/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_header.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconintra4x4.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_quant_common.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_setupintrarecon.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_modecont.h" #include "vpx_mem/vpx_mem.h" #include "vp9/decoder/vp9_dboolhuff.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9_rtcd.h" #include #include #define COEFCOUNT_TESTING //#define DEC_DEBUG #ifdef DEC_DEBUG int dec_debug = 0; #endif static int merge_index(int v, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (v < max1) v = v * modulus + modulus / 2; else { int w; v -= max1; w = v; v += (v + modulus - modulus / 2) / modulus; while (v % modulus == modulus / 2 || w != v - (v + modulus - modulus / 2) / modulus) v++; } return v; } static int inv_remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; int i; v = merge_index(v, n - 1, modulus); if ((m << 1) <= n) { i = vp9_inv_recenter_nonneg(v + 1, m); } else { i = n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m); } return i; } static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) { int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_de_quantizer(VP9D_COMP *pbi) { int i; int Q; VP9_COMMON *const pc = &pbi->common; for (Q = 0; Q < QINDEX_RANGE; Q++) { pc->Y1dequant[Q][0] = (int16_t)vp9_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0] = (int16_t)vp9_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0] = (int16_t)vp9_dc_uv_quant(Q, pc->uvdc_delta_q); /* all the ac values =; */ for (i = 1; i < 16; i++) { int rc = vp9_default_zig_zag1d_4x4[i]; pc->Y1dequant[Q][rc] = (int16_t)vp9_ac_yquant(Q); pc->Y2dequant[Q][rc] = (int16_t)vp9_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][rc] = (int16_t)vp9_ac_uv_quant(Q, pc->uvac_delta_q); } } } static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; VP9_COMMON *const pc = &pbi->common; int segment_id = xd->mode_info_context->mbmi.segment_id; // Set the Q baseline allowing for any segment level adjustment if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) { /* Abs Value */ if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) QIndex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); /* Delta Value */ else { QIndex = pc->base_qindex + vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */ } } else QIndex = pc->base_qindex; xd->q_index = QIndex; /* Set up the block level dequant pointers */ for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } #if CONFIG_LOSSLESS if (!QIndex) { pbi->mb.inv_xform4x4_1_x8 = vp9_short_inv_walsh4x4_1_x8; pbi->mb.inv_xform4x4_x8 = vp9_short_inv_walsh4x4_x8; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1_lossless; pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4_lossless; pbi->idct_add = vp9_dequant_idct_add_lossless_c; pbi->dc_idct_add = vp9_dequant_dc_idct_add_lossless_c; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block_lossless_c; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block_lossless_c; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c; } else { pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1; pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1; pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4; pbi->idct_add = vp9_dequant_idct_add; pbi->dc_idct_add = vp9_dequant_dc_idct_add; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block; } #else pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1; pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1; pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4; pbi->idct_add = vp9_dequant_idct_add; pbi->dc_idct_add = vp9_dequant_dc_idct_add; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block; #endif for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64) { vp9_build_intra_predictors_sb64uv_s(xd); vp9_build_intra_predictors_sb64y_s(xd); } else if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32) { vp9_build_intra_predictors_sbuv_s(xd); vp9_build_intra_predictors_sby_s(xd); } else { vp9_build_intra_predictors_mbuv_s(xd); vp9_build_intra_predictors_mby_s(xd); } } else { if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64) { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } else if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32) { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } else { vp9_build_1st_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); if (xd->mode_info_context->mbmi.second_ref_frame > 0) { vp9_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } #if CONFIG_COMP_INTERINTRA_PRED else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } #endif } } } static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { BLOCKD *bd = &xd->block[0]; TX_TYPE tx_type = get_tx_type_16x16(xd, bd); assert(get_2nd_order_usage(xd) == 0); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 16x16\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } else { vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16, xd); } static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { // First do Y // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 8x8\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; uint8_t *pre = xd->block[ib].predictor; uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst; int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(b, i8x8mode, b->predictor); } tx_type = get_tx_type_8x8(xd, &xd->block[ib]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride, xd->eobs[idx]); } else { vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride, 0, xd->eobs[idx]); } } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(get_2nd_order_usage(xd) == 0); vp9_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd); } else { BLOCKD *b = &xd->block[24]; assert(get_2nd_order_usage(xd) == 1); vp9_dequantize_b_2x2(b); vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8); ((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; vp9_dequant_dc_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); } // Now do UV if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(&xd->block[16 + i], i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(&xd->block[20 + i], i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else { vp9_dequant_idct_add_uv_block_8x8 (xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16, xd); } #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif } static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type; int i, eobtotal = 0; MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; if (mode == I8X8_PRED) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; int i8x8mode; BLOCKD *b; b = &xd->block[ib]; i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(b, i8x8mode, b->predictor); for (j = 0; j < 4; j++) { b = &xd->block[ib + iblock[j]]; tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(b, i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(b, i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } } else if (mode == B_PRED) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 16; i++) { int b_mode; #if CONFIG_COMP_INTRA_PRED int b_mode2; #endif BLOCKD *b = &xd->block[i]; b_mode = xd->mode_info_context->bmi[i].as_mode.first; #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context = vp9_find_bpred_context(b); #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i); #if CONFIG_COMP_INTRA_PRED b_mode2 = xd->mode_info_context->bmi[i].as_mode.second; if (b_mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) { #endif vp9_intra4x4_predict(b, b_mode, b->predictor); #if CONFIG_COMP_INTRA_PRED } else { vp9_comp_intra4x4_predict(b, b_mode, b_mode2, b->predictor); } #endif tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } if (!xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc); } xd->above_context->y2 = 0; xd->left_context->y2 = 0; vp9_build_intra_predictors_mbuv(xd); pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else if (mode == SPLITMV) { assert(get_2nd_order_usage(xd) == 0); pbi->idct_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else { #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 4x4\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif tx_type = get_tx_type_4x4(xd, &xd->block[0]); if (tx_type != DCT_DCT) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } } else { BLOCKD *b = &xd->block[24]; assert(get_2nd_order_usage(xd) == 1); vp9_dequantize_b(b); if (xd->eobs[24] > 1) { vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } vp9_dequantize_b(b); pbi->dc_idct_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff); } pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } static void decode_16x16_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb; TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c( tx_type, xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->dst.y_stride, xd->block[0].eob); } else { vp9_dequant_idct_add_16x16( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); }; static void decode_8x8_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb; BLOCKD *b = &xd->block[24]; TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]); if (tx_type != DCT_DCT) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; tx_type = get_tx_type_8x8(xd, &xd->block[ib]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c( tx_type, q, dq, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, stride, stride, b->eob); } else { vp9_dequant_idct_add_8x8_c( q, dq, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, stride, stride, 0, b->eob); } vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); } } else { vp9_dequantize_b_2x2(b); vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8); ((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; vp9_dequant_dc_idct_add_y_block_8x8_inplace_c( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); } }; static void decode_4x4_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb; BLOCKD *b = &xd->block[24]; TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[0]); if (tx_type != DCT_DCT) { int i; for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c( tx_type, b->qcoeff, b->dequant, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_stride, xd->dst.y_stride, b->eob); } else { vp9_dequant_idct_add_c( b->qcoeff, b->dequant, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_stride, xd->dst.y_stride); } } } else { vp9_dequantize_b(b); if (xd->eobs[24] > 1) { vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } vp9_dequant_dc_idct_add_y_block_4x4_inplace_c( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); } vp9_dequant_idct_add_uv_block_4x4_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); }; static void decode_superblock64(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int i, n, eobtotal; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; VP9_COMMON *const pc = &pbi->common; MODE_INFO *orig_mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { int n; vp9_reset_mb_tokens_context(xd); for (n = 1; n <= 3; n++) { if (mb_col < pc->mb_cols - n) xd->above_context += n; if (mb_row < pc->mb_rows - n) xd->left_context += n; vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - n) xd->above_context -= n; if (mb_row < pc->mb_rows - n) xd->left_context -= n; } /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sb64y_s(xd); vp9_build_intra_predictors_sb64uv_s(xd); } else { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } /* dequantization and idct */ #if CONFIG_TX32X32 if (xd->mode_info_context->mbmi.txfm_size == TX_32X32) { for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; if (mb_col + x_idx * 2 >= pc->mb_cols || mb_row + y_idx * 2 >= pc->mb_rows) continue; xd->left_context = pc->left_context + (y_idx << 1); xd->above_context = pc->above_context + mb_col + (x_idx << 1); xd->mode_info_context = orig_mi + x_idx * 2 + y_idx * 2 * mis; eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1; } } else { vp9_dequant_idct_add_32x32(xd->sb_coeff_data.qcoeff, xd->block[0].dequant, xd->dst.y_buffer + x_idx * 32 + xd->dst.y_stride * y_idx * 32, xd->dst.y_buffer + x_idx * 32 + xd->dst.y_stride * y_idx * 32, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->sb_coeff_data.qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer + x_idx * 16 + xd->dst.uv_stride * y_idx * 16, xd->dst.v_buffer + x_idx * 16 + xd->dst.uv_stride * y_idx * 16, xd->dst.uv_stride, xd->eobs + 16); } } } else { #endif for (n = 0; n < 16; n++) { int x_idx = n & 3, y_idx = n >> 2; if (mb_col + x_idx >= pc->mb_cols || mb_row + y_idx >= pc->mb_rows) continue; xd->above_context = pc->above_context + mb_col + x_idx; xd->left_context = pc->left_context + y_idx; xd->mode_info_context = orig_mi + x_idx + y_idx * mis; for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; continue; } if (tx_size == TX_16X16) { decode_16x16_sb(pbi, xd, bc, n, 3, 2); } else if (tx_size == TX_8X8) { decode_8x8_sb(pbi, xd, bc, n, 3, 2); } else { decode_4x4_sb(pbi, xd, bc, n, 3, 2); } } #if CONFIG_TX32X32 } #endif xd->above_context = pc->above_context + mb_col; xd->left_context = pc->left_context; xd->mode_info_context = orig_mi; } static void decode_superblock32(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int i, n, eobtotal; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; VP9_COMMON *const pc = &pbi->common; MODE_INFO *orig_mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - 1) xd->above_context++; if (mb_row < pc->mb_rows - 1) xd->left_context++; vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - 1) xd->above_context--; if (mb_row < pc->mb_rows - 1) xd->left_context--; /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd); vp9_build_intra_predictors_sbuv_s(xd); } else { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } /* dequantization and idct */ #if CONFIG_TX32X32 if (xd->mode_info_context->mbmi.txfm_size == TX_32X32) { eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1; } } else { vp9_dequant_idct_add_32x32(xd->sb_coeff_data.qcoeff, xd->block[0].dequant, xd->dst.y_buffer, xd->dst.y_buffer, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->sb_coeff_data.qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } else #endif { for (n = 0; n < 4; n++) { int x_idx = n & 1, y_idx = n >> 1; if (mb_col + x_idx >= pc->mb_cols || mb_row + y_idx >= pc->mb_rows) continue; xd->above_context = pc->above_context + mb_col + x_idx; xd->left_context = pc->left_context + y_idx + (mb_row & 2); xd->mode_info_context = orig_mi + x_idx + y_idx * mis; for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; continue; } if (tx_size == TX_16X16) { decode_16x16_sb(pbi, xd, bc, n, 1, 1); } else if (tx_size == TX_8X8) { decode_8x8_sb(pbi, xd, bc, n, 1, 1); } else { decode_4x4_sb(pbi, xd, bc, n, 1, 1); } } xd->above_context = pc->above_context + mb_col; xd->left_context = pc->left_context + (mb_row & 2); xd->mode_info_context = orig_mi; } } static void decode_macroblock(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int eobtotal = 0; MB_PREDICTION_MODE mode; int i; int tx_size; assert(!xd->mode_info_context->mbmi.sb_type); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); tx_size = xd->mode_info_context->mbmi.txfm_size; mode = xd->mode_info_context->mbmi.mode; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); } else if (!bool_error(bc)) { for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } if (mode != B_PRED) { eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); } } //mode = xd->mode_info_context->mbmi.mode; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, &pbi->common); if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED && !bool_error(bc)) { /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. * */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd); return; } #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size); #endif // moved to be performed before detokenization // if (xd->segmentation_enabled) // mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (mode != I8X8_PRED) { vp9_build_intra_predictors_mbuv(xd); if (mode != B_PRED) { vp9_build_intra_predictors_mby(xd); } } } else { #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d interp %d\n", xd->mode_info_context->mbmi.mode, tx_size, xd->mode_info_context->mbmi.interp_filter); #endif vp9_build_inter_predictors_mb(xd); } if (tx_size == TX_16X16) { decode_16x16(pbi, xd, bc); } else if (tx_size == TX_8X8) { decode_8x8(pbi, xd, bc); } else { decode_4x4(pbi, xd, bc); } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("\n"); printf("final y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]); printf("\n"); } printf("\n"); printf("final u\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } printf("\n"); printf("final v\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } fflush(stdout); } #endif } static int get_delta_q(vp9_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp9_read_bit(bc)) { ret_val = vp9_read_literal(bc, 4); if (vp9_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include FILE *vpxlog = 0; #endif static void set_offsets(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; const int idx = mis * mb_row + mb_col; const int dst_fb_idx = cm->new_fb_idx; const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride; const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride; const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col; const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col; xd->mode_info_context = cm->mi + idx; xd->mode_info_context->mbmi.sb_type = block_size >> 5; xd->prev_mode_info_context = cm->prev_mi + idx; xd->above_context = cm->above_context + mb_col; xd->left_context = cm->left_context + (mb_row & 3); /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to * values that are in 1/8th pel units */ block_size >>= 4; // in mb units xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - block_size - mb_row) * 16) << 3; xd->mb_to_right_edge = ((cm->mb_cols - block_size - mb_col) * 16) << 3; xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { int ref_fb_idx, ref_yoffset, ref_uvoffset, ref_y_stride, ref_uv_stride; /* Select the appropriate reference frame for this MB */ if (mbmi->ref_frame == LAST_FRAME) ref_fb_idx = cm->lst_fb_idx; else if (mbmi->ref_frame == GOLDEN_FRAME) ref_fb_idx = cm->gld_fb_idx; else ref_fb_idx = cm->alt_fb_idx; ref_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; ref_yoffset = mb_row * 16 * ref_y_stride + 16 * mb_col; xd->pre.y_buffer = cm->yv12_fb[ref_fb_idx].y_buffer + ref_yoffset; ref_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; ref_uvoffset = mb_row * 8 * ref_uv_stride + 8 * mb_col; xd->pre.u_buffer = cm->yv12_fb[ref_fb_idx].u_buffer + ref_uvoffset; xd->pre.v_buffer = cm->yv12_fb[ref_fb_idx].v_buffer + ref_uvoffset; /* propagate errors from reference frames */ xd->corrupted |= cm->yv12_fb[ref_fb_idx].corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { int second_ref_fb_idx; /* Select the appropriate reference frame for this MB */ if (mbmi->second_ref_frame == LAST_FRAME) second_ref_fb_idx = cm->lst_fb_idx; else if (mbmi->second_ref_frame == GOLDEN_FRAME) second_ref_fb_idx = cm->gld_fb_idx; else second_ref_fb_idx = cm->alt_fb_idx; xd->second_pre.y_buffer = cm->yv12_fb[second_ref_fb_idx].y_buffer + ref_yoffset; xd->second_pre.u_buffer = cm->yv12_fb[second_ref_fb_idx].u_buffer + ref_uvoffset; xd->second_pre.v_buffer = cm->yv12_fb[second_ref_fb_idx].v_buffer + ref_uvoffset; /* propagate errors from reference frames */ xd->corrupted |= cm->yv12_fb[second_ref_fb_idx].corrupted; } } if (mbmi->sb_type) { const int n_mbs = 1 << mbmi->sb_type; const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row); const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col); const int mis = cm->mode_info_stride; int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { mi[y * mis + x] = *mi; } } } } /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mb_row, MACROBLOCKD *xd, BOOL_DECODER* const bc) { int mb_col; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); for (mb_col = 0; mb_col < pc->mb_cols; mb_col += 4) { if (vp9_read(bc, pc->sb64_coded)) { set_offsets(pbi, 64, mb_row, mb_col); vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc); set_refs(pbi, 64, mb_row, mb_col); decode_superblock64(pbi, xd, mb_row, mb_col, bc); xd->corrupted |= bool_error(bc); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; if (mb_row + y_idx_sb >= pc->mb_rows || mb_col + x_idx_sb >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } xd->sb_index = j; if (vp9_read(bc, pc->sb32_coded)) { set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); decode_superblock32(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); xd->corrupted |= bool_error(bc); } else { int i; // Process the 4 MBs within the SB in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); if (mb_row + y_idx >= pc->mb_rows || mb_col + x_idx >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx); xd->mb_index = i; vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); update_blockd_bmi(xd); set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx); vp9_intra_prediction_down_copy(xd); decode_macroblock(pbi, xd, mb_row, mb_col, bc); /* check if the boolean decoder has suffered an error */ xd->corrupted |= bool_error(bc); } } } } } } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return (start + len > start && start + len <= end); } static void setup_token_decoder(VP9D_COMP *pbi, const unsigned char *cx_data, BOOL_DECODER* const bool_decoder) { VP9_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; const unsigned char *partition; ptrdiff_t partition_size; ptrdiff_t bytes_left; // Set up pointers to token partition partition = cx_data; bytes_left = user_data_end - partition; partition_size = bytes_left; /* Validate the calculated partition length. If the buffer * described by the partition can't be fully read, then restrict * it to the portion that can be (for EC mode) or throw an error. */ if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp9_start_decode(bool_decoder, partition, (unsigned int)partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { if (pc->last_frame_seg_map) vpx_memset(pc->last_frame_seg_map, 0, (pc->mb_rows * pc->mb_cols)); vp9_init_mv_probs(pc); vp9_init_mbmode_probs(pc); vp9_default_bmode_probs(pc->fc.bmode_prob); vp9_default_coef_probs(pc); vp9_kf_default_bmode_probs(pc->kf_bmode_prob); // Reset the segment feature data to the default stats: // Features disabled, 0, with delta coding (Default state). vp9_clearall_segfeatures(xd); xd->mb_segment_abs_delta = SEGMENT_DELTADATA; /* reset the mode ref deltasa for loop filter */ vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); /* All buffers are implicitly updated on key frames. */ pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; /* Note that Golden and Altref modes cannot be used on a key frame so * ref_frame_sign_bias[] is undefined and meaningless */ pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; vp9_init_mode_contexts(&pbi->common); vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc)); vpx_memset(pc->prev_mip, 0, (pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO)); vpx_memset(pc->mip, 0, (pc->mb_cols + 1) * (pc->mb_rows + 1)* sizeof(MODE_INFO)); vp9_update_mode_info_border(pc, pc->mip); vp9_update_mode_info_in_image(pc, pc->mi); } else { if (!pc->use_bilinear_mc_filter) pc->mcomp_filter_type = EIGHTTAP; else pc->mcomp_filter_type = BILINEAR; /* To enable choice of different interpolation filters */ vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; /* init without corruption */ xd->fullpixel_mask = 0xffffffff; if (pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; } static void read_coef_probs_common(BOOL_DECODER* const bc, vp9_coeff_probs *coef_probs, int block_types) { int i, j, k, l; if (vp9_read_bit(bc)) { for (i = 0; i < block_types; i++) { for (j = !i; j < COEF_BANDS; j++) { /* NB: This j loop starts from 1 on block type i == 0 */ for (k = 0; k < PREV_COEF_CONTEXTS; k++) { if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; for (l = 0; l < ENTROPY_NODES; l++) { vp9_prob *const p = coef_probs[i][j][k] + l; if (vp9_read(bc, COEF_UPDATE_PROB)) { *p = read_prob_diff_update(bc, *p); } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) { VP9_COMMON *const pc = &pbi->common; read_coef_probs_common(bc, pc->fc.coef_probs_4x4, BLOCK_TYPES_4X4); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_4x4, BLOCK_TYPES_4X4); if (pbi->common.txfm_mode != ONLY_4X4) { read_coef_probs_common(bc, pc->fc.coef_probs_8x8, BLOCK_TYPES_8X8); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_8x8, BLOCK_TYPES_8X8); } if (pbi->common.txfm_mode > ALLOW_8X8) { read_coef_probs_common(bc, pc->fc.coef_probs_16x16, BLOCK_TYPES_16X16); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_16x16, BLOCK_TYPES_16X16); } #if CONFIG_TX32X32 if (pbi->common.txfm_mode > ALLOW_16X16) { read_coef_probs_common(bc, pc->fc.coef_probs_32x32, BLOCK_TYPES_32X32); } #endif } int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) { BOOL_DECODER header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes = 0; int mb_row; int i, j; int corrupt_tokens = 0; /* start with no corruption of current frame */ xd->corrupted = 0; pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; if ((data + first_partition_length_in_bytes > data_end || data + first_partition_length_in_bytes < data)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { const int Width = pc->Width; const int Height = pc->Height; /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (data + 6 < data_end) { pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; pc->horiz_scale = data[4] >> 6; pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; pc->vert_scale = data[6] >> 6; } data += 7; if (Width != pc->Width || Height != pc->Height) { if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp9_alloc_frame_buffers(pc, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } } } #ifdef DEC_DEBUG printf("Decode frame %d\n", pc->current_video_frame); #endif if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi); if (vp9_start_decode(&header_bc, data, (unsigned int)first_partition_length_in_bytes)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); if (pc->frame_type == KEY_FRAME) { pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); } /* Is segmentation enabled */ xd->segmentation_enabled = (unsigned char)vp9_read_bit(&header_bc); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly // updated this frame. xd->update_mb_segmentation_map = (unsigned char)vp9_read_bit(&header_bc); // If so what method will be used. if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled // Read the probs used to decode the segment id for each macro // block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { xd->mb_segment_tree_probs[i] = vp9_read_bit(&header_bc) ? (vp9_prob)vp9_read_literal(&header_bc, 8) : 255; } // Read the prediction probs needed to decode the segment id pc->temporal_update = (unsigned char)vp9_read_bit(&header_bc); for (i = 0; i < PREDICTION_PROBS; i++) { if (pc->temporal_update) { pc->segment_pred_probs[i] = vp9_read_bit(&header_bc) ? (vp9_prob)vp9_read_literal(&header_bc, 8) : 255; } else { pc->segment_pred_probs[i] = 255; } } } // Is the segment data being updated xd->update_mb_segmentation_data = (unsigned char)vp9_read_bit(&header_bc); if (xd->update_mb_segmentation_data) { int data; xd->mb_segment_abs_delta = (unsigned char)vp9_read_bit(&header_bc); vp9_clearall_segfeatures(xd); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { // Is the feature enabled if (vp9_read_bit(&header_bc)) { // Update the feature data and mask vp9_enable_segfeature(xd, i, j); data = vp9_decode_unsigned_max(&header_bc, vp9_seg_feature_data_max(j)); // Is the segment data signed.. if (vp9_is_segfeature_signed(j)) { if (vp9_read_bit(&header_bc)) data = -data; } } else data = 0; vp9_set_segdata(xd, i, j, data); } } } } // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if (vp9_read_bit(&header_bc)) pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } pc->sb64_coded = vp9_read_literal(&header_bc, 8); pc->sb32_coded = vp9_read_literal(&header_bc, 8); /* Read the loop filter level and type */ pc->txfm_mode = vp9_read_literal(&header_bc, 2); #if CONFIG_TX32X32 if (pc->txfm_mode == 3) pc->txfm_mode += vp9_read_bit(&header_bc); #endif if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_literal(&header_bc, 8); pc->prob_tx[1] = vp9_read_literal(&header_bc, 8); #if CONFIG_TX32X32 pc->prob_tx[2] = vp9_read_literal(&header_bc, 8); #endif } pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(&header_bc); pc->filter_level = vp9_read_literal(&header_bc, 6); pc->sharpness_level = vp9_read_literal(&header_bc, 3); /* Read in loop filter deltas applied at the MB level based on mode or ref frame. */ xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp9_read_bit(&header_bc); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ xd->mode_ref_lf_delta_update = (unsigned char)vp9_read_bit(&header_bc); if (xd->mode_ref_lf_delta_update) { /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(&header_bc)) { /*sign = vp9_read_bit( &header_bc );*/ xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6); if (vp9_read_bit(&header_bc)) /* Apply sign */ xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(&header_bc)) { /*sign = vp9_read_bit( &header_bc );*/ xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6); if (vp9_read_bit(&header_bc)) /* Apply sign */ xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } // Dummy read for now vp9_read_literal(&header_bc, 2); setup_token_decoder(pbi, data + first_partition_length_in_bytes, &residual_bc); /* Read the default quantizers. */ { int Q, q_update; Q = vp9_read_literal(&header_bc, QINDEX_BITS); pc->base_qindex = Q; q_update = 0; /* AC 1st order Q = default */ pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(&header_bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(&header_bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update); if (q_update) vp9_init_de_quantizer(pbi); /* MB level dequantizer setup */ mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type != KEY_FRAME) { /* Should the GF or ARF be updated from the current frame */ pc->refresh_golden_frame = vp9_read_bit(&header_bc); pc->refresh_alt_ref_frame = vp9_read_bit(&header_bc); if (pc->refresh_alt_ref_frame) { vpx_memcpy(&pc->fc, &pc->lfc_a, sizeof(pc->fc)); } else { vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); } /* Buffer to buffer copy flags. */ pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) pc->copy_buffer_to_gf = vp9_read_literal(&header_bc, 2); pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) pc->copy_buffer_to_arf = vp9_read_literal(&header_bc, 2); pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc); /* Is high precision mv allowed */ xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc); // Read the type of subpel filter to use if (vp9_read_bit(&header_bc)) { pc->mcomp_filter_type = SWITCHABLE; } else { pc->mcomp_filter_type = vp9_read_literal(&header_bc, 2); } #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif /* To enable choice of different interploation filters */ vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } pc->refresh_entropy_probs = vp9_read_bit(&header_bc); if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = (pc->frame_type == KEY_FRAME) || vp9_read_bit(&header_bc); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (vp9_read(&header_bc, 252)) { pc->fc.vp9_mode_contexts[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } } } #if CONFIG_NEW_MVREF // If Key frame reset mv ref id probabilities to defaults if (pc->frame_type == KEY_FRAME) { // Defaults probabilities for encoding the MV ref id signal vpx_memset(xd->mb_mv_ref_probs, VP9_DEFAULT_MV_REF_PROB, sizeof(xd->mb_mv_ref_probs)); } else { // Read any mv_ref index probability updates int i, j; for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Read any updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) { xd->mb_mv_ref_probs[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } } } #endif if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } vp9_copy(pbi->common.fc.pre_coef_probs_4x4, pbi->common.fc.coef_probs_4x4); vp9_copy(pbi->common.fc.pre_hybrid_coef_probs_4x4, pbi->common.fc.hybrid_coef_probs_4x4); vp9_copy(pbi->common.fc.pre_coef_probs_8x8, pbi->common.fc.coef_probs_8x8); vp9_copy(pbi->common.fc.pre_hybrid_coef_probs_8x8, pbi->common.fc.hybrid_coef_probs_8x8); vp9_copy(pbi->common.fc.pre_coef_probs_16x16, pbi->common.fc.coef_probs_16x16); vp9_copy(pbi->common.fc.pre_hybrid_coef_probs_16x16, pbi->common.fc.hybrid_coef_probs_16x16); #if CONFIG_TX32X32 vp9_copy(pbi->common.fc.pre_coef_probs_32x32, pbi->common.fc.coef_probs_32x32); #endif vp9_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob); vp9_copy(pbi->common.fc.pre_sb_ymode_prob, pbi->common.fc.sb_ymode_prob); vp9_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob); vp9_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob); vp9_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob); vp9_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob); vp9_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob); #if CONFIG_COMP_INTERINTRA_PRED pbi->common.fc.pre_interintra_prob = pbi->common.fc.interintra_prob; #endif pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc; vp9_zero(pbi->common.fc.coef_counts_4x4); vp9_zero(pbi->common.fc.hybrid_coef_counts_4x4); vp9_zero(pbi->common.fc.coef_counts_8x8); vp9_zero(pbi->common.fc.hybrid_coef_counts_8x8); vp9_zero(pbi->common.fc.coef_counts_16x16); vp9_zero(pbi->common.fc.hybrid_coef_counts_16x16); #if CONFIG_TX32X32 vp9_zero(pbi->common.fc.coef_counts_32x32); #endif vp9_zero(pbi->common.fc.ymode_counts); vp9_zero(pbi->common.fc.sb_ymode_counts); vp9_zero(pbi->common.fc.uv_mode_counts); vp9_zero(pbi->common.fc.bmode_counts); vp9_zero(pbi->common.fc.i8x8_mode_counts); vp9_zero(pbi->common.fc.sub_mv_ref_counts); vp9_zero(pbi->common.fc.mbsplit_counts); vp9_zero(pbi->common.fc.NMVcount); vp9_zero(pbi->common.fc.mv_ref_ct); #if CONFIG_COMP_INTERINTRA_PRED vp9_zero(pbi->common.fc.interintra_counts); #endif read_coef_probs(pbi, &header_bc); vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mb_rows * pc->mb_cols), 1)); /* set up frame new frame for intra coded blocks */ vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp9_setup_block_dptrs(xd); vp9_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc); vp9_decode_mode_mvs_init(pbi, &header_bc); vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); /* Decode a row of superblocks */ for (mb_row = 0; mb_row < pc->mb_rows; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, &residual_bc); } corrupt_tokens |= xd->corrupted; /* Collect information about decoder corruption. */ /* 1. Check first boolean decoder for errors. */ pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc); /* 2. Check the macroblock information */ pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } vp9_adapt_coef_probs(pc); if (pc->frame_type != KEY_FRAME) { vp9_adapt_mode_probs(pc); vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv); vp9_update_mode_context(&pbi->common); } /* If this was a kf or Gf note the Q used */ if ((pc->frame_type == KEY_FRAME) || pc->refresh_golden_frame || pc->refresh_alt_ref_frame) { pc->last_kf_gf_q = pc->base_qindex; } if (pc->refresh_entropy_probs) { if (pc->refresh_alt_ref_frame) vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc)); else vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = residual_bc.pos + header_bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif // printf("Frame %d Done\n", frame_count++); /* Find the end of the coded buffer */ while (residual_bc.count > CHAR_BIT && residual_bc.count < VP9_BD_VALUE_SIZE) { residual_bc.count -= CHAR_BIT; residual_bc.user_buffer--; } *p_data_end = residual_bc.user_buffer; return 0; }