/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9_rtcd.h" #include "vp9/decoder/vp9_dequantize.h" #include "vpx_mem/vpx_mem.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_common.h" static void add_residual(const int16_t *diff, uint8_t *dest, int stride, int width, int height) { int r, c; for (r = 0; r < height; r++) { for (c = 0; c < width; c++) dest[c] = clip_pixel(diff[c] + dest[c]); dest += stride; diff += width; } } void vp9_add_residual_4x4_c(const int16_t *diff, uint8_t *dest, int stride) { add_residual(diff, dest, stride, 4, 4); } void vp9_add_residual_8x8_c(const int16_t *diff, uint8_t *dest, int stride) { add_residual(diff, dest, stride, 8, 8); } void vp9_add_residual_16x16_c(const int16_t *diff, uint8_t *dest, int stride) { add_residual(diff, dest, stride, 16, 16); } void vp9_add_residual_32x32_c(const int16_t *diff,uint8_t *dest, int stride) { add_residual(diff, dest, stride, 32, 32); } static void add_constant_residual(const int16_t diff, uint8_t *dest, int stride, int width, int height) { int r, c; for (r = 0; r < height; r++) { for (c = 0; c < width; c++) dest[c] = clip_pixel(diff + dest[c]); dest += stride; } } void vp9_add_constant_residual_8x8_c(const int16_t diff, uint8_t *dest, int stride) { add_constant_residual(diff, dest, stride, 8, 8); } void vp9_add_constant_residual_16x16_c(const int16_t diff, uint8_t *dest, int stride) { add_constant_residual(diff, dest, stride, 16, 16); } void vp9_add_constant_residual_32x32_c(const int16_t diff, uint8_t *dest, int stride) { add_constant_residual(diff, dest, stride, 32, 32); } void vp9_dequant_iht_add_c(TX_TYPE tx_type, int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_dequant_idct_add(input, dq, dest, stride, eob); } else { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16); for (i = 0; i < 16; i++) input[i] *= dq[i]; vp9_short_iht4x4(input, output, 4, tx_type); vpx_memset(input, 0, 32); vp9_add_residual_4x4(output, dest, stride); } } void vp9_dequant_iht_add_8x8_c(TX_TYPE tx_type, int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_dequant_idct_add_8x8(input, dq, dest, stride, eob); } else { if (eob > 0) { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 64); input[0] *= dq[0]; for (i = 1; i < 64; i++) input[i] *= dq[1]; vp9_short_iht8x8(input, output, 8, tx_type); vpx_memset(input, 0, 128); vp9_add_residual_8x8(output, dest, stride); } } } void vp9_dequant_idct_add_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16); if (eob > 1) { for (i = 0; i < 16; i++) input[i] *= dq[i]; // the idct halves ( >> 1) the pitch vp9_short_idct4x4(input, output, 4 << 1); vpx_memset(input, 0, 32); vp9_add_residual_4x4(output, dest, stride); } else { vp9_dc_only_idct_add(input[0]*dq[0], dest, dest, stride, stride); ((int *)input)[0] = 0; } } void vp9_dequant_dc_idct_add_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int dc) { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16); input[0] = dc; for (i = 1; i < 16; i++) input[i] *= dq[i]; // the idct halves ( >> 1) the pitch vp9_short_idct4x4(input, output, 4 << 1); vpx_memset(input, 0, 32); vp9_add_residual_4x4(output, dest, stride); } void vp9_dequant_idct_add_lossless_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16); if (eob > 1) { for (i = 0; i < 16; i++) input[i] *= dq[i]; vp9_short_iwalsh4x4_c(input, output, 4 << 1); vpx_memset(input, 0, 32); vp9_add_residual_4x4(output, dest, stride); } else { vp9_dc_only_inv_walsh_add(input[0]*dq[0], dest, dest, stride, stride); ((int *)input)[0] = 0; } } void vp9_dequant_dc_idct_add_lossless_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int dc) { int i; DECLARE_ALIGNED_ARRAY(16, int16_t, output, 16); input[0] = dc; for (i = 1; i < 16; i++) input[i] *= dq[i]; vp9_short_iwalsh4x4_c(input, output, 4 << 1); vpx_memset(input, 0, 32); vp9_add_residual_4x4(output, dest, stride); } void vp9_dequant_idct_add_8x8_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { DECLARE_ALIGNED_ARRAY(16, int16_t, output, 64); // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. input[0] *= dq[0]; // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. if (eob) { if (eob == 1) { // DC only DCT coefficient int16_t in = input[0]; int16_t out; // Note: the idct1 will need to be modified accordingly whenever // vp9_short_idct8x8_c() is modified. vp9_short_idct1_8x8_c(&in, &out); input[0] = 0; vp9_add_constant_residual_8x8(out, dest, stride); #if !CONFIG_SCATTERSCAN } else if (eob <= 10) { input[1] *= dq[1]; input[2] *= dq[1]; input[3] *= dq[1]; input[8] *= dq[1]; input[9] *= dq[1]; input[10] *= dq[1]; input[16] *= dq[1]; input[17] *= dq[1]; input[24] *= dq[1]; vp9_short_idct10_8x8(input, output, 16); input[0] = input[1] = input[2] = input[3] = 0; input[8] = input[9] = input[10] = 0; input[16] = input[17] = 0; input[24] = 0; vp9_add_residual_8x8(output, dest, stride); #endif } else { int i; // recover quantizer for 4 4x4 blocks for (i = 1; i < 64; i++) input[i] *= dq[1]; // the idct halves ( >> 1) the pitch vp9_short_idct8x8(input, output, 8 << 1); vpx_memset(input, 0, 128); vp9_add_residual_8x8(output, dest, stride); } } } void vp9_dequant_iht_add_16x16_c(TX_TYPE tx_type, int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16(input, dq, dest, stride, eob); } else { DECLARE_ALIGNED_ARRAY(16, int16_t, output, 256); if (eob > 0) { int i; input[0] *= dq[0]; for (i = 1; i < 256; i++) input[i] *= dq[1]; vp9_short_iht16x16(input, output, 16, tx_type); vpx_memset(input, 0, 512); vp9_add_residual_16x16(output, dest, stride); } } } void vp9_dequant_idct_add_16x16_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { DECLARE_ALIGNED_ARRAY(16, int16_t, output, 256); /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob) { if (eob == 1) { /* DC only DCT coefficient. */ int16_t in = input[0] * dq[0]; int16_t out; /* Note: the idct1 will need to be modified accordingly whenever * vp9_short_idct16x16() is modified. */ vp9_short_idct1_16x16_c(&in, &out); input[0] = 0; vp9_add_constant_residual_16x16(out, dest, stride); #if !CONFIG_SCATTERSCAN } else if (eob <= 10) { input[0] *= dq[0]; input[1] *= dq[1]; input[2] *= dq[1]; input[3] *= dq[1]; input[16] *= dq[1]; input[17] *= dq[1]; input[18] *= dq[1]; input[32] *= dq[1]; input[33] *= dq[1]; input[48] *= dq[1]; // the idct halves ( >> 1) the pitch vp9_short_idct10_16x16(input, output, 32); input[0] = input[1] = input[2] = input[3] = 0; input[16] = input[17] = input[18] = 0; input[32] = input[33] = 0; input[48] = 0; vp9_add_residual_16x16(output, dest, stride); #endif } else { int i; input[0] *= dq[0]; // recover quantizer for 4 4x4 blocks for (i = 1; i < 256; i++) input[i] *= dq[1]; // the idct halves ( >> 1) the pitch vp9_short_idct16x16(input, output, 16 << 1); vpx_memset(input, 0, 512); vp9_add_residual_16x16(output, dest, stride); } } } void vp9_dequant_idct_add_32x32_c(int16_t *input, const int16_t *dq, uint8_t *dest, int stride, int eob) { DECLARE_ALIGNED_ARRAY(16, int16_t, output, 1024); if (eob) { input[0] = input[0] * dq[0] / 2; if (eob == 1) { vp9_short_idct1_32x32(input, output); vp9_add_constant_residual_32x32(output[0], dest, stride); input[0] = 0; #if !CONFIG_SCATTERSCAN } else if (eob <= 10) { input[1] = input[1] * dq[1] / 2; input[2] = input[2] * dq[1] / 2; input[3] = input[3] * dq[1] / 2; input[32] = input[32] * dq[1] / 2; input[33] = input[33] * dq[1] / 2; input[34] = input[34] * dq[1] / 2; input[64] = input[64] * dq[1] / 2; input[65] = input[65] * dq[1] / 2; input[96] = input[96] * dq[1] / 2; // the idct halves ( >> 1) the pitch vp9_short_idct10_32x32(input, output, 64); input[0] = input[1] = input[2] = input[3] = 0; input[32] = input[33] = input[34] = 0; input[64] = input[65] = 0; input[96] = 0; vp9_add_residual_32x32(output, dest, stride); #endif } else { int i; for (i = 1; i < 1024; i++) input[i] = input[i] * dq[1] / 2; vp9_short_idct32x32(input, output, 64); vpx_memset(input, 0, 2048); vp9_add_residual_32x32(output, dest, stride); } } }