/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_blockd.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/common/vp9_seg_common.h" #define EOB_CONTEXT_NODE 0 #define ZERO_CONTEXT_NODE 1 #define ONE_CONTEXT_NODE 2 #define LOW_VAL_CONTEXT_NODE 3 #define TWO_CONTEXT_NODE 4 #define THREE_CONTEXT_NODE 5 #define HIGH_LOW_CONTEXT_NODE 6 #define CAT_ONE_CONTEXT_NODE 7 #define CAT_THREEFOUR_CONTEXT_NODE 8 #define CAT_THREE_CONTEXT_NODE 9 #define CAT_FIVE_CONTEXT_NODE 10 #define CAT1_MIN_VAL 5 #define CAT2_MIN_VAL 7 #define CAT3_MIN_VAL 11 #define CAT4_MIN_VAL 19 #define CAT5_MIN_VAL 35 #define CAT6_MIN_VAL 67 #define CAT1_PROB0 159 #define CAT2_PROB0 145 #define CAT2_PROB1 165 #define CAT3_PROB0 140 #define CAT3_PROB1 148 #define CAT3_PROB2 173 #define CAT4_PROB0 135 #define CAT4_PROB1 140 #define CAT4_PROB2 155 #define CAT4_PROB3 176 #define CAT5_PROB0 130 #define CAT5_PROB1 134 #define CAT5_PROB2 141 #define CAT5_PROB3 157 #define CAT5_PROB4 180 static const vp9_prob cat6_prob[15] = { 254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 }; DECLARE_ALIGNED(16, extern const uint8_t, vp9_norm[256]); static int get_signed(BOOL_DECODER *br, int value_to_sign) { return decode_bool(br, 128) ? -value_to_sign : value_to_sign; } #define INCREMENT_COUNT(token) \ do { \ coef_counts[type][coef_bands[c]][pt][token]++; \ pt = vp9_get_coef_context(&recent_energy, token); \ } while (0) #define WRITE_COEF_CONTINUE(val, token) \ { \ qcoeff_ptr[scan[c]] = (int16_t) get_signed(br, val); \ INCREMENT_COUNT(token); \ c++; \ continue; \ } #define ADJUST_COEF(prob, bits_count) \ do { \ if (vp9_read(br, prob)) \ val += (uint16_t)(1 << bits_count);\ } while (0); static int decode_coefs(VP9D_COMP *dx, const MACROBLOCKD *xd, BOOL_DECODER* const br, int block_idx, PLANE_TYPE type, TX_TYPE tx_type, int seg_eob, int16_t *qcoeff_ptr, const int *const scan, TX_SIZE txfm_size, const int *coef_bands) { ENTROPY_CONTEXT* const A0 = (ENTROPY_CONTEXT *) xd->above_context; ENTROPY_CONTEXT* const L0 = (ENTROPY_CONTEXT *) xd->left_context; const int aidx = vp9_block2above[txfm_size][block_idx]; const int lidx = vp9_block2left[txfm_size][block_idx]; ENTROPY_CONTEXT above_ec = A0[aidx] != 0, left_ec = L0[lidx] != 0; FRAME_CONTEXT *const fc = &dx->common.fc; int recent_energy = 0; int nodc = (type == PLANE_TYPE_Y_NO_DC); int pt, c = nodc; vp9_coeff_probs *coef_probs; vp9_prob *prob; vp9_coeff_count *coef_counts; switch (txfm_size) { default: case TX_4X4: if (tx_type == DCT_DCT) { coef_probs = fc->coef_probs_4x4; coef_counts = fc->coef_counts_4x4; } else { coef_probs = fc->hybrid_coef_probs_4x4; coef_counts = fc->hybrid_coef_counts_4x4; } break; case TX_8X8: if (tx_type == DCT_DCT) { coef_probs = fc->coef_probs_8x8; coef_counts = fc->coef_counts_8x8; } else { coef_probs = fc->hybrid_coef_probs_8x8; coef_counts = fc->hybrid_coef_counts_8x8; } #if CONFIG_CNVCONTEXT if (type != PLANE_TYPE_Y2) { above_ec = (A0[aidx] + A0[aidx + 1]) != 0; left_ec = (L0[lidx] + L0[lidx + 1]) != 0; } #endif break; case TX_16X16: if (tx_type == DCT_DCT) { coef_probs = fc->coef_probs_16x16; coef_counts = fc->coef_counts_16x16; } else { coef_probs = fc->hybrid_coef_probs_16x16; coef_counts = fc->hybrid_coef_counts_16x16; } #if CONFIG_CNVCONTEXT if (type == PLANE_TYPE_UV) { ENTROPY_CONTEXT *A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT *L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); above_ec = (A0[aidx] + A0[aidx + 1] + A1[aidx] + A1[aidx + 1]) != 0; left_ec = (L0[lidx] + L0[lidx + 1] + L1[lidx] + L1[lidx + 1]) != 0; } else if (type != PLANE_TYPE_Y2) { above_ec = (A0[aidx] + A0[aidx + 1] + A0[aidx + 2] + A0[aidx + 3]) != 0; left_ec = (L0[lidx] + L0[lidx + 1] + L0[lidx + 2] + L0[lidx + 3]) != 0; } #endif break; case TX_32X32: coef_probs = fc->coef_probs_32x32; coef_counts = fc->coef_counts_32x32; #if CONFIG_CNVCONTEXT if (type == PLANE_TYPE_UV) { ENTROPY_CONTEXT *A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT *L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); ENTROPY_CONTEXT *A2 = (ENTROPY_CONTEXT *) (xd->above_context + 2); ENTROPY_CONTEXT *L2 = (ENTROPY_CONTEXT *) (xd->left_context + 2); ENTROPY_CONTEXT *A3 = (ENTROPY_CONTEXT *) (xd->above_context + 3); ENTROPY_CONTEXT *L3 = (ENTROPY_CONTEXT *) (xd->left_context + 3); above_ec = (A0[aidx] + A0[aidx + 1] + A1[aidx] + A1[aidx + 1] + A2[aidx] + A2[aidx + 1] + A3[aidx] + A3[aidx + 1]) != 0; left_ec = (L0[lidx] + L0[lidx + 1] + L1[lidx] + L1[lidx + 1] + L2[lidx] + L2[lidx + 1] + L3[lidx] + L3[lidx + 1]) != 0; } else if (type != PLANE_TYPE_Y2) { ENTROPY_CONTEXT *A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT *L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); above_ec = (A0[aidx] + A0[aidx + 1] + A0[aidx + 2] + A0[aidx + 3] + A1[aidx] + A1[aidx + 1] + A1[aidx + 2] + A1[aidx + 3]) != 0; left_ec = (L0[lidx] + L0[lidx + 1] + L0[lidx + 2] + L0[lidx + 3] + L1[lidx] + L1[lidx + 1] + L1[lidx + 2] + L1[lidx + 3]) != 0; } #endif break; } VP9_COMBINEENTROPYCONTEXTS(pt, above_ec, left_ec); while (1) { int val; const uint8_t *cat6 = cat6_prob; if (c >= seg_eob) break; prob = coef_probs[type][coef_bands[c]][pt]; if (!vp9_read(br, prob[EOB_CONTEXT_NODE])) break; SKIP_START: if (c >= seg_eob) break; if (!vp9_read(br, prob[ZERO_CONTEXT_NODE])) { INCREMENT_COUNT(ZERO_TOKEN); ++c; prob = coef_probs[type][coef_bands[c]][pt]; goto SKIP_START; } // ONE_CONTEXT_NODE_0_ if (!vp9_read(br, prob[ONE_CONTEXT_NODE])) { WRITE_COEF_CONTINUE(1, ONE_TOKEN); } // LOW_VAL_CONTEXT_NODE_0_ if (!vp9_read(br, prob[LOW_VAL_CONTEXT_NODE])) { if (!vp9_read(br, prob[TWO_CONTEXT_NODE])) { WRITE_COEF_CONTINUE(2, TWO_TOKEN); } if (!vp9_read(br, prob[THREE_CONTEXT_NODE])) { WRITE_COEF_CONTINUE(3, THREE_TOKEN); } WRITE_COEF_CONTINUE(4, FOUR_TOKEN); } // HIGH_LOW_CONTEXT_NODE_0_ if (!vp9_read(br, prob[HIGH_LOW_CONTEXT_NODE])) { if (!vp9_read(br, prob[CAT_ONE_CONTEXT_NODE])) { val = CAT1_MIN_VAL; ADJUST_COEF(CAT1_PROB0, 0); WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY1); } val = CAT2_MIN_VAL; ADJUST_COEF(CAT2_PROB1, 1); ADJUST_COEF(CAT2_PROB0, 0); WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY2); } // CAT_THREEFOUR_CONTEXT_NODE_0_ if (!vp9_read(br, prob[CAT_THREEFOUR_CONTEXT_NODE])) { if (!vp9_read(br, prob[CAT_THREE_CONTEXT_NODE])) { val = CAT3_MIN_VAL; ADJUST_COEF(CAT3_PROB2, 2); ADJUST_COEF(CAT3_PROB1, 1); ADJUST_COEF(CAT3_PROB0, 0); WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY3); } val = CAT4_MIN_VAL; ADJUST_COEF(CAT4_PROB3, 3); ADJUST_COEF(CAT4_PROB2, 2); ADJUST_COEF(CAT4_PROB1, 1); ADJUST_COEF(CAT4_PROB0, 0); WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY4); } // CAT_FIVE_CONTEXT_NODE_0_: if (!vp9_read(br, prob[CAT_FIVE_CONTEXT_NODE])) { val = CAT5_MIN_VAL; ADJUST_COEF(CAT5_PROB4, 4); ADJUST_COEF(CAT5_PROB3, 3); ADJUST_COEF(CAT5_PROB2, 2); ADJUST_COEF(CAT5_PROB1, 1); ADJUST_COEF(CAT5_PROB0, 0); WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY5); } val = 0; while (*cat6) { val = (val << 1) | vp9_read(br, *cat6++); } val += CAT6_MIN_VAL; WRITE_COEF_CONTINUE(val, DCT_VAL_CATEGORY6); } if (c < seg_eob) coef_counts[type][coef_bands[c]][pt][DCT_EOB_TOKEN]++; A0[aidx] = L0[lidx] = (c > !type); if (txfm_size >= TX_8X8 && type != PLANE_TYPE_Y2) { A0[aidx + 1] = L0[lidx + 1] = A0[aidx]; if (txfm_size >= TX_16X16) { if (type == PLANE_TYPE_UV) { ENTROPY_CONTEXT *A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT *L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); A1[aidx] = A1[aidx + 1] = L1[aidx] = L1[lidx + 1] = A0[aidx]; if (txfm_size >= TX_32X32) { ENTROPY_CONTEXT *A2 = (ENTROPY_CONTEXT *) (xd->above_context + 2); ENTROPY_CONTEXT *L2 = (ENTROPY_CONTEXT *) (xd->left_context + 2); ENTROPY_CONTEXT *A3 = (ENTROPY_CONTEXT *) (xd->above_context + 3); ENTROPY_CONTEXT *L3 = (ENTROPY_CONTEXT *) (xd->left_context + 3); A2[aidx] = A2[aidx + 1] = A3[aidx] = A3[aidx + 1] = A0[aidx]; L2[lidx] = L2[lidx + 1] = L3[lidx] = L3[lidx + 1] = A0[aidx]; } } else { A0[aidx + 2] = A0[aidx + 3] = L0[lidx + 2] = L0[lidx + 3] = A0[aidx]; if (txfm_size >= TX_32X32) { ENTROPY_CONTEXT *A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT *L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); A1[aidx] = A1[aidx + 1] = A1[aidx + 2] = A1[aidx + 3] = A0[aidx]; L1[lidx] = L1[lidx + 1] = L1[lidx + 2] = L1[lidx + 3] = A0[aidx]; } } } } return c; } static int get_eob(MACROBLOCKD* const xd, int segment_id, int eob_max) { int eob; if (vp9_get_segdata(xd, segment_id, SEG_LVL_SKIP)) { eob = 0; } else { eob = eob_max; } return eob; } int vp9_decode_sb_tokens(VP9D_COMP* const pbi, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { ENTROPY_CONTEXT* const A0 = (ENTROPY_CONTEXT *) xd->above_context; ENTROPY_CONTEXT* const L0 = (ENTROPY_CONTEXT *) xd->left_context; ENTROPY_CONTEXT* const A1 = (ENTROPY_CONTEXT *) (xd->above_context + 1); ENTROPY_CONTEXT* const L1 = (ENTROPY_CONTEXT *) (xd->left_context + 1); uint16_t *const eobs = xd->eobs; const int segment_id = xd->mode_info_context->mbmi.segment_id; int c, i, eobtotal = 0, seg_eob; // Luma block eobs[0] = c = decode_coefs(pbi, xd, bc, 0, PLANE_TYPE_Y_WITH_DC, DCT_DCT, get_eob(xd, segment_id, 1024), xd->sb_coeff_data.qcoeff, vp9_default_zig_zag1d_32x32, TX_32X32, vp9_coef_bands_32x32); eobtotal += c; // 16x16 chroma blocks seg_eob = get_eob(xd, segment_id, 256); for (i = 16; i < 24; i += 4) { eobs[i] = c = decode_coefs(pbi, xd, bc, i, PLANE_TYPE_UV, DCT_DCT, seg_eob, xd->sb_coeff_data.qcoeff + 1024 + (i - 16) * 64, vp9_default_zig_zag1d_16x16, TX_16X16, vp9_coef_bands_16x16); eobtotal += c; } // no Y2 block A0[8] = L0[8] = A1[8] = L1[8] = 0; return eobtotal; } static int vp9_decode_mb_tokens_16x16(VP9D_COMP* const pbi, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { ENTROPY_CONTEXT* const A = (ENTROPY_CONTEXT *)xd->above_context; ENTROPY_CONTEXT* const L = (ENTROPY_CONTEXT *)xd->left_context; uint16_t *const eobs = xd->eobs; const int segment_id = xd->mode_info_context->mbmi.segment_id; int c, i, eobtotal = 0, seg_eob; // Luma block eobs[0] = c = decode_coefs(pbi, xd, bc, 0, PLANE_TYPE_Y_WITH_DC, get_tx_type(xd, &xd->block[0]), get_eob(xd, segment_id, 256), xd->qcoeff, vp9_default_zig_zag1d_16x16, TX_16X16, vp9_coef_bands_16x16); eobtotal += c; // 8x8 chroma blocks seg_eob = get_eob(xd, segment_id, 64); for (i = 16; i < 24; i += 4) { eobs[i] = c = decode_coefs(pbi, xd, bc, i, PLANE_TYPE_UV, DCT_DCT, seg_eob, xd->block[i].qcoeff, vp9_default_zig_zag1d_8x8, TX_8X8, vp9_coef_bands_8x8); eobtotal += c; } A[8] = 0; L[8] = 0; return eobtotal; } static int vp9_decode_mb_tokens_8x8(VP9D_COMP* const pbi, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { uint16_t *const eobs = xd->eobs; PLANE_TYPE type; int c, i, eobtotal = 0, seg_eob; const int segment_id = xd->mode_info_context->mbmi.segment_id; int has_2nd_order = get_2nd_order_usage(xd); // 2nd order DC block if (has_2nd_order) { eobs[24] = c = decode_coefs(pbi, xd, bc, 24, PLANE_TYPE_Y2, DCT_DCT, get_eob(xd, segment_id, 4), xd->block[24].qcoeff, vp9_default_zig_zag1d_4x4, TX_8X8, vp9_coef_bands_4x4); eobtotal += c - 4; type = PLANE_TYPE_Y_NO_DC; } else { xd->above_context->y2 = 0; xd->left_context->y2 = 0; eobs[24] = 0; type = PLANE_TYPE_Y_WITH_DC; } // luma blocks seg_eob = get_eob(xd, segment_id, 64); for (i = 0; i < 16; i += 4) { eobs[i] = c = decode_coefs(pbi, xd, bc, i, type, type == PLANE_TYPE_Y_WITH_DC ? get_tx_type(xd, xd->block + i) : DCT_DCT, seg_eob, xd->block[i].qcoeff, vp9_default_zig_zag1d_8x8, TX_8X8, vp9_coef_bands_8x8); eobtotal += c; } // chroma blocks if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) { // use 4x4 transform for U, V components in I8X8/splitmv prediction mode seg_eob = get_eob(xd, segment_id, 16); for (i = 16; i < 24; i++) { eobs[i] = c = decode_coefs(pbi, xd, bc, i, PLANE_TYPE_UV, DCT_DCT, seg_eob, xd->block[i].qcoeff, vp9_default_zig_zag1d_4x4, TX_4X4, vp9_coef_bands_4x4); eobtotal += c; } } else { for (i = 16; i < 24; i += 4) { eobs[i] = c = decode_coefs(pbi, xd, bc, i, PLANE_TYPE_UV, DCT_DCT, seg_eob, xd->block[i].qcoeff, vp9_default_zig_zag1d_8x8, TX_8X8, vp9_coef_bands_8x8); eobtotal += c; } } return eobtotal; } static int decode_coefs_4x4(VP9D_COMP *dx, MACROBLOCKD *xd, BOOL_DECODER* const bc, PLANE_TYPE type, int i, int seg_eob, TX_TYPE tx_type, const int *scan) { uint16_t *const eobs = xd->eobs; int c; c = decode_coefs(dx, xd, bc, i, type, tx_type, seg_eob, xd->block[i].qcoeff, scan, TX_4X4, vp9_coef_bands_4x4); eobs[i] = c; return c; } static int decode_coefs_4x4_y(VP9D_COMP *dx, MACROBLOCKD *xd, BOOL_DECODER* const bc, PLANE_TYPE type, int i, int seg_eob) { const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type(xd, &xd->block[i]) : DCT_DCT; const int *scan; switch (tx_type) { case ADST_DCT: scan = vp9_row_scan_4x4; break; case DCT_ADST: scan = vp9_col_scan_4x4; break; default: scan = vp9_default_zig_zag1d_4x4; break; } return decode_coefs_4x4(dx, xd, bc, type, i, seg_eob, tx_type, scan); } int vp9_decode_coefs_4x4(VP9D_COMP *dx, MACROBLOCKD *xd, BOOL_DECODER* const bc, PLANE_TYPE type, int i) { const int segment_id = xd->mode_info_context->mbmi.segment_id; const int seg_eob = get_eob(xd, segment_id, 16); return decode_coefs_4x4_y(dx, xd, bc, type, i, seg_eob); } static int decode_mb_tokens_4x4_uv(VP9D_COMP* const dx, MACROBLOCKD* const xd, BOOL_DECODER* const bc, int seg_eob) { int eobtotal = 0, i; // chroma blocks for (i = 16; i < 24; i++) { eobtotal += decode_coefs_4x4(dx, xd, bc, PLANE_TYPE_UV, i, seg_eob, DCT_DCT, vp9_default_zig_zag1d_4x4); } return eobtotal; } int vp9_decode_mb_tokens_4x4_uv(VP9D_COMP* const dx, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { const int segment_id = xd->mode_info_context->mbmi.segment_id; const int seg_eob = get_eob(xd, segment_id, 16); return decode_mb_tokens_4x4_uv(dx, xd, bc, seg_eob); } static int vp9_decode_mb_tokens_4x4(VP9D_COMP* const dx, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { int i, eobtotal = 0; PLANE_TYPE type; const int segment_id = xd->mode_info_context->mbmi.segment_id; const int seg_eob = get_eob(xd, segment_id, 16); const int has_2nd_order = get_2nd_order_usage(xd); // 2nd order DC block if (has_2nd_order) { eobtotal += decode_coefs_4x4(dx, xd, bc, PLANE_TYPE_Y2, 24, seg_eob, DCT_DCT, vp9_default_zig_zag1d_4x4) - 16; type = PLANE_TYPE_Y_NO_DC; } else { xd->above_context->y2 = 0; xd->left_context->y2 = 0; xd->eobs[24] = 0; type = PLANE_TYPE_Y_WITH_DC; } // luma blocks for (i = 0; i < 16; ++i) { eobtotal += decode_coefs_4x4_y(dx, xd, bc, type, i, seg_eob); } // chroma blocks eobtotal += decode_mb_tokens_4x4_uv(dx, xd, bc, seg_eob); return eobtotal; } int vp9_decode_mb_tokens(VP9D_COMP* const dx, MACROBLOCKD* const xd, BOOL_DECODER* const bc) { const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; int eobtotal; if (tx_size == TX_16X16) { eobtotal = vp9_decode_mb_tokens_16x16(dx, xd, bc); } else if (tx_size == TX_8X8) { eobtotal = vp9_decode_mb_tokens_8x8(dx, xd, bc); } else { assert(tx_size == TX_4X4); eobtotal = vp9_decode_mb_tokens_4x4(dx, xd, bc); } return eobtotal; }