/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_seg_common.h" #ifdef ENC_DEBUG extern int enc_debug; #endif void vp9_quantize_b_c(int16_t *coeff_ptr, intptr_t n_coeffs, int skip_block, int16_t *zbin_ptr, int16_t *round_ptr, int16_t *quant_ptr, int16_t *quant_shift_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, int16_t *dequant_ptr, int zbin_oq_value, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int i, rc, eob; int zbins[2], nzbins[2], zbin; int x, y, z, sz; int zero_flag = n_coeffs; vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); eob = -1; // Base ZBIN zbins[0] = zbin_ptr[0] + zbin_oq_value; zbins[1] = zbin_ptr[1] + zbin_oq_value; nzbins[0] = zbins[0] * -1; nzbins[1] = zbins[1] * -1; if (!skip_block) { // Pre-scan pass for (i = n_coeffs - 1; i >= 0; i--) { rc = scan[i]; z = coeff_ptr[rc]; if (z < zbins[rc != 0] && z > nzbins[rc != 0]) { zero_flag--; } else { break; } } // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. for (i = 0; i < zero_flag; i++) { rc = scan[i]; z = coeff_ptr[rc]; zbin = (zbins[rc != 0]); sz = (z >> 31); // sign of z x = (z ^ sz) - sz; if (x >= zbin) { x += (round_ptr[rc != 0]); y = (((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x)) * quant_shift_ptr[rc != 0]) >> 16; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0]; // dequantized value if (y) { eob = i; // last nonzero coeffs } } } } *eob_ptr = eob + 1; } // This function works well for large transform size. void vp9_quantize_b_32x32_c(int16_t *coeff_ptr, intptr_t n_coeffs, int skip_block, int16_t *zbin_ptr, int16_t *round_ptr, int16_t *quant_ptr, int16_t *quant_shift_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, int16_t *dequant_ptr, int zbin_oq_value, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int i, rc, eob; int zbins[2], nzbins[2], zbin; int x, y, z, sz; int idx = 0; int idx_arr[1024]; vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); eob = -1; // Base ZBIN zbins[0] = zbin_ptr[0] + zbin_oq_value; zbins[1] = zbin_ptr[1] + zbin_oq_value; nzbins[0] = zbins[0] * -1; nzbins[1] = zbins[1] * -1; if (!skip_block) { // Pre-scan pass for (i = 0; i < n_coeffs; i++) { rc = scan[i]; z = coeff_ptr[rc] * 2; // If the coefficient is out of the base ZBIN range, keep it for // quantization. if (z >= zbins[rc != 0] || z <= nzbins[rc != 0]) idx_arr[idx++] = i; } // Quantization pass: only process the coefficients selected in // pre-scan pass. Note: idx can be zero. for (i = 0; i < idx; i++) { rc = scan[idx_arr[i]]; // Calculate ZBIN zbin = (zbins[rc != 0]); z = coeff_ptr[rc] * 2; sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += (round_ptr[rc != 0]); y = (((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x)) * quant_shift_ptr[rc != 0]) >> 16; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0] / 2; // dequantized value if (y) { eob = idx_arr[i]; // last nonzero coeffs } } } } *eob_ptr = eob + 1; } void vp9_quantize(MACROBLOCK *mb, int plane, int block, int n_coeffs, TX_TYPE tx_type) { MACROBLOCKD *const xd = &mb->e_mbd; const int16_t *scan, *iscan; // These contexts may be available in the caller switch (n_coeffs) { case 4 * 4: scan = get_scan_4x4(tx_type); iscan = get_iscan_4x4(tx_type); break; case 8 * 8: scan = get_scan_8x8(tx_type); iscan = get_iscan_8x8(tx_type); break; case 16 * 16: scan = get_scan_16x16(tx_type); iscan = get_iscan_16x16(tx_type); break; default: scan = vp9_default_scan_32x32; iscan = vp9_default_iscan_32x32; break; } // Call different quantization for different transform size. if (n_coeffs >= 1024) { // Save index of picked coefficient in pre-scan pass. vp9_quantize_b_32x32(BLOCK_OFFSET(mb->plane[plane].coeff, block, 16), n_coeffs, mb->skip_block, mb->plane[plane].zbin, mb->plane[plane].round, mb->plane[plane].quant, mb->plane[plane].quant_shift, BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16), BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16), xd->plane[plane].dequant, mb->plane[plane].zbin_extra, &xd->plane[plane].eobs[block], scan, iscan); } else { vp9_quantize_b(BLOCK_OFFSET(mb->plane[plane].coeff, block, 16), n_coeffs, mb->skip_block, mb->plane[plane].zbin, mb->plane[plane].round, mb->plane[plane].quant, mb->plane[plane].quant_shift, BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16), BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16), xd->plane[plane].dequant, mb->plane[plane].zbin_extra, &xd->plane[plane].eobs[block], scan, iscan); } } void vp9_regular_quantize_b_4x4(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx); const int16_t *scan = get_scan_4x4(tx_type); const int16_t *iscan = get_iscan_4x4(tx_type); vp9_quantize_b(BLOCK_OFFSET(mb->plane[pb_idx.plane].coeff, pb_idx.block, 16), 16, mb->skip_block, mb->plane[pb_idx.plane].zbin, mb->plane[pb_idx.plane].round, mb->plane[pb_idx.plane].quant, mb->plane[pb_idx.plane].quant_shift, BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16), BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16), xd->plane[pb_idx.plane].dequant, mb->plane[pb_idx.plane].zbin_extra, &xd->plane[pb_idx.plane].eobs[pb_idx.block], scan, iscan); } static void invert_quant(int16_t *quant, int16_t *shift, int d) { unsigned t; int l; t = d; for (l = 0; t > 1; l++) t >>= 1; t = 1 + (1 << (16 + l)) / d; *quant = (int16_t)(t - (1 << 16)); *shift = 1 << (16 - l); } void vp9_init_quantizer(VP9_COMP *cpi) { int i; int quant_val; int quant_uv_val; #if CONFIG_ALPHA int quant_alpha_val; #endif int q; for (q = 0; q < QINDEX_RANGE; q++) { int qzbin_factor = (vp9_dc_quant(q, 0) < 148) ? 84 : 80; int qrounding_factor = 48; if (q == 0) { qzbin_factor = 64; qrounding_factor = 64; } // dc values quant_val = vp9_dc_quant(q, cpi->common.y_dc_delta_q); invert_quant(cpi->y_quant[q] + 0, cpi->y_quant_shift[q] + 0, quant_val); cpi->y_zbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->y_round[q][0] = (qrounding_factor * quant_val) >> 7; cpi->common.y_dequant[q][0] = quant_val; quant_val = vp9_dc_quant(q, cpi->common.uv_dc_delta_q); invert_quant(cpi->uv_quant[q] + 0, cpi->uv_quant_shift[q] + 0, quant_val); cpi->uv_zbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->uv_round[q][0] = (qrounding_factor * quant_val) >> 7; cpi->common.uv_dequant[q][0] = quant_val; #if CONFIG_ALPHA quant_val = vp9_dc_quant(q, cpi->common.a_dc_delta_q); invert_quant(cpi->a_quant[q] + 0, cpi->a_quant_shift[q] + 0, quant_val); cpi->a_zbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->a_round[q][0] = (qrounding_factor * quant_val) >> 7; cpi->common.a_dequant[q][0] = quant_val; #endif quant_val = vp9_ac_quant(q, 0); invert_quant(cpi->y_quant[q] + 1, cpi->y_quant_shift[q] + 1, quant_val); cpi->y_zbin[q][1] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->y_round[q][1] = (qrounding_factor * quant_val) >> 7; cpi->common.y_dequant[q][1] = quant_val; quant_uv_val = vp9_ac_quant(q, cpi->common.uv_ac_delta_q); invert_quant(cpi->uv_quant[q] + 1, cpi->uv_quant_shift[q] + 1, quant_uv_val); cpi->uv_zbin[q][1] = ROUND_POWER_OF_TWO(qzbin_factor * quant_uv_val, 7); cpi->uv_round[q][1] = (qrounding_factor * quant_uv_val) >> 7; cpi->common.uv_dequant[q][1] = quant_uv_val; #if CONFIG_ALPHA quant_alpha_val = vp9_ac_quant(q, cpi->common.a_ac_delta_q); invert_quant(cpi->a_quant[q] + 1, cpi->a_quant_shift[q] + 1, quant_alpha_val); cpi->a_zbin[q][1] = ROUND_POWER_OF_TWO(qzbin_factor * quant_alpha_val, 7); cpi->a_round[q][1] = (qrounding_factor * quant_alpha_val) >> 7; cpi->common.a_dequant[q][1] = quant_alpha_val; #endif for (i = 2; i < 8; i++) { cpi->y_quant[q][i] = cpi->y_quant[q][1]; cpi->y_quant_shift[q][i] = cpi->y_quant_shift[q][1]; cpi->y_zbin[q][i] = cpi->y_zbin[q][1]; cpi->y_round[q][i] = cpi->y_round[q][1]; cpi->common.y_dequant[q][i] = cpi->common.y_dequant[q][1]; cpi->uv_quant[q][i] = cpi->uv_quant[q][1]; cpi->uv_quant_shift[q][i] = cpi->uv_quant_shift[q][1]; cpi->uv_zbin[q][i] = cpi->uv_zbin[q][1]; cpi->uv_round[q][i] = cpi->uv_round[q][1]; cpi->common.uv_dequant[q][i] = cpi->common.uv_dequant[q][1]; #if CONFIG_ALPHA cpi->a_quant[q][i] = cpi->a_quant[q][1]; cpi->a_quant_shift[q][i] = cpi->a_quant_shift[q][1]; cpi->a_zbin[q][i] = cpi->a_zbin[q][1]; cpi->a_round[q][i] = cpi->a_round[q][1]; cpi->common.a_dequant[q][i] = cpi->common.a_dequant[q][1]; #endif } } } void vp9_mb_init_quantizer(VP9_COMP *cpi, MACROBLOCK *x) { int i; MACROBLOCKD *xd = &x->e_mbd; int zbin_extra; int segment_id = xd->mode_info_context->mbmi.segment_id; const int qindex = vp9_get_qindex(xd, segment_id, cpi->common.base_qindex); // Y zbin_extra = (cpi->common.y_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; x->plane[0].quant = cpi->y_quant[qindex]; x->plane[0].quant_shift = cpi->y_quant_shift[qindex]; x->plane[0].zbin = cpi->y_zbin[qindex]; x->plane[0].round = cpi->y_round[qindex]; x->plane[0].zbin_extra = (int16_t)zbin_extra; x->e_mbd.plane[0].dequant = cpi->common.y_dequant[qindex]; // UV zbin_extra = (cpi->common.uv_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; for (i = 1; i < 3; i++) { x->plane[i].quant = cpi->uv_quant[qindex]; x->plane[i].quant_shift = cpi->uv_quant_shift[qindex]; x->plane[i].zbin = cpi->uv_zbin[qindex]; x->plane[i].round = cpi->uv_round[qindex]; x->plane[i].zbin_extra = (int16_t)zbin_extra; x->e_mbd.plane[i].dequant = cpi->common.uv_dequant[qindex]; } #if CONFIG_ALPHA x->plane[3].quant = cpi->a_quant[qindex]; x->plane[3].quant_shift = cpi->a_quant_shift[qindex]; x->plane[3].zbin = cpi->a_zbin[qindex]; x->plane[3].round = cpi->a_round[qindex]; x->plane[3].zbin_extra = (int16_t)zbin_extra; x->e_mbd.plane[3].dequant = cpi->common.a_dequant[qindex]; #endif x->skip_block = vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP); /* save this macroblock QIndex for vp9_update_zbin_extra() */ x->e_mbd.q_index = qindex; } void vp9_update_zbin_extra(VP9_COMP *cpi, MACROBLOCK *x) { const int qindex = x->e_mbd.q_index; const int y_zbin_extra = (cpi->common.y_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; const int uv_zbin_extra = (cpi->common.uv_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; x->plane[0].zbin_extra = (int16_t)y_zbin_extra; x->plane[1].zbin_extra = (int16_t)uv_zbin_extra; x->plane[2].zbin_extra = (int16_t)uv_zbin_extra; } void vp9_frame_init_quantizer(VP9_COMP *cpi) { // Clear Zbin mode boost for default case cpi->zbin_mode_boost = 0; // MB level quantizer setup vp9_mb_init_quantizer(cpi, &cpi->mb); } void vp9_set_quantizer(struct VP9_COMP *cpi, int Q) { VP9_COMMON *cm = &cpi->common; cm->base_qindex = Q; // if any of the delta_q values are changing update flag will // have to be set. cm->y_dc_delta_q = 0; cm->uv_dc_delta_q = 0; cm->uv_ac_delta_q = 0; // quantizer has to be reinitialized if any delta_q changes. // As there are not any here for now this is inactive code. // if(update) // vp9_init_quantizer(cpi); }