/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "./vpx_config.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_blockd.h" // TODO: these transforms can be converted into integer forms to reduce // the complexity static const float dct_4[16] = { 0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000, 0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188, 0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000, 0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099 }; static const float adst_4[16] = { 0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139, 0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626, 0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359, 0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779 }; static const float dct_8[64] = { 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.353553390593274, 0.490392640201615, 0.415734806151273, 0.277785116509801, 0.097545161008064, -0.097545161008064, -0.277785116509801, -0.415734806151273, -0.490392640201615, 0.461939766255643, 0.191341716182545, -0.191341716182545, -0.461939766255643, -0.461939766255643, -0.191341716182545, 0.191341716182545, 0.461939766255643, 0.415734806151273, -0.097545161008064, -0.490392640201615, -0.277785116509801, 0.277785116509801, 0.490392640201615, 0.097545161008064, -0.415734806151273, 0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274, 0.353553390593274, -0.353553390593274, -0.353553390593274, 0.353553390593274, 0.277785116509801, -0.490392640201615, 0.097545161008064, 0.415734806151273, -0.415734806151273, -0.097545161008064, 0.490392640201615, -0.277785116509801, 0.191341716182545, -0.461939766255643, 0.461939766255643, -0.191341716182545, -0.191341716182545, 0.461939766255643, -0.461939766255643, 0.191341716182545, 0.097545161008064, -0.277785116509801, 0.415734806151273, -0.490392640201615, 0.490392640201615, -0.415734806151273, 0.277785116509801, -0.097545161008064 }; static const float adst_8[64] = { 0.089131608307533, 0.175227946595735, 0.255357107325376, 0.326790388032145, 0.387095214016349, 0.434217976756762, 0.466553967085785, 0.483002021635509, 0.255357107325376, 0.434217976756762, 0.483002021635509, 0.387095214016349, 0.175227946595735, -0.089131608307533, -0.326790388032145, -0.466553967085785, 0.387095214016349, 0.466553967085785, 0.175227946595735, -0.255357107325376, -0.483002021635509, -0.326790388032145, 0.089131608307533, 0.434217976756762, 0.466553967085785, 0.255357107325376, -0.326790388032145, -0.434217976756762, 0.089131608307533, 0.483002021635509, 0.175227946595735, -0.387095214016348, 0.483002021635509, -0.089131608307533, -0.466553967085785, 0.175227946595735, 0.434217976756762, -0.255357107325376, -0.387095214016348, 0.326790388032145, 0.434217976756762, -0.387095214016348, -0.089131608307533, 0.466553967085786, -0.326790388032145, -0.175227946595735, 0.483002021635509, -0.255357107325375, 0.326790388032145, -0.483002021635509, 0.387095214016349, -0.089131608307534, -0.255357107325377, 0.466553967085785, -0.434217976756762, 0.175227946595736, 0.175227946595735, -0.326790388032145, 0.434217976756762, -0.483002021635509, 0.466553967085785, -0.387095214016348, 0.255357107325376, -0.089131608307532 }; /* Converted the transforms to integers. */ static const int16_t dct_i4[16] = { 16384, 16384, 16384, 16384, 21407, 8867, -8867, -21407, 16384, -16384, -16384, 16384, 8867, -21407, 21407, -8867 }; static const int16_t adst_i4[16] = { 7472, 14042, 18919, 21513, 18919, 18919, 0, -18919, 21513, -7472, -18919, 14042, 14042, -21513, 18919, -7472 }; static const int16_t dct_i8[64] = { 11585, 11585, 11585, 11585, 11585, 11585, 11585, 11585, 16069, 13623, 9102, 3196, -3196, -9102, -13623, -16069, 15137, 6270, -6270, -15137, -15137, -6270, 6270, 15137, 13623, -3196, -16069, -9102, 9102, 16069, 3196, -13623, 11585, -11585, -11585, 11585, 11585, -11585, -11585, 11585, 9102, -16069, 3196, 13623, -13623, -3196, 16069, -9102, 6270, -15137, 15137, -6270, -6270, 15137, -15137, 6270, 3196, -9102, 13623, -16069, 16069, -13623, 9102, -3196 }; static const int16_t adst_i8[64] = { 2921, 5742, 8368, 10708, 12684, 14228, 15288, 15827, 8368, 14228, 15827, 12684, 5742, -2921, -10708, -15288, 12684, 15288, 5742, -8368, -15827, -10708, 2921, 14228, 15288, 8368, -10708, -14228, 2921, 15827, 5742, -12684, 15827, -2921, -15288, 5742, 14228, -8368, -12684, 10708, 14228, -12684, -2921, 15288, -10708, -5742, 15827, -8368, 10708, -15827, 12684, -2921, -8368, 15288, -14228, 5742, 5742, -10708, 14228, -15827, 15288, -12684, 8368, -2921 }; static const float dct_16[256] = { 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.250000, 0.351851, 0.338330, 0.311806, 0.273300, 0.224292, 0.166664, 0.102631, 0.034654, -0.034654, -0.102631, -0.166664, -0.224292, -0.273300, -0.311806, -0.338330, -0.351851, 0.346760, 0.293969, 0.196424, 0.068975, -0.068975, -0.196424, -0.293969, -0.346760, -0.346760, -0.293969, -0.196424, -0.068975, 0.068975, 0.196424, 0.293969, 0.346760, 0.338330, 0.224292, 0.034654, -0.166664, -0.311806, -0.351851, -0.273300, -0.102631, 0.102631, 0.273300, 0.351851, 0.311806, 0.166664, -0.034654, -0.224292, -0.338330, 0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641, 0.326641, 0.135299, -0.135299, -0.326641, -0.326641, -0.135299, 0.135299, 0.326641, 0.311806, 0.034654, -0.273300, -0.338330, -0.102631, 0.224292, 0.351851, 0.166664, -0.166664, -0.351851, -0.224292, 0.102631, 0.338330, 0.273300, -0.034654, -0.311806, 0.293969, -0.068975, -0.346760, -0.196424, 0.196424, 0.346760, 0.068975, -0.293969, -0.293969, 0.068975, 0.346760, 0.196424, -0.196424, -0.346760, -0.068975, 0.293969, 0.273300, -0.166664, -0.338330, 0.034654, 0.351851, 0.102631, -0.311806, -0.224292, 0.224292, 0.311806, -0.102631, -0.351851, -0.034654, 0.338330, 0.166664, -0.273300, 0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000, 0.250000, -0.250000, -0.250000, 0.250000, 0.224292, -0.311806, -0.102631, 0.351851, -0.034654, -0.338330, 0.166664, 0.273300, -0.273300, -0.166664, 0.338330, 0.034654, -0.351851, 0.102631, 0.311806, -0.224292, 0.196424, -0.346760, 0.068975, 0.293969, -0.293969, -0.068975, 0.346760, -0.196424, -0.196424, 0.346760, -0.068975, -0.293969, 0.293969, 0.068975, -0.346760, 0.196424, 0.166664, -0.351851, 0.224292, 0.102631, -0.338330, 0.273300, 0.034654, -0.311806, 0.311806, -0.034654, -0.273300, 0.338330, -0.102631, -0.224292, 0.351851, -0.166664, 0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299, 0.135299, -0.326641, 0.326641, -0.135299, -0.135299, 0.326641, -0.326641, 0.135299, 0.102631, -0.273300, 0.351851, -0.311806, 0.166664, 0.034654, -0.224292, 0.338330, -0.338330, 0.224292, -0.034654, -0.166664, 0.311806, -0.351851, 0.273300, -0.102631, 0.068975, -0.196424, 0.293969, -0.346760, 0.346760, -0.293969, 0.196424, -0.068975, -0.068975, 0.196424, -0.293969, 0.346760, -0.346760, 0.293969, -0.196424, 0.068975, 0.034654, -0.102631, 0.166664, -0.224292, 0.273300, -0.311806, 0.338330, -0.351851, 0.351851, -0.338330, 0.311806, -0.273300, 0.224292, -0.166664, 0.102631, -0.034654 }; static const float adst_16[256] = { 0.033094, 0.065889, 0.098087, 0.129396, 0.159534, 0.188227, 0.215215, 0.240255, 0.263118, 0.283599, 0.301511, 0.316693, 0.329007, 0.338341, 0.344612, 0.347761, 0.098087, 0.188227, 0.263118, 0.316693, 0.344612, 0.344612, 0.316693, 0.263118, 0.188227, 0.098087, 0.000000, -0.098087, -0.188227, -0.263118, -0.316693, -0.344612, 0.159534, 0.283599, 0.344612, 0.329007, 0.240255, 0.098087, -0.065889, -0.215215, -0.316693, -0.347761, -0.301511, -0.188227, -0.033094, 0.129396, 0.263118, 0.338341, 0.215215, 0.338341, 0.316693, 0.159534, -0.065889, -0.263118, -0.347761, -0.283599, -0.098087, 0.129396, 0.301511, 0.344612, 0.240255, 0.033094, -0.188227, -0.329007, 0.263118, 0.344612, 0.188227, -0.098087, -0.316693, -0.316693, -0.098087, 0.188227, 0.344612, 0.263118, 0.000000, -0.263118, -0.344612, -0.188227, 0.098087, 0.316693, 0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511, -0.301511, -0.000000, 0.301511, 0.301511, 0.000000, -0.301511, 0.329007, 0.215215, -0.188227, -0.338341, -0.033094, 0.316693, 0.240255, -0.159534, -0.344612, -0.065889, 0.301511, 0.263118, -0.129396, -0.347761, -0.098087, 0.283599, 0.344612, 0.098087, -0.316693, -0.188227, 0.263118, 0.263118, -0.188227, -0.316693, 0.098087, 0.344612, 0.000000, -0.344612, -0.098087, 0.316693, 0.188227, -0.263118, 0.347761, -0.033094, -0.344612, 0.065889, 0.338341, -0.098087, -0.329007, 0.129396, 0.316693, -0.159534, -0.301511, 0.188227, 0.283599, -0.215215, -0.263118, 0.240255, 0.338341, -0.159534, -0.263118, 0.283599, 0.129396, -0.344612, 0.033094, 0.329007, -0.188227, -0.240255, 0.301511, 0.098087, -0.347761, 0.065889, 0.316693, -0.215215, 0.316693, -0.263118, -0.098087, 0.344612, -0.188227, -0.188227, 0.344612, -0.098087, -0.263118, 0.316693, 0.000000, -0.316693, 0.263118, 0.098087, -0.344612, 0.188227, 0.283599, -0.329007, 0.098087, 0.215215, -0.347761, 0.188227, 0.129396, -0.338341, 0.263118, 0.033094, -0.301511, 0.316693, -0.065889, -0.240255, 0.344612, -0.159534, 0.240255, -0.347761, 0.263118, -0.033094, -0.215215, 0.344612, -0.283599, 0.065889, 0.188227, -0.338341, 0.301511, -0.098087, -0.159534, 0.329007, -0.316693, 0.129396, 0.188227, -0.316693, 0.344612, -0.263118, 0.098087, 0.098087, -0.263118, 0.344612, -0.316693, 0.188227, 0.000000, -0.188227, 0.316693, -0.344612, 0.263118, -0.098087, 0.129396, -0.240255, 0.316693, -0.347761, 0.329007, -0.263118, 0.159534, -0.033094, -0.098087, 0.215215, -0.301511, 0.344612, -0.338341, 0.283599, -0.188227, 0.065889, 0.065889, -0.129396, 0.188227, -0.240255, 0.283599, -0.316693, 0.338341, -0.347761, 0.344612, -0.329007, 0.301511, -0.263118, 0.215215, -0.159534, 0.098087, -0.033094 }; /* Converted the transforms to integers. */ static const int16_t dct_i16[256] = { 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 11529, 11086, 10217, 8955, 7350, 5461, 3363, 1136, -1136, -3363, -5461, -7350, -8955, -10217, -11086, -11529, 11363, 9633, 6436, 2260, -2260, -6436, -9633, -11363, -11363, -9633, -6436, -2260, 2260, 6436, 9633, 11363, 11086, 7350, 1136, -5461, -10217, -11529, -8955, -3363, 3363, 8955, 11529, 10217, 5461, -1136, -7350, -11086, 10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703, 10703, 4433, -4433, -10703, -10703, -4433, 4433, 10703, 10217, 1136, -8955, -11086, -3363, 7350, 11529, 5461, -5461, -11529, -7350, 3363, 11086, 8955, -1136, -10217, 9633, -2260, -11363, -6436, 6436, 11363, 2260, -9633, -9633, 2260, 11363, 6436, -6436, -11363, -2260, 9633, 8955, -5461, -11086, 1136, 11529, 3363, -10217, -7350, 7350, 10217, -3363, -11529, -1136, 11086, 5461, -8955, 8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192, 8192, -8192, -8192, 8192, 7350, -10217, -3363, 11529, -1136, -11086, 5461, 8955, -8955, -5461, 11086, 1136, -11529, 3363, 10217, -7350, 6436, -11363, 2260, 9633, -9633, -2260, 11363, -6436, -6436, 11363, -2260, -9633, 9633, 2260, -11363, 6436, 5461, -11529, 7350, 3363, -11086, 8955, 1136, -10217, 10217, -1136, -8955, 11086, -3363, -7350, 11529, -5461, 4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433, 4433, -10703, 10703, -4433, -4433, 10703, -10703, 4433, 3363, -8955, 11529, -10217, 5461, 1136, -7350, 11086, -11086, 7350, -1136, -5461, 10217, -11529, 8955, -3363, 2260, -6436, 9633, -11363, 11363, -9633, 6436, -2260, -2260, 6436, -9633, 11363, -11363, 9633, -6436, 2260, 1136, -3363, 5461, -7350, 8955, -10217, 11086, -11529, 11529, -11086, 10217, -8955, 7350, -5461, 3363, -1136 }; static const int16_t adst_i16[256] = { 1084, 2159, 3214, 4240, 5228, 6168, 7052, 7873, 8622, 9293, 9880, 10377, 10781, 11087, 11292, 11395, 3214, 6168, 8622, 10377, 11292, 11292, 10377, 8622, 6168, 3214, 0, -3214, -6168, -8622, -10377, -11292, 5228, 9293, 11292, 10781, 7873, 3214, -2159, -7052, -10377, -11395, -9880, -6168, -1084, 4240, 8622, 11087, 7052, 11087, 10377, 5228, -2159, -8622, -11395, -9293, -3214, 4240, 9880, 11292, 7873, 1084, -6168, -10781, 8622, 11292, 6168, -3214, -10377, -10377, -3214, 6168, 11292, 8622, 0, -8622, -11292, -6168, 3214, 10377, 9880, 9880, 0, -9880, -9880, 0, 9880, 9880, 0, -9880, -9880, 0, 9880, 9880, 0, -9880, 10781, 7052, -6168, -11087, -1084, 10377, 7873, -5228, -11292, -2159, 9880, 8622, -4240, -11395, -3214, 9293, 11292, 3214, -10377, -6168, 8622, 8622, -6168, -10377, 3214, 11292, 0, -11292, -3214, 10377, 6168, -8622, 11395, -1084, -11292, 2159, 11087, -3214, -10781, 4240, 10377, -5228, -9880, 6168, 9293, -7052, -8622, 7873, 11087, -5228, -8622, 9293, 4240, -11292, 1084, 10781, -6168, -7873, 9880, 3214, -11395, 2159, 10377, -7052, 10377, -8622, -3214, 11292, -6168, -6168, 11292, -3214, -8622, 10377, 0, -10377, 8622, 3214, -11292, 6168, 9293, -10781, 3214, 7052, -11395, 6168, 4240, -11087, 8622, 1084, -9880, 10377, -2159, -7873, 11292, -5228, 7873, -11395, 8622, -1084, -7052, 11292, -9293, 2159, 6168, -11087, 9880, -3214, -5228, 10781, -10377, 4240, 6168, -10377, 11292, -8622, 3214, 3214, -8622, 11292, -10377, 6168, 0, -6168, 10377, -11292, 8622, -3214, 4240, -7873, 10377, -11395, 10781, -8622, 5228, -1084, -3214, 7052, -9880, 11292, -11087, 9293, -6168, 2159, 2159, -4240, 6168, -7873, 9293, -10377, 11087, -11395, 11292, -10781, 9880, -8622, 7052, -5228, 3214, -1084 }; static const int xC1S7 = 16069; static const int xC2S6 = 15137; static const int xC3S5 = 13623; static const int xC4S4 = 11585; static const int xC5S3 = 9102; static const int xC6S2 = 6270; static const int xC7S1 = 3196; #define SHIFT_BITS 14 #define DOROUND(X) X += (1<<(SHIFT_BITS-1)); #define FINAL_SHIFT 3 #define FINAL_ROUNDING (1<<(FINAL_SHIFT -1)) #define IN_SHIFT (FINAL_SHIFT+1) void vp9_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) { int loop; int short_pitch = pitch >> 1; int is07, is12, is34, is56; int is0734, is1256; int id07, id12, id34, id56; int irot_input_x, irot_input_y; int icommon_product1; // Re-used product (c4s4 * (s12 - s56)) int icommon_product2; // Re-used product (c4s4 * (d12 + d56)) int temp1, temp2; // intermediate variable for computation int InterData[64]; int *ip = InterData; short *op = OutputData; for (loop = 0; loop < 8; loop++) { // Pre calculate some common sums and differences. is07 = (InputData[0] + InputData[7]) << IN_SHIFT; is12 = (InputData[1] + InputData[2]) << IN_SHIFT; is34 = (InputData[3] + InputData[4]) << IN_SHIFT; is56 = (InputData[5] + InputData[6]) << IN_SHIFT; id07 = (InputData[0] - InputData[7]) << IN_SHIFT; id12 = (InputData[1] - InputData[2]) << IN_SHIFT; id34 = (InputData[3] - InputData[4]) << IN_SHIFT; id56 = (InputData[5] - InputData[6]) << IN_SHIFT; is0734 = is07 + is34; is1256 = is12 + is56; // Pre-Calculate some common product terms. icommon_product1 = xC4S4 * (is12 - is56); DOROUND(icommon_product1) icommon_product1 >>= SHIFT_BITS; icommon_product2 = xC4S4 * (id12 + id56); DOROUND(icommon_product2) icommon_product2 >>= SHIFT_BITS; ip[0] = (xC4S4 * (is0734 + is1256)); DOROUND(ip[0]); ip[0] >>= SHIFT_BITS; ip[4] = (xC4S4 * (is0734 - is1256)); DOROUND(ip[4]); ip[4] >>= SHIFT_BITS; // Define inputs to rotation for outputs 2 and 6 irot_input_x = id12 - id56; irot_input_y = is07 - is34; // Apply rotation for outputs 2 and 6. temp1 = xC6S2 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[2] = temp1 + temp2; temp1 = xC6S2 * irot_input_y; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_x; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[6] = temp1 - temp2; // Define inputs to rotation for outputs 1 and 7 irot_input_x = icommon_product1 + id07; irot_input_y = -(id34 + icommon_product2); // Apply rotation for outputs 1 and 7. temp1 = xC1S7 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC7S1 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[1] = temp1 - temp2; temp1 = xC7S1 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC1S7 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[7] = temp1 + temp2; // Define inputs to rotation for outputs 3 and 5 irot_input_x = id07 - icommon_product1; irot_input_y = id34 - icommon_product2; // Apply rotation for outputs 3 and 5. temp1 = xC3S5 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC5S3 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[3] = temp1 - temp2; temp1 = xC5S3 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC3S5 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[5] = temp1 + temp2; // Increment data pointer for next row InputData += short_pitch; ip += 8; } // Performed DCT on rows, now transform the columns ip = InterData; for (loop = 0; loop < 8; loop++) { // Pre calculate some common sums and differences. is07 = ip[0 * 8] + ip[7 * 8]; is12 = ip[1 * 8] + ip[2 * 8]; is34 = ip[3 * 8] + ip[4 * 8]; is56 = ip[5 * 8] + ip[6 * 8]; id07 = ip[0 * 8] - ip[7 * 8]; id12 = ip[1 * 8] - ip[2 * 8]; id34 = ip[3 * 8] - ip[4 * 8]; id56 = ip[5 * 8] - ip[6 * 8]; is0734 = is07 + is34; is1256 = is12 + is56; // Pre-Calculate some common product terms icommon_product1 = xC4S4 * (is12 - is56); icommon_product2 = xC4S4 * (id12 + id56); DOROUND(icommon_product1) DOROUND(icommon_product2) icommon_product1 >>= SHIFT_BITS; icommon_product2 >>= SHIFT_BITS; temp1 = xC4S4 * (is0734 + is1256); temp2 = xC4S4 * (is0734 - is1256); DOROUND(temp1); DOROUND(temp2); temp1 >>= SHIFT_BITS; temp2 >>= SHIFT_BITS; op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT; op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 2 and 6 irot_input_x = id12 - id56; irot_input_y = is07 - is34; // Apply rotation for outputs 2 and 6. temp1 = xC6S2 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC6S2 * irot_input_y; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_x; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 1 and 7 irot_input_x = icommon_product1 + id07; irot_input_y = -(id34 + icommon_product2); // Apply rotation for outputs 1 and 7. temp1 = xC1S7 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC7S1 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC7S1 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC1S7 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 3 and 5 irot_input_x = id07 - icommon_product1; irot_input_y = id34 - icommon_product2; // Apply rotation for outputs 3 and 5. temp1 = xC3S5 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC5S3 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC5S3 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC3S5 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Increment data pointer for next column. ip++; op++; } } void vp9_short_fhaar2x2_c(short *input, short *output, int pitch) { /* [1 1; 1 -1] orthogonal transform */ /* use position: 0,1, 4, 8 */ int i; short *ip1 = input; short *op1 = output; for (i = 0; i < 16; i++) { op1[i] = 0; } op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1; op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1; op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1; op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1; } /* For test */ #define TEST_INT 1 #if TEST_INT #define vp9_fht_int_c vp9_fht_c #else #define vp9_fht_float_c vp9_fht_c #endif void vp9_fht_float_c(const int16_t *input, int pitch, int16_t *output, TX_TYPE tx_type, int tx_dim) { vp9_clear_system_state(); // Make it simd safe : __asm emms; { int i, j, k; float bufa[256], bufb[256]; // buffers are for floating-point test purpose // the implementation could be simplified in // conjunction with integer transform const int16_t *ip = input; int16_t *op = output; float *pfa = &bufa[0]; float *pfb = &bufb[0]; // pointers to vertical and horizontal transforms const float *ptv, *pth; assert(tx_type != DCT_DCT); // load and convert residual array into floating-point for (j = 0; j < tx_dim; j++) { for (i = 0; i < tx_dim; i++) { pfa[i] = (float)ip[i]; } pfa += tx_dim; ip += pitch / 2; } // vertical transformation pfa = &bufa[0]; pfb = &bufb[0]; switch (tx_type) { case ADST_ADST : case ADST_DCT : ptv = (tx_dim == 4) ? &adst_4[0] : ((tx_dim == 8) ? &adst_8[0] : &adst_16[0]); break; default : ptv = (tx_dim == 4) ? &dct_4[0] : ((tx_dim == 8) ? &dct_8[0] : &dct_16[0]); break; } for (j = 0; j < tx_dim; j++) { for (i = 0; i < tx_dim; i++) { pfb[i] = 0; for (k = 0; k < tx_dim; k++) { pfb[i] += ptv[k] * pfa[(k * tx_dim)]; } pfa += 1; } pfb += tx_dim; ptv += tx_dim; pfa = &bufa[0]; } // horizontal transformation pfa = &bufa[0]; pfb = &bufb[0]; switch (tx_type) { case ADST_ADST : case DCT_ADST : pth = (tx_dim == 4) ? &adst_4[0] : ((tx_dim == 8) ? &adst_8[0] : &adst_16[0]); break; default : pth = (tx_dim == 4) ? &dct_4[0] : ((tx_dim == 8) ? &dct_8[0] : &dct_16[0]); break; } for (j = 0; j < tx_dim; j++) { for (i = 0; i < tx_dim; i++) { pfa[i] = 0; for (k = 0; k < tx_dim; k++) { pfa[i] += pfb[k] * pth[k]; } pth += tx_dim; } pfa += tx_dim; pfb += tx_dim; // pth -= tx_dim * tx_dim; switch (tx_type) { case ADST_ADST : case DCT_ADST : pth = (tx_dim == 4) ? &adst_4[0] : ((tx_dim == 8) ? &adst_8[0] : &adst_16[0]); break; default : pth = (tx_dim == 4) ? &dct_4[0] : ((tx_dim == 8) ? &dct_8[0] : &dct_16[0]); break; } } // convert to short integer format and load BLOCKD buffer op = output; pfa = &bufa[0]; for (j = 0; j < tx_dim; j++) { for (i = 0; i < tx_dim; i++) { op[i] = (pfa[i] > 0 ) ? (int16_t)( 8 * pfa[i] + 0.49) : -(int16_t)(- 8 * pfa[i] + 0.49); } op += tx_dim; pfa += tx_dim; } } vp9_clear_system_state(); // Make it simd safe : __asm emms; } /* Converted the transforms to integer form. */ #define VERTICAL_SHIFT 11 #define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1) #define HORIZONTAL_SHIFT 16 #define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1) void vp9_fht_int_c(const int16_t *input, int pitch, int16_t *output, TX_TYPE tx_type, int tx_dim) { int i, j, k; int16_t imbuf[256]; const int16_t *ip = input; int16_t *op = output; int16_t *im = &imbuf[0]; /* pointers to vertical and horizontal transforms. */ const int16_t *ptv = NULL, *pth = NULL; switch (tx_type) { case ADST_ADST : ptv = pth = (tx_dim == 4) ? &adst_i4[0] : ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]); break; case ADST_DCT : ptv = (tx_dim == 4) ? &adst_i4[0] : ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]); pth = (tx_dim == 4) ? &dct_i4[0] : ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]); break; case DCT_ADST : ptv = (tx_dim == 4) ? &dct_i4[0] : ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]); pth = (tx_dim == 4) ? &adst_i4[0] : ((tx_dim == 8) ? &adst_i8[0] : &adst_i16[0]); break; case DCT_DCT : ptv = pth = (tx_dim == 4) ? &dct_i4[0] : ((tx_dim == 8) ? &dct_i8[0] : &dct_i16[0]); break; default: assert(0); break; } /* vertical transformation */ for (j = 0; j < tx_dim; j++) { for (i = 0; i < tx_dim; i++) { int temp = 0; for (k = 0; k < tx_dim; k++) { temp += ptv[k] * ip[(k * (pitch >> 1))]; } im[i] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT); ip++; } im += tx_dim; // 16 ptv += tx_dim; ip = input; } /* horizontal transformation */ im = &imbuf[0]; for (j = 0; j < tx_dim; j++) { const int16_t *pthc = pth; for (i = 0; i < tx_dim; i++) { int temp = 0; for (k = 0; k < tx_dim; k++) { temp += im[k] * pthc[k]; } op[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT); pthc += tx_dim; } im += tx_dim; // 16 op += tx_dim; } } void vp9_short_fdct4x4_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; for (i = 0; i < 4; i++) { a1 = ((ip[0] + ip[3]) << 5); b1 = ((ip[1] + ip[2]) << 5); c1 = ((ip[1] - ip[2]) << 5); d1 = ((ip[0] - ip[3]) << 5); op[0] = a1 + b1; op[2] = a1 - b1; op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12; op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12; ip += pitch / 2; op += 4; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[12]; b1 = ip[4] + ip[8]; c1 = ip[4] - ip[8]; d1 = ip[0] - ip[12]; op[0] = (a1 + b1 + 7) >> 4; op[8] = (a1 - b1 + 7) >> 4; op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0); op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16; ip++; op++; } } void vp9_short_fdct8x4_c(short *input, short *output, int pitch) { vp9_short_fdct4x4_c(input, output, pitch); vp9_short_fdct4x4_c(input + 4, output + 16, pitch); } void vp9_short_walsh4x4_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = (a1 + b1 + 1) >> 1; op[1] = (c1 + d1) >> 1; op[2] = (a1 - b1) >> 1; op[3] = (d1 - c1) >> 1; ip += 4; op += 4; } } #if CONFIG_LOSSLESS void vp9_short_walsh4x4_lossless_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR; ip += 4; op += 4; } } void vp9_short_walsh4x4_x8_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR; op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR; op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR; op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR; ip += 4; op += 4; } } void vp9_short_walsh8x4_x8_c(short *input, short *output, int pitch) { vp9_short_walsh4x4_x8_c(input, output, pitch); vp9_short_walsh4x4_x8_c(input + 4, output + 16, pitch); } #endif #define TEST_INT_16x16_DCT 1 #if !TEST_INT_16x16_DCT static void dct16x16_1d(double input[16], double output[16]) { static const double C1 = 0.995184726672197; static const double C2 = 0.98078528040323; static const double C3 = 0.956940335732209; static const double C4 = 0.923879532511287; static const double C5 = 0.881921264348355; static const double C6 = 0.831469612302545; static const double C7 = 0.773010453362737; static const double C8 = 0.707106781186548; static const double C9 = 0.634393284163646; static const double C10 = 0.555570233019602; static const double C11 = 0.471396736825998; static const double C12 = 0.38268343236509; static const double C13 = 0.290284677254462; static const double C14 = 0.195090322016128; static const double C15 = 0.098017140329561; vp9_clear_system_state(); // Make it simd safe : __asm emms; { double step[16]; double intermediate[16]; double temp1, temp2; // step 1 step[ 0] = input[0] + input[15]; step[ 1] = input[1] + input[14]; step[ 2] = input[2] + input[13]; step[ 3] = input[3] + input[12]; step[ 4] = input[4] + input[11]; step[ 5] = input[5] + input[10]; step[ 6] = input[6] + input[ 9]; step[ 7] = input[7] + input[ 8]; step[ 8] = input[7] - input[ 8]; step[ 9] = input[6] - input[ 9]; step[10] = input[5] - input[10]; step[11] = input[4] - input[11]; step[12] = input[3] - input[12]; step[13] = input[2] - input[13]; step[14] = input[1] - input[14]; step[15] = input[0] - input[15]; // step 2 output[0] = step[0] + step[7]; output[1] = step[1] + step[6]; output[2] = step[2] + step[5]; output[3] = step[3] + step[4]; output[4] = step[3] - step[4]; output[5] = step[2] - step[5]; output[6] = step[1] - step[6]; output[7] = step[0] - step[7]; temp1 = step[ 8]*C7; temp2 = step[15]*C9; output[ 8] = temp1 + temp2; temp1 = step[ 9]*C11; temp2 = step[14]*C5; output[ 9] = temp1 - temp2; temp1 = step[10]*C3; temp2 = step[13]*C13; output[10] = temp1 + temp2; temp1 = step[11]*C15; temp2 = step[12]*C1; output[11] = temp1 - temp2; temp1 = step[11]*C1; temp2 = step[12]*C15; output[12] = temp2 + temp1; temp1 = step[10]*C13; temp2 = step[13]*C3; output[13] = temp2 - temp1; temp1 = step[ 9]*C5; temp2 = step[14]*C11; output[14] = temp2 + temp1; temp1 = step[ 8]*C9; temp2 = step[15]*C7; output[15] = temp2 - temp1; // step 3 step[ 0] = output[0] + output[3]; step[ 1] = output[1] + output[2]; step[ 2] = output[1] - output[2]; step[ 3] = output[0] - output[3]; temp1 = output[4]*C14; temp2 = output[7]*C2; step[ 4] = temp1 + temp2; temp1 = output[5]*C10; temp2 = output[6]*C6; step[ 5] = temp1 + temp2; temp1 = output[5]*C6; temp2 = output[6]*C10; step[ 6] = temp2 - temp1; temp1 = output[4]*C2; temp2 = output[7]*C14; step[ 7] = temp2 - temp1; step[ 8] = output[ 8] + output[11]; step[ 9] = output[ 9] + output[10]; step[10] = output[ 9] - output[10]; step[11] = output[ 8] - output[11]; step[12] = output[12] + output[15]; step[13] = output[13] + output[14]; step[14] = output[13] - output[14]; step[15] = output[12] - output[15]; // step 4 output[ 0] = (step[ 0] + step[ 1]); output[ 8] = (step[ 0] - step[ 1]); temp1 = step[2]*C12; temp2 = step[3]*C4; temp1 = temp1 + temp2; output[ 4] = 2*(temp1*C8); temp1 = step[2]*C4; temp2 = step[3]*C12; temp1 = temp2 - temp1; output[12] = 2*(temp1*C8); output[ 2] = 2*((step[4] + step[ 5])*C8); output[14] = 2*((step[7] - step[ 6])*C8); temp1 = step[4] - step[5]; temp2 = step[6] + step[7]; output[ 6] = (temp1 + temp2); output[10] = (temp1 - temp2); intermediate[8] = step[8] + step[14]; intermediate[9] = step[9] + step[15]; temp1 = intermediate[8]*C12; temp2 = intermediate[9]*C4; temp1 = temp1 - temp2; output[3] = 2*(temp1*C8); temp1 = intermediate[8]*C4; temp2 = intermediate[9]*C12; temp1 = temp2 + temp1; output[13] = 2*(temp1*C8); output[ 9] = 2*((step[10] + step[11])*C8); intermediate[11] = step[10] - step[11]; intermediate[12] = step[12] + step[13]; intermediate[13] = step[12] - step[13]; intermediate[14] = step[ 8] - step[14]; intermediate[15] = step[ 9] - step[15]; output[15] = (intermediate[11] + intermediate[12]); output[ 1] = -(intermediate[11] - intermediate[12]); output[ 7] = 2*(intermediate[13]*C8); temp1 = intermediate[14]*C12; temp2 = intermediate[15]*C4; temp1 = temp1 - temp2; output[11] = -2*(temp1*C8); temp1 = intermediate[14]*C4; temp2 = intermediate[15]*C12; temp1 = temp2 + temp1; output[ 5] = 2*(temp1*C8); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } void vp9_short_fdct16x16_c(short *input, short *out, int pitch) { vp9_clear_system_state(); // Make it simd safe : __asm emms; { int shortpitch = pitch >> 1; int i, j; double output[256]; // First transform columns for (i = 0; i < 16; i++) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; j++) temp_in[j] = input[j*shortpitch + i]; dct16x16_1d(temp_in, temp_out); for (j = 0; j < 16; j++) output[j*16 + i] = temp_out[j]; } // Then transform rows for (i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; ++j) temp_in[j] = output[j + i*16]; dct16x16_1d(temp_in, temp_out); for (j = 0; j < 16; ++j) output[j + i*16] = temp_out[j]; } // Scale by some magic number for (i = 0; i < 256; i++) out[i] = (short)round(output[i]/2); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } #else static const int16_t C1 = 16305; static const int16_t C2 = 16069; static const int16_t C3 = 15679; static const int16_t C4 = 15137; static const int16_t C5 = 14449; static const int16_t C6 = 13623; static const int16_t C7 = 12665; static const int16_t C8 = 11585; static const int16_t C9 = 10394; static const int16_t C10 = 9102; static const int16_t C11 = 7723; static const int16_t C12 = 6270; static const int16_t C13 = 4756; static const int16_t C14 = 3196; static const int16_t C15 = 1606; #define RIGHT_SHIFT 14 #define ROUNDING (1 << (RIGHT_SHIFT - 1)) static void dct16x16_1d(int16_t input[16], int16_t output[16], int last_shift_bits) { int16_t step[16]; int intermediate[16]; int temp1, temp2; int final_shift = RIGHT_SHIFT; int final_rounding = ROUNDING; int output_shift = 0; int output_rounding = 0; final_shift += last_shift_bits; if (final_shift > 0) final_rounding = 1 << (final_shift - 1); output_shift += last_shift_bits; if (output_shift > 0) output_rounding = 1 << (output_shift - 1); // step 1 step[ 0] = input[0] + input[15]; step[ 1] = input[1] + input[14]; step[ 2] = input[2] + input[13]; step[ 3] = input[3] + input[12]; step[ 4] = input[4] + input[11]; step[ 5] = input[5] + input[10]; step[ 6] = input[6] + input[ 9]; step[ 7] = input[7] + input[ 8]; step[ 8] = input[7] - input[ 8]; step[ 9] = input[6] - input[ 9]; step[10] = input[5] - input[10]; step[11] = input[4] - input[11]; step[12] = input[3] - input[12]; step[13] = input[2] - input[13]; step[14] = input[1] - input[14]; step[15] = input[0] - input[15]; // step 2 output[0] = step[0] + step[7]; output[1] = step[1] + step[6]; output[2] = step[2] + step[5]; output[3] = step[3] + step[4]; output[4] = step[3] - step[4]; output[5] = step[2] - step[5]; output[6] = step[1] - step[6]; output[7] = step[0] - step[7]; temp1 = step[ 8] * C7; temp2 = step[15] * C9; output[ 8] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[ 9] * C11; temp2 = step[14] * C5; output[ 9] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[10] * C3; temp2 = step[13] * C13; output[10] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[11] * C15; temp2 = step[12] * C1; output[11] = (temp1 - temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[11] * C1; temp2 = step[12] * C15; output[12] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[10] * C13; temp2 = step[13] * C3; output[13] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[ 9] * C5; temp2 = step[14] * C11; output[14] = (temp2 + temp1 + ROUNDING) >> RIGHT_SHIFT; temp1 = step[ 8] * C9; temp2 = step[15] * C7; output[15] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT; // step 3 step[ 0] = output[0] + output[3]; step[ 1] = output[1] + output[2]; step[ 2] = output[1] - output[2]; step[ 3] = output[0] - output[3]; temp1 = output[4] * C14; temp2 = output[7] * C2; step[ 4] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = output[5] * C10; temp2 = output[6] * C6; step[ 5] = (temp1 + temp2 + ROUNDING) >> RIGHT_SHIFT; temp1 = output[5] * C6; temp2 = output[6] * C10; step[ 6] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT; temp1 = output[4] * C2; temp2 = output[7] * C14; step[ 7] = (temp2 - temp1 + ROUNDING) >> RIGHT_SHIFT; step[ 8] = output[ 8] + output[11]; step[ 9] = output[ 9] + output[10]; step[10] = output[ 9] - output[10]; step[11] = output[ 8] - output[11]; step[12] = output[12] + output[15]; step[13] = output[13] + output[14]; step[14] = output[13] - output[14]; step[15] = output[12] - output[15]; // step 4 output[ 0] = (step[ 0] + step[ 1] + output_rounding) >> output_shift; output[ 8] = (step[ 0] - step[ 1] + output_rounding) >> output_shift; temp1 = step[2] * C12; temp2 = step[3] * C4; temp1 = (temp1 + temp2 + final_rounding) >> final_shift; output[ 4] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; temp1 = step[2] * C4; temp2 = step[3] * C12; temp1 = (temp2 - temp1 + final_rounding) >> final_shift; output[12] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; output[ 2] = (2 * ((step[4] + step[ 5]) * C8) + final_rounding) >> final_shift; output[14] = (2 * ((step[7] - step[ 6]) * C8) + final_rounding) >> final_shift; temp1 = step[4] - step[5]; temp2 = step[6] + step[7]; output[ 6] = (temp1 + temp2 + output_rounding) >> output_shift; output[10] = (temp1 - temp2 + output_rounding) >> output_shift; intermediate[8] = step[8] + step[14]; intermediate[9] = step[9] + step[15]; temp1 = intermediate[8] * C12; temp2 = intermediate[9] * C4; temp1 = (temp1 - temp2 + final_rounding) >> final_shift; output[3] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; temp1 = intermediate[8] * C4; temp2 = intermediate[9] * C12; temp1 = (temp2 + temp1 + final_rounding) >> final_shift; output[13] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; output[ 9] = (2 * ((step[10] + step[11]) * C8) + final_rounding) >> final_shift; intermediate[11] = step[10] - step[11]; intermediate[12] = step[12] + step[13]; intermediate[13] = step[12] - step[13]; intermediate[14] = step[ 8] - step[14]; intermediate[15] = step[ 9] - step[15]; output[15] = (intermediate[11] + intermediate[12] + output_rounding) >> output_shift; output[ 1] = -(intermediate[11] - intermediate[12] + output_rounding) >> output_shift; output[ 7] = (2 * (intermediate[13] * C8) + final_rounding) >> final_shift; temp1 = intermediate[14] * C12; temp2 = intermediate[15] * C4; temp1 = (temp1 - temp2 + final_rounding) >> final_shift; output[11] = (-2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; temp1 = intermediate[14] * C4; temp2 = intermediate[15] * C12; temp1 = (temp2 + temp1 + final_rounding) >> final_shift; output[ 5] = (2 * (temp1 * C8) + ROUNDING) >> RIGHT_SHIFT; } void vp9_short_fdct16x16_c(int16_t *input, int16_t *out, int pitch) { int shortpitch = pitch >> 1; int i, j; int16_t output[256]; int16_t *outptr = &output[0]; // First transform columns for (i = 0; i < 16; i++) { int16_t temp_in[16]; int16_t temp_out[16]; for (j = 0; j < 16; j++) temp_in[j] = input[j * shortpitch + i]; dct16x16_1d(temp_in, temp_out, 0); for (j = 0; j < 16; j++) output[j * 16 + i] = temp_out[j]; } // Then transform rows for (i = 0; i < 16; ++i) { dct16x16_1d(outptr, out, 1); outptr += 16; out += 16; } } #undef RIGHT_SHIFT #undef ROUNDING #endif #if CONFIG_TX32X32 || CONFIG_TX64X64 #if !CONFIG_DWTDCTHYBRID #if CONFIG_TX32X32 static void dct32_1d(double *input, double *output, int stride) { static const double C1 = 0.998795456205; // cos(pi * 1 / 64) static const double C2 = 0.995184726672; // cos(pi * 2 / 64) static const double C3 = 0.989176509965; // cos(pi * 3 / 64) static const double C4 = 0.980785280403; // cos(pi * 4 / 64) static const double C5 = 0.970031253195; // cos(pi * 5 / 64) static const double C6 = 0.956940335732; // cos(pi * 6 / 64) static const double C7 = 0.941544065183; // cos(pi * 7 / 64) static const double C8 = 0.923879532511; // cos(pi * 8 / 64) static const double C9 = 0.903989293123; // cos(pi * 9 / 64) static const double C10 = 0.881921264348; // cos(pi * 10 / 64) static const double C11 = 0.857728610000; // cos(pi * 11 / 64) static const double C12 = 0.831469612303; // cos(pi * 12 / 64) static const double C13 = 0.803207531481; // cos(pi * 13 / 64) static const double C14 = 0.773010453363; // cos(pi * 14 / 64) static const double C15 = 0.740951125355; // cos(pi * 15 / 64) static const double C16 = 0.707106781187; // cos(pi * 16 / 64) static const double C17 = 0.671558954847; // cos(pi * 17 / 64) static const double C18 = 0.634393284164; // cos(pi * 18 / 64) static const double C19 = 0.595699304492; // cos(pi * 19 / 64) static const double C20 = 0.555570233020; // cos(pi * 20 / 64) static const double C21 = 0.514102744193; // cos(pi * 21 / 64) static const double C22 = 0.471396736826; // cos(pi * 22 / 64) static const double C23 = 0.427555093430; // cos(pi * 23 / 64) static const double C24 = 0.382683432365; // cos(pi * 24 / 64) static const double C25 = 0.336889853392; // cos(pi * 25 / 64) static const double C26 = 0.290284677254; // cos(pi * 26 / 64) static const double C27 = 0.242980179903; // cos(pi * 27 / 64) static const double C28 = 0.195090322016; // cos(pi * 28 / 64) static const double C29 = 0.146730474455; // cos(pi * 29 / 64) static const double C30 = 0.098017140330; // cos(pi * 30 / 64) static const double C31 = 0.049067674327; // cos(pi * 31 / 64) double step[32]; // Stage 1 step[0] = input[stride*0] + input[stride*(32 - 1)]; step[1] = input[stride*1] + input[stride*(32 - 2)]; step[2] = input[stride*2] + input[stride*(32 - 3)]; step[3] = input[stride*3] + input[stride*(32 - 4)]; step[4] = input[stride*4] + input[stride*(32 - 5)]; step[5] = input[stride*5] + input[stride*(32 - 6)]; step[6] = input[stride*6] + input[stride*(32 - 7)]; step[7] = input[stride*7] + input[stride*(32 - 8)]; step[8] = input[stride*8] + input[stride*(32 - 9)]; step[9] = input[stride*9] + input[stride*(32 - 10)]; step[10] = input[stride*10] + input[stride*(32 - 11)]; step[11] = input[stride*11] + input[stride*(32 - 12)]; step[12] = input[stride*12] + input[stride*(32 - 13)]; step[13] = input[stride*13] + input[stride*(32 - 14)]; step[14] = input[stride*14] + input[stride*(32 - 15)]; step[15] = input[stride*15] + input[stride*(32 - 16)]; step[16] = -input[stride*16] + input[stride*(32 - 17)]; step[17] = -input[stride*17] + input[stride*(32 - 18)]; step[18] = -input[stride*18] + input[stride*(32 - 19)]; step[19] = -input[stride*19] + input[stride*(32 - 20)]; step[20] = -input[stride*20] + input[stride*(32 - 21)]; step[21] = -input[stride*21] + input[stride*(32 - 22)]; step[22] = -input[stride*22] + input[stride*(32 - 23)]; step[23] = -input[stride*23] + input[stride*(32 - 24)]; step[24] = -input[stride*24] + input[stride*(32 - 25)]; step[25] = -input[stride*25] + input[stride*(32 - 26)]; step[26] = -input[stride*26] + input[stride*(32 - 27)]; step[27] = -input[stride*27] + input[stride*(32 - 28)]; step[28] = -input[stride*28] + input[stride*(32 - 29)]; step[29] = -input[stride*29] + input[stride*(32 - 30)]; step[30] = -input[stride*30] + input[stride*(32 - 31)]; step[31] = -input[stride*31] + input[stride*(32 - 32)]; // Stage 2 output[stride*0] = step[0] + step[16 - 1]; output[stride*1] = step[1] + step[16 - 2]; output[stride*2] = step[2] + step[16 - 3]; output[stride*3] = step[3] + step[16 - 4]; output[stride*4] = step[4] + step[16 - 5]; output[stride*5] = step[5] + step[16 - 6]; output[stride*6] = step[6] + step[16 - 7]; output[stride*7] = step[7] + step[16 - 8]; output[stride*8] = -step[8] + step[16 - 9]; output[stride*9] = -step[9] + step[16 - 10]; output[stride*10] = -step[10] + step[16 - 11]; output[stride*11] = -step[11] + step[16 - 12]; output[stride*12] = -step[12] + step[16 - 13]; output[stride*13] = -step[13] + step[16 - 14]; output[stride*14] = -step[14] + step[16 - 15]; output[stride*15] = -step[15] + step[16 - 16]; output[stride*16] = step[16]; output[stride*17] = step[17]; output[stride*18] = step[18]; output[stride*19] = step[19]; output[stride*20] = (-step[20] + step[27])*C16; output[stride*21] = (-step[21] + step[26])*C16; output[stride*22] = (-step[22] + step[25])*C16; output[stride*23] = (-step[23] + step[24])*C16; output[stride*24] = (step[24] + step[23])*C16; output[stride*25] = (step[25] + step[22])*C16; output[stride*26] = (step[26] + step[21])*C16; output[stride*27] = (step[27] + step[20])*C16; output[stride*28] = step[28]; output[stride*29] = step[29]; output[stride*30] = step[30]; output[stride*31] = step[31]; // Stage 3 step[0] = output[stride*0] + output[stride*(8 - 1)]; step[1] = output[stride*1] + output[stride*(8 - 2)]; step[2] = output[stride*2] + output[stride*(8 - 3)]; step[3] = output[stride*3] + output[stride*(8 - 4)]; step[4] = -output[stride*4] + output[stride*(8 - 5)]; step[5] = -output[stride*5] + output[stride*(8 - 6)]; step[6] = -output[stride*6] + output[stride*(8 - 7)]; step[7] = -output[stride*7] + output[stride*(8 - 8)]; step[8] = output[stride*8]; step[9] = output[stride*9]; step[10] = (-output[stride*10] + output[stride*13])*C16; step[11] = (-output[stride*11] + output[stride*12])*C16; step[12] = (output[stride*12] + output[stride*11])*C16; step[13] = (output[stride*13] + output[stride*10])*C16; step[14] = output[stride*14]; step[15] = output[stride*15]; step[16] = output[stride*16] + output[stride*23]; step[17] = output[stride*17] + output[stride*22]; step[18] = output[stride*18] + output[stride*21]; step[19] = output[stride*19] + output[stride*20]; step[20] = -output[stride*20] + output[stride*19]; step[21] = -output[stride*21] + output[stride*18]; step[22] = -output[stride*22] + output[stride*17]; step[23] = -output[stride*23] + output[stride*16]; step[24] = -output[stride*24] + output[stride*31]; step[25] = -output[stride*25] + output[stride*30]; step[26] = -output[stride*26] + output[stride*29]; step[27] = -output[stride*27] + output[stride*28]; step[28] = output[stride*28] + output[stride*27]; step[29] = output[stride*29] + output[stride*26]; step[30] = output[stride*30] + output[stride*25]; step[31] = output[stride*31] + output[stride*24]; // Stage 4 output[stride*0] = step[0] + step[3]; output[stride*1] = step[1] + step[2]; output[stride*2] = -step[2] + step[1]; output[stride*3] = -step[3] + step[0]; output[stride*4] = step[4]; output[stride*5] = (-step[5] + step[6])*C16; output[stride*6] = (step[6] + step[5])*C16; output[stride*7] = step[7]; output[stride*8] = step[8] + step[11]; output[stride*9] = step[9] + step[10]; output[stride*10] = -step[10] + step[9]; output[stride*11] = -step[11] + step[8]; output[stride*12] = -step[12] + step[15]; output[stride*13] = -step[13] + step[14]; output[stride*14] = step[14] + step[13]; output[stride*15] = step[15] + step[12]; output[stride*16] = step[16]; output[stride*17] = step[17]; output[stride*18] = step[18]*-C8 + step[29]*C24; output[stride*19] = step[19]*-C8 + step[28]*C24; output[stride*20] = step[20]*-C24 + step[27]*-C8; output[stride*21] = step[21]*-C24 + step[26]*-C8; output[stride*22] = step[22]; output[stride*23] = step[23]; output[stride*24] = step[24]; output[stride*25] = step[25]; output[stride*26] = step[26]*C24 + step[21]*-C8; output[stride*27] = step[27]*C24 + step[20]*-C8; output[stride*28] = step[28]*C8 + step[19]*C24; output[stride*29] = step[29]*C8 + step[18]*C24; output[stride*30] = step[30]; output[stride*31] = step[31]; // Stage 5 step[0] = (output[stride*0] + output[stride*1]) * C16; step[1] = (-output[stride*1] + output[stride*0]) * C16; step[2] = output[stride*2]*C24 + output[stride*3] * C8; step[3] = output[stride*3]*C24 - output[stride*2] * C8; step[4] = output[stride*4] + output[stride*5]; step[5] = -output[stride*5] + output[stride*4]; step[6] = -output[stride*6] + output[stride*7]; step[7] = output[stride*7] + output[stride*6]; step[8] = output[stride*8]; step[9] = output[stride*9]*-C8 + output[stride*14]*C24; step[10] = output[stride*10]*-C24 + output[stride*13]*-C8; step[11] = output[stride*11]; step[12] = output[stride*12]; step[13] = output[stride*13]*C24 + output[stride*10]*-C8; step[14] = output[stride*14]*C8 + output[stride*9]*C24; step[15] = output[stride*15]; step[16] = output[stride*16] + output[stride*19]; step[17] = output[stride*17] + output[stride*18]; step[18] = -output[stride*18] + output[stride*17]; step[19] = -output[stride*19] + output[stride*16]; step[20] = -output[stride*20] + output[stride*23]; step[21] = -output[stride*21] + output[stride*22]; step[22] = output[stride*22] + output[stride*21]; step[23] = output[stride*23] + output[stride*20]; step[24] = output[stride*24] + output[stride*27]; step[25] = output[stride*25] + output[stride*26]; step[26] = -output[stride*26] + output[stride*25]; step[27] = -output[stride*27] + output[stride*24]; step[28] = -output[stride*28] + output[stride*31]; step[29] = -output[stride*29] + output[stride*30]; step[30] = output[stride*30] + output[stride*29]; step[31] = output[stride*31] + output[stride*28]; // Stage 6 output[stride*0] = step[0]; output[stride*1] = step[1]; output[stride*2] = step[2]; output[stride*3] = step[3]; output[stride*4] = step[4]*C28 + step[7]*C4; output[stride*5] = step[5]*C12 + step[6]*C20; output[stride*6] = step[6]*C12 + step[5]*-C20; output[stride*7] = step[7]*C28 + step[4]*-C4; output[stride*8] = step[8] + step[9]; output[stride*9] = -step[9] + step[8]; output[stride*10] = -step[10] + step[11]; output[stride*11] = step[11] + step[10]; output[stride*12] = step[12] + step[13]; output[stride*13] = -step[13] + step[12]; output[stride*14] = -step[14] + step[15]; output[stride*15] = step[15] + step[14]; output[stride*16] = step[16]; output[stride*17] = step[17]*-C4 + step[30]*C28; output[stride*18] = step[18]*-C28 + step[29]*-C4; output[stride*19] = step[19]; output[stride*20] = step[20]; output[stride*21] = step[21]*-C20 + step[26]*C12; output[stride*22] = step[22]*-C12 + step[25]*-C20; output[stride*23] = step[23]; output[stride*24] = step[24]; output[stride*25] = step[25]*C12 + step[22]*-C20; output[stride*26] = step[26]*C20 + step[21]*C12; output[stride*27] = step[27]; output[stride*28] = step[28]; output[stride*29] = step[29]*C28 + step[18]*-C4; output[stride*30] = step[30]*C4 + step[17]*C28; output[stride*31] = step[31]; // Stage 7 step[0] = output[stride*0]; step[1] = output[stride*1]; step[2] = output[stride*2]; step[3] = output[stride*3]; step[4] = output[stride*4]; step[5] = output[stride*5]; step[6] = output[stride*6]; step[7] = output[stride*7]; step[8] = output[stride*8]*C30 + output[stride*15]*C2; step[9] = output[stride*9]*C14 + output[stride*14]*C18; step[10] = output[stride*10]*C22 + output[stride*13]*C10; step[11] = output[stride*11]*C6 + output[stride*12]*C26; step[12] = output[stride*12]*C6 + output[stride*11]*-C26; step[13] = output[stride*13]*C22 + output[stride*10]*-C10; step[14] = output[stride*14]*C14 + output[stride*9]*-C18; step[15] = output[stride*15]*C30 + output[stride*8]*-C2; step[16] = output[stride*16] + output[stride*17]; step[17] = -output[stride*17] + output[stride*16]; step[18] = -output[stride*18] + output[stride*19]; step[19] = output[stride*19] + output[stride*18]; step[20] = output[stride*20] + output[stride*21]; step[21] = -output[stride*21] + output[stride*20]; step[22] = -output[stride*22] + output[stride*23]; step[23] = output[stride*23] + output[stride*22]; step[24] = output[stride*24] + output[stride*25]; step[25] = -output[stride*25] + output[stride*24]; step[26] = -output[stride*26] + output[stride*27]; step[27] = output[stride*27] + output[stride*26]; step[28] = output[stride*28] + output[stride*29]; step[29] = -output[stride*29] + output[stride*28]; step[30] = -output[stride*30] + output[stride*31]; step[31] = output[stride*31] + output[stride*30]; // Final stage --- outputs indices are bit-reversed. output[stride*0] = step[0]; output[stride*16] = step[1]; output[stride*8] = step[2]; output[stride*24] = step[3]; output[stride*4] = step[4]; output[stride*20] = step[5]; output[stride*12] = step[6]; output[stride*28] = step[7]; output[stride*2] = step[8]; output[stride*18] = step[9]; output[stride*10] = step[10]; output[stride*26] = step[11]; output[stride*6] = step[12]; output[stride*22] = step[13]; output[stride*14] = step[14]; output[stride*30] = step[15]; output[stride*1] = step[16]*C31 + step[31]*C1; output[stride*17] = step[17]*C15 + step[30]*C17; output[stride*9] = step[18]*C23 + step[29]*C9; output[stride*25] = step[19]*C7 + step[28]*C25; output[stride*5] = step[20]*C27 + step[27]*C5; output[stride*21] = step[21]*C11 + step[26]*C21; output[stride*13] = step[22]*C19 + step[25]*C13; output[stride*29] = step[23]*C3 + step[24]*C29; output[stride*3] = step[24]*C3 + step[23]*-C29; output[stride*19] = step[25]*C19 + step[22]*-C13; output[stride*11] = step[26]*C11 + step[21]*-C21; output[stride*27] = step[27]*C27 + step[20]*-C5; output[stride*7] = step[28]*C7 + step[19]*-C25; output[stride*23] = step[29]*C23 + step[18]*-C9; output[stride*15] = step[30]*C15 + step[17]*-C17; output[stride*31] = step[31]*C31 + step[16]*-C1; } void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch) { vp9_clear_system_state(); // Make it simd safe : __asm emms; { int shortpitch = pitch >> 1; int i, j; double output[1024]; // First transform columns for (i = 0; i < 32; i++) { double temp_in[32], temp_out[32]; for (j = 0; j < 32; j++) temp_in[j] = input[j*shortpitch + i]; dct32_1d(temp_in, temp_out, 1); for (j = 0; j < 32; j++) output[j*32 + i] = temp_out[j]; } // Then transform rows for (i = 0; i < 32; ++i) { double temp_in[32], temp_out[32]; for (j = 0; j < 32; ++j) temp_in[j] = output[j + i*32]; dct32_1d(temp_in, temp_out, 1); for (j = 0; j < 32; ++j) output[j + i*32] = temp_out[j]; } // Scale by some magic number for (i = 0; i < 1024; i++) { out[i] = (short)round(output[i]/4); } } vp9_clear_system_state(); // Make it simd safe : __asm emms; } #endif // CONFIG_TX32X32 #else // CONFIG_DWTDCTHYBRID #define DWT_MAX_LENGTH 64 #define DWT_TYPE 26 // 26/53/97 #define DWT_PRECISION_BITS 2 #define DWT_PRECISION_RND ((1 << DWT_PRECISION_BITS) / 2) #if DWT_TYPE == 53 // Note: block length must be even for this implementation static void analysis_53_row(int length, short *x, short *lowpass, short *highpass) { int n; short r, *a, *b; n = length >> 1; b = highpass; a = lowpass; while (--n) { *a++ = (r = *x++) << 1; *b++ = *x - ((r + x[1] + 1) >> 1); x++; } *a = (r = *x++) << 1; *b = *x - r; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ += (r + (*b) + 1) >> 1; r = *b++; } } static void analysis_53_col(int length, short *x, short *lowpass, short *highpass) { int n; short r, *a, *b; n = length >> 1; b = highpass; a = lowpass; while (--n) { *a++ = (r = *x++); *b++ = (((*x) << 1) - (r + x[1]) + 2) >> 2; x++; } *a = (r = *x++); *b = (*x - r + 1) >> 1; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ += (r + (*b) + 1) >> 1; r = *b++; } } static void dyadic_analyze_53(int levels, int width, int height, short *x, int pitch_x, short *c, int pitch_c) { int lv, i, j, nh, nw, hh = height, hw = width; short buffer[2 * DWT_MAX_LENGTH]; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS; } } for (lv = 0; lv < levels; lv++) { nh = hh; hh = (hh + 1) >> 1; nw = hw; hw = (hw + 1) >> 1; if ((nh < 2) || (nw < 2)) return; for (i = 0; i < nh; i++) { memcpy(buffer, &c[i * pitch_c], nw * sizeof(short)); analysis_53_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw); } for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i + nh] = c[i * pitch_c + j]; analysis_53_col(nh, buffer + nh, buffer, buffer + hh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i]; } } } #elif DWT_TYPE == 26 static void analysis_26_row(int length, short *x, short *lowpass, short *highpass) { int i, n; short r, s, *a, *b; a = lowpass; b = highpass; for (i = length >> 1; i; i--) { r = *x++; s = *x++; *a++ = r + s; *b++ = r - s; } n = length >> 1; if (n >= 4) { a = lowpass; b = highpass; r = *lowpass; while (--n) { *b++ -= (r - a[1] + 4) >> 3; r = *a++; } *b -= (r - *a + 4) >> 3; } } static void analysis_26_col(int length, short *x, short *lowpass, short *highpass) { int i, n; short r, s, *a, *b; a = lowpass; b = highpass; for (i = length >> 1; i; i--) { r = *x++; s = *x++; *a++ = (r + s + 1) >> 1; *b++ = (r - s + 1) >> 1; } n = length >> 1; if (n >= 4) { a = lowpass; b = highpass; r = *lowpass; while (--n) { *b++ -= (r - a[1] + 4) >> 3; r = *a++; } *b -= (r - *a + 4) >> 3; } } static void dyadic_analyze_26(int levels, int width, int height, short *x, int pitch_x, short *c, int pitch_c) { int lv, i, j, nh, nw, hh = height, hw = width; short buffer[2 * DWT_MAX_LENGTH]; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { c[i * pitch_c + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS; } } for (lv = 0; lv < levels; lv++) { nh = hh; hh = (hh + 1) >> 1; nw = hw; hw = (hw + 1) >> 1; if ((nh < 2) || (nw < 2)) return; for (i = 0; i < nh; i++) { memcpy(buffer, &c[i * pitch_c], nw * sizeof(short)); analysis_26_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw); } for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i + nh] = c[i * pitch_c + j]; analysis_26_col(nh, buffer + nh, buffer, buffer + hh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i]; } } } #elif DWT_TYPE == 97 static void analysis_97(int length, double *x, double *lowpass, double *highpass) { static const double a_predict1 = -1.586134342; static const double a_update1 = -0.05298011854; static const double a_predict2 = 0.8829110762; static const double a_update2 = 0.4435068522; static const double s_low = 1.149604398; static const double s_high = 1/1.149604398; int i; double y[DWT_MAX_LENGTH]; // Predict 1 for (i = 1; i < length - 2; i += 2) { x[i] += a_predict1 * (x[i - 1] + x[i + 1]); } x[length - 1] += 2 * a_predict1 * x[length - 2]; // Update 1 for (i = 2; i < length; i += 2) { x[i] += a_update1 * (x[i - 1] + x[i + 1]); } x[0] += 2 * a_update1 * x[1]; // Predict 2 for (i = 1; i < length - 2; i += 2) { x[i] += a_predict2 * (x[i - 1] + x[i + 1]); } x[length - 1] += 2 * a_predict2 * x[length - 2]; // Update 2 for (i = 2; i < length; i += 2) { x[i] += a_update2 * (x[i - 1] + x[i + 1]); } x[0] += 2 * a_update2 * x[1]; memcpy(y, x, sizeof(*y) * length); // Scale and pack for (i = 0; i < length / 2; i++) { lowpass[i] = y[2 * i] * s_low; highpass[i] = y[2 * i + 1] * s_high; } } static void dyadic_analyze_97(int levels, int width, int height, short *x, int pitch_x, short *c, int pitch_c) { int lv, i, j, nh, nw, hh = height, hw = width; double buffer[2 * DWT_MAX_LENGTH]; double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH]; for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { y[i * DWT_MAX_LENGTH + j] = x[i * pitch_x + j] << DWT_PRECISION_BITS; } } for (lv = 0; lv < levels; lv++) { nh = hh; hh = (hh + 1) >> 1; nw = hw; hw = (hw + 1) >> 1; if ((nh < 2) || (nw < 2)) return; for (i = 0; i < nh; i++) { memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer)); analysis_97(nw, buffer, &y[i * DWT_MAX_LENGTH], &y[i * DWT_MAX_LENGTH] + hw); } for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i + nh] = y[i * DWT_MAX_LENGTH + j]; analysis_97(nh, buffer + nh, buffer, buffer + hh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = round(buffer[i]); } } } #endif // DWT_TYPE // TODO(debargha): Implement the scaling differently so as not to have to // use the floating point dct static void dct16x16_1d_f(double input[16], double output[16]) { static const double C1 = 0.995184726672197; static const double C2 = 0.98078528040323; static const double C3 = 0.956940335732209; static const double C4 = 0.923879532511287; static const double C5 = 0.881921264348355; static const double C6 = 0.831469612302545; static const double C7 = 0.773010453362737; static const double C8 = 0.707106781186548; static const double C9 = 0.634393284163646; static const double C10 = 0.555570233019602; static const double C11 = 0.471396736825998; static const double C12 = 0.38268343236509; static const double C13 = 0.290284677254462; static const double C14 = 0.195090322016128; static const double C15 = 0.098017140329561; vp9_clear_system_state(); // Make it simd safe : __asm emms; { double step[16]; double intermediate[16]; double temp1, temp2; // step 1 step[ 0] = input[0] + input[15]; step[ 1] = input[1] + input[14]; step[ 2] = input[2] + input[13]; step[ 3] = input[3] + input[12]; step[ 4] = input[4] + input[11]; step[ 5] = input[5] + input[10]; step[ 6] = input[6] + input[ 9]; step[ 7] = input[7] + input[ 8]; step[ 8] = input[7] - input[ 8]; step[ 9] = input[6] - input[ 9]; step[10] = input[5] - input[10]; step[11] = input[4] - input[11]; step[12] = input[3] - input[12]; step[13] = input[2] - input[13]; step[14] = input[1] - input[14]; step[15] = input[0] - input[15]; // step 2 output[0] = step[0] + step[7]; output[1] = step[1] + step[6]; output[2] = step[2] + step[5]; output[3] = step[3] + step[4]; output[4] = step[3] - step[4]; output[5] = step[2] - step[5]; output[6] = step[1] - step[6]; output[7] = step[0] - step[7]; temp1 = step[ 8]*C7; temp2 = step[15]*C9; output[ 8] = temp1 + temp2; temp1 = step[ 9]*C11; temp2 = step[14]*C5; output[ 9] = temp1 - temp2; temp1 = step[10]*C3; temp2 = step[13]*C13; output[10] = temp1 + temp2; temp1 = step[11]*C15; temp2 = step[12]*C1; output[11] = temp1 - temp2; temp1 = step[11]*C1; temp2 = step[12]*C15; output[12] = temp2 + temp1; temp1 = step[10]*C13; temp2 = step[13]*C3; output[13] = temp2 - temp1; temp1 = step[ 9]*C5; temp2 = step[14]*C11; output[14] = temp2 + temp1; temp1 = step[ 8]*C9; temp2 = step[15]*C7; output[15] = temp2 - temp1; // step 3 step[ 0] = output[0] + output[3]; step[ 1] = output[1] + output[2]; step[ 2] = output[1] - output[2]; step[ 3] = output[0] - output[3]; temp1 = output[4]*C14; temp2 = output[7]*C2; step[ 4] = temp1 + temp2; temp1 = output[5]*C10; temp2 = output[6]*C6; step[ 5] = temp1 + temp2; temp1 = output[5]*C6; temp2 = output[6]*C10; step[ 6] = temp2 - temp1; temp1 = output[4]*C2; temp2 = output[7]*C14; step[ 7] = temp2 - temp1; step[ 8] = output[ 8] + output[11]; step[ 9] = output[ 9] + output[10]; step[10] = output[ 9] - output[10]; step[11] = output[ 8] - output[11]; step[12] = output[12] + output[15]; step[13] = output[13] + output[14]; step[14] = output[13] - output[14]; step[15] = output[12] - output[15]; // step 4 output[ 0] = (step[ 0] + step[ 1]); output[ 8] = (step[ 0] - step[ 1]); temp1 = step[2]*C12; temp2 = step[3]*C4; temp1 = temp1 + temp2; output[ 4] = 2*(temp1*C8); temp1 = step[2]*C4; temp2 = step[3]*C12; temp1 = temp2 - temp1; output[12] = 2*(temp1*C8); output[ 2] = 2*((step[4] + step[ 5])*C8); output[14] = 2*((step[7] - step[ 6])*C8); temp1 = step[4] - step[5]; temp2 = step[6] + step[7]; output[ 6] = (temp1 + temp2); output[10] = (temp1 - temp2); intermediate[8] = step[8] + step[14]; intermediate[9] = step[9] + step[15]; temp1 = intermediate[8]*C12; temp2 = intermediate[9]*C4; temp1 = temp1 - temp2; output[3] = 2*(temp1*C8); temp1 = intermediate[8]*C4; temp2 = intermediate[9]*C12; temp1 = temp2 + temp1; output[13] = 2*(temp1*C8); output[ 9] = 2*((step[10] + step[11])*C8); intermediate[11] = step[10] - step[11]; intermediate[12] = step[12] + step[13]; intermediate[13] = step[12] - step[13]; intermediate[14] = step[ 8] - step[14]; intermediate[15] = step[ 9] - step[15]; output[15] = (intermediate[11] + intermediate[12]); output[ 1] = -(intermediate[11] - intermediate[12]); output[ 7] = 2*(intermediate[13]*C8); temp1 = intermediate[14]*C12; temp2 = intermediate[15]*C4; temp1 = temp1 - temp2; output[11] = -2*(temp1*C8); temp1 = intermediate[14]*C4; temp2 = intermediate[15]*C12; temp1 = temp2 + temp1; output[ 5] = 2*(temp1*C8); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } static void vp9_short_fdct16x16_c_f(short *input, short *out, int pitch, int scale) { vp9_clear_system_state(); // Make it simd safe : __asm emms; { int shortpitch = pitch >> 1; int i, j; double output[256]; // First transform columns for (i = 0; i < 16; i++) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; j++) temp_in[j] = input[j*shortpitch + i]; dct16x16_1d_f(temp_in, temp_out); for (j = 0; j < 16; j++) output[j*16 + i] = temp_out[j]; } // Then transform rows for (i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; ++j) temp_in[j] = output[j + i*16]; dct16x16_1d_f(temp_in, temp_out); for (j = 0; j < 16; ++j) output[j + i*16] = temp_out[j]; } // Scale by some magic number for (i = 0; i < 256; i++) out[i] = (short)round(output[i] / (2 << scale)); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } #if CONFIG_TX32X32 void vp9_short_fdct32x32_c(short *input, short *out, int pitch) { // assume out is a 32x32 buffer short buffer[16 * 16]; int i; const int short_pitch = pitch >> 1; #if DWT_TYPE == 26 dyadic_analyze_26(1, 32, 32, input, short_pitch, out, 32); #elif DWT_TYPE == 97 dyadic_analyze_97(1, 32, 32, input, short_pitch, out, 32); #elif DWT_TYPE == 53 dyadic_analyze_53(1, 32, 32, input, short_pitch, out, 32); #endif // TODO(debargha): Implement more efficiently by adding output pitch // argument to the dct16x16 function vp9_short_fdct16x16_c_f(out, buffer, 64, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 32, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 16, buffer, 64, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 32 + 16, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 32 * 16, buffer, 64, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 32 + 32 * 16, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 33 * 16, buffer, 64, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 32 + 33 * 16, buffer + i * 16, sizeof(short) * 16); } #endif // CONFIG_TX32X32 #if CONFIG_TX64X64 void vp9_short_fdct64x64_c(short *input, short *out, int pitch) { // assume out is a 64x64 buffer short buffer[16 * 16]; int i, j; const int short_pitch = pitch >> 1; #if DWT_TYPE == 26 dyadic_analyze_26(2, 64, 64, input, short_pitch, out, 64); #elif DWT_TYPE == 97 dyadic_analyze_97(2, 64, 64, input, short_pitch, out, 64); #elif DWT_TYPE == 53 dyadic_analyze_53(2, 64, 64, input, short_pitch, out, 64); #endif // TODO(debargha): Implement more efficiently by adding output pitch // argument to the dct16x16 function vp9_short_fdct16x16_c_f(out, buffer, 128, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 64, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 16, buffer, 128, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 64 + 16, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 64 * 16, buffer, 128, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 64 + 64 * 16, buffer + i * 16, sizeof(short) * 16); vp9_short_fdct16x16_c_f(out + 65 * 16, buffer, 128, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) vpx_memcpy(out + i * 64 + 65 * 16, buffer + i * 16, sizeof(short) * 16); // There is no dct used on the highest bands for now. // Need to scale these coeffs by a factor of 2/2^DWT_PRECISION_BITS // TODO(debargha): experiment with turning these coeffs to 0 #if DWT_PRECISION_BITS < 1 for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { out[i * 64 + 32 + j] <<= (1 - DWT_PRECISION_BITS); } } for (i = 0; i < 32; ++i) { for (j = 0; j < 64; ++j) { out[i * 64 + j] <<= (1 - DWT_PRECISION_BITS); } } #else for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { out[i * 64 + 32 + j] >>= (DWT_PRECISION_BITS - 1); } } for (i = 0; i < 32; ++i) { for (j = 0; j < 64; ++j) { out[i * 64 + j] >>= (DWT_PRECISION_BITS - 1); } } #endif } #endif // CONFIG_TX64X64 #endif // CONFIG_DWTDCTHYBRID #endif // CONFIG_TX32X32 || CONFIG_TX64X64