 1, f); fread(tree_update_hist_32x32, sizeof(tree_update_hist_32x32), 1, f); fclose(f); } } static void print_counter(FILE *f, vp9_coeff_accum *context_counters, int block_types, const char *header) { int type, band, pt, t; fprintf(f, "static const vp9_coeff_count %s = {\n", header); #define Comma(X) (X ? "," : "") type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { fprintf(f, "%s\n {", Comma(pt)); t = 0; do { const int64_t x = context_counters[type][band][pt][t]; const int y = (int) x; assert(x == (int64_t) y); /* no overflow handling yet */ fprintf(f, "%s %d", Comma(t), y); } while (++t < MAX_ENTROPY_TOKENS); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < block_types); fprintf(f, "\n};\n"); } static void print_probs(FILE *f, vp9_coeff_accum *context_counters, int block_types, const char *header) { int type, band, pt, t; fprintf(f, "static const vp9_coeff_probs %s = {", header); type = 0; #define Newline(x, spaces) (x ? " " : "\n" spaces) do { fprintf(f, "%s%s{ /* block Type %d */", Comma(type), Newline(type, " "), type); band = 0; do { fprintf(f, "%s%s{ /* Coeff Band %d */", Comma(band), Newline(band, " "), band); pt = 0; do { unsigned int branch_ct[ENTROPY_NODES][2]; unsigned int coef_counts[MAX_ENTROPY_TOKENS]; vp9_prob coef_probs[ENTROPY_NODES]; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) coef_counts[t] = context_counters[type][band][pt][t]; vp9_tree_probs_from_distribution(MAX_ENTROPY_TOKENS, vp9_coef_encodings, vp9_coef_tree, coef_probs, branch_ct, coef_counts); fprintf(f, "%s\n {", Comma(pt)); t = 0; do { fprintf(f, "%s %3d", Comma(t), coef_probs[t]); } while (++t < ENTROPY_NODES); fprintf(f, " }"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < block_types); fprintf(f, "\n};\n"); } void print_context_counters() { FILE *f = fopen("vp9_context.c", "w"); fprintf(f, "#include \"vp9_entropy.h\"\n"); fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n"); /* print counts */ print_counter(f, context_counters_4x4, BLOCK_TYPES_4X4, "vp9_default_coef_counts_4x4[BLOCK_TYPES_4X4]"); print_counter(f, hybrid_context_counters_4x4, BLOCK_TYPES_4X4_HYBRID, "vp9_default_hybrid_coef_counts_4x4[BLOCK_TYPES_4X4_HYBRID]"); print_counter(f, context_counters_8x8, BLOCK_TYPES_8X8, "vp9_default_coef_counts_8x8[BLOCK_TYPES_8X8]"); print_counter(f, hybrid_context_counters_8x8, BLOCK_TYPES_8X8_HYBRID, "vp9_default_hybrid_coef_counts_8x8[BLOCK_TYPES_8X8_HYBRID]"); print_counter(f, context_counters_16x16, BLOCK_TYPES_16X16, "vp9_default_coef_counts_16x16[BLOCK_TYPES_16X16]"); print_counter(f, hybrid_context_counters_16x16, BLOCK_TYPES_16X16_HYBRID, "vp9_default_hybrid_coef_counts_16x16" "[BLOCK_TYPES_16X16_HYBRID]"); print_counter(f, context_counters_32x32, BLOCK_TYPES_32X32, "vp9_default_coef_counts_32x32[BLOCK_TYPES_32X32]"); /* print coefficient probabilities */ print_probs(f, context_counters_4x4, BLOCK_TYPES_4X4, "default_coef_probs_4x4[BLOCK_TYPES_4X4]"); print_probs(f, hybrid_context_counters_4x4, BLOCK_TYPES_4X4_HYBRID, "default_hybrid_coef_probs_4x4[BLOCK_TYPES_4X4_HYBRID]"); print_probs(f, context_counters_8x8, BLOCK_TYPES_8X8, "default_coef_probs_8x8[BLOCK_TYPES_8X8]"); print_probs(f, hybrid_context_counters_8x8, BLOCK_TYPES_8X8_HYBRID, "default_hybrid_coef_probs_8x8[BLOCK_TYPES_8X8_HYBRID]"); print_probs(f, context_counters_16x16, BLOCK_TYPES_16X16, "default_coef_probs_16x16[BLOCK_TYPES_16X16]"); print_probs(f, hybrid_context_counters_16x16, BLOCK_TYPES_16X16_HYBRID, "default_hybrid_coef_probs_16x16[BLOCK_TYPES_16X16_HYBRID]"); print_probs(f, context_counters_32x32, BLOCK_TYPES_32X32, "default_coef_probs_32x32[BLOCK_TYPES_32X32]"); fclose(f); f = fopen("context.bin", "wb"); fwrite(context_counters_4x4, sizeof(context_counters_4x4), 1, f); fwrite(hybrid_context_counters_4x4, sizeof(hybrid_context_counters_4x4), 1, f); fwrite(context_counters_8x8, sizeof(context_counters_8x8), 1, f); fwrite(hybrid_context_counters_8x8, sizeof(hybrid_context_counters_8x8), 1, f); fwrite(context_counters_16x16, sizeof(context_counters_16x16), 1, f); fwrite(hybrid_context_counters_16x16, sizeof(hybrid_context_counters_16x16), 1, f); fwrite(context_counters_32x32, sizeof(context_counters_32x32), 1, f); fclose(f); } #endif void vp9_tokenize_initialize() { fill_value_tokens(); } static INLINE void stuff_b(VP9_COMP *cpi, MACROBLOCKD *xd, const int ib, TOKENEXTRA **tp, PLANE_TYPE type, TX_SIZE tx_size, int dry_run) { const BLOCKD * const b = xd->block + ib; vp9_coeff_count *counts; vp9_coeff_probs *probs; int pt, band; TOKENEXTRA *t = *tp; const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type(xd, b) : DCT_DCT; ENTROPY_CONTEXT *const a = (ENTROPY_CONTEXT *)xd->above_context + vp9_block2above[tx_size][ib]; ENTROPY_CONTEXT *const l = (ENTROPY_CONTEXT *)xd->left_context + vp9_block2left[tx_size][ib]; ENTROPY_CONTEXT a_ec = *a, l_ec = *l; ENTROPY_CONTEXT *const a1 = (ENTROPY_CONTEXT *)(&xd->above_context[1]) + vp9_block2above[tx_size][ib]; ENTROPY_CONTEXT *const l1 = (ENTROPY_CONTEXT *)(&xd->left_context[1]) + vp9_block2left[tx_size][ib]; switch (tx_size) { default: case TX_4X4: if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_4x4; probs = cpi->common.fc.hybrid_coef_probs_4x4; } else { counts = cpi->coef_counts_4x4; probs = cpi->common.fc.coef_probs_4x4; } break; case TX_8X8: #if CONFIG_CNVCONTEXT a_ec = (a[0] + a[1]) != 0; l_ec = (l[0] + l[1]) != 0; #endif if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_8x8; probs = cpi->common.fc.hybrid_coef_probs_8x8; } else { counts = cpi->coef_counts_8x8; probs = cpi->common.fc.coef_probs_8x8; } break; case TX_16X16: #if CONFIG_CNVCONTEXT if (type != PLANE_TYPE_UV) { a_ec = (a[0] + a[1] + a[2] + a[3]) != 0; l_ec = (l[0] + l[1] + l[2] + l[3]) != 0; } else { a_ec = (a[0] + a[1] + a1[0] + a1[1]) != 0; l_ec = (l[0] + l[1] + l1[0] + l1[1]) != 0; } #endif if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_16x16; probs = cpi->common.fc.hybrid_coef_probs_16x16; } else { counts = cpi->coef_counts_16x16; probs = cpi->common.fc.coef_probs_16x16; } break; case TX_32X32: #if CONFIG_CNVCONTEXT a_ec = a[0] + a[1] + a[2] + a[3] + a1[0] + a1[1] + a1[2] + a1[3]; l_ec = l[0] + l[1] + l[2] + l[3] + l1[0] + l1[1] + l1[2] + l1[3]; a_ec = a_ec != 0; l_ec = l_ec != 0; #endif counts = cpi->coef_counts_32x32; probs = cpi->common.fc.coef_probs_32x32; break; } VP9_COMBINEENTROPYCONTEXTS(pt, a_ec, l_ec); band = get_coef_band(0); t->Token = DCT_EOB_TOKEN; t->context_tree = probs[type][band][pt]; t->skip_eob_node = 0; ++t; *tp = t; *a = *l = 0; if (tx_size == TX_8X8) { a[1] = 0; l[1] = 0; } else if (tx_size == TX_16X16) { if (type != PLANE_TYPE_UV) { a[1] = a[2] = a[3] = 0; l[1] = l[2] = l[3] = 0; } else { a1[0] = a1[1] = a[1] = a_ec; l1[0] = l1[1] = l[1] = l_ec; } } else if (tx_size == TX_32X32) { a[1] = a[2] = a[3] = a_ec; l[1] = l[2] = l[3] = l_ec; a1[0] = a1[1] = a1[2] = a1[3] = a_ec; l1[0] = l1[1] = l1[2] = l1[3] = l_ec; } if (!dry_run) { ++counts[type][band][pt][DCT_EOB_TOKEN]; } } static void stuff_mb_8x8(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; for (b = 0; b < 16; b += 4) stuff_b(cpi, xd, b, t, PLANE_TYPE_Y_WITH_DC, TX_8X8, dry_run); for (b = 16; b < 24; b += 4) stuff_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_8X8, dry_run); } static void stuff_mb_16x16(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; stuff_b(cpi, xd, 0, t, PLANE_TYPE_Y_WITH_DC, TX_16X16, dry_run); for (b = 16; b < 24; b += 4) { stuff_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_8X8, dry_run); } } static void stuff_mb_4x4(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; for (b = 0; b < 16; b++) stuff_b(cpi, xd, b, t, PLANE_TYPE_Y_WITH_DC, TX_4X4, dry_run); for (b = 16; b < 24; b++) stuff_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_4X4, dry_run); } static void stuff_mb_8x8_4x4uv(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; for (b = 0; b < 16; b += 4) stuff_b(cpi, xd, b, t, PLANE_TYPE_Y_WITH_DC, TX_8X8, dry_run); for (b = 16; b < 24; b++) stuff_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_4X4, dry_run); } void vp9_stuff_mb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; TOKENEXTRA * const t_backup = *t; if (tx_size == TX_16X16) { stuff_mb_16x16(cpi, xd, t, dry_run); } else if (tx_size == TX_8X8) { if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) { stuff_mb_8x8_4x4uv(cpi, xd, t, dry_run); } else { stuff_mb_8x8(cpi, xd, t, dry_run); } } else { stuff_mb_4x4(cpi, xd, t, dry_run); } if (dry_run) { *t = t_backup; } } static void stuff_sb_32x32(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { int b; stuff_b(cpi, xd, 0, t, PLANE_TYPE_Y_WITH_DC, TX_32X32, dry_run); for (b = 16; b < 24; b += 4) { stuff_b(cpi, xd, b, t, PLANE_TYPE_UV, TX_16X16, dry_run); } } void vp9_stuff_sb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { TOKENEXTRA * const t_backup = *t; stuff_sb_32x32(cpi, xd, t, dry_run); if (dry_run) { *t = t_backup; } } void vp9_fix_contexts_sb(MACROBLOCKD *xd) { vpx_memset(xd->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * 2); vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * 2); }