/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/decoder/vp9_treereader.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/common/vp9_mvref_common.h" #if CONFIG_DEBUG #include #endif // #define DEBUG_DEC_MV #ifdef DEBUG_DEC_MV int dec_mvcount = 0; #endif // #define DEC_DEBUG #ifdef DEC_DEBUG extern int dec_debug; #endif static B_PREDICTION_MODE read_bmode(vp9_reader *r, const vp9_prob *p) { B_PREDICTION_MODE m = treed_read(r, vp9_bmode_tree, p); return m; } static B_PREDICTION_MODE read_kf_bmode(vp9_reader *r, const vp9_prob *p) { return (B_PREDICTION_MODE)treed_read(r, vp9_kf_bmode_tree, p); } static MB_PREDICTION_MODE read_ymode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_ymode_tree, p); } static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_sb_ymode_tree, p); } static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p); } static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_kf_ymode_tree, p); } static MB_PREDICTION_MODE read_uv_mode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p); } static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) { return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs); } static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi, int mi_row, int mi_col, int segment_id) { const int mi_index = mi_row * cm->mi_cols + mi_col; const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type; const int bw = 1 << mi_width_log2(sb_type); const int bh = 1 << mi_height_log2(sb_type); const int ymis = MIN(cm->mi_rows - mi_row, bh); const int xmis = MIN(cm->mi_cols - mi_col, bw); int x, y; for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int index = mi_index + (y * cm->mi_cols + x); cm->last_frame_seg_map[index] = segment_id; } } } static TX_SIZE select_txfm_size(VP9_COMMON *cm, vp9_reader *r, int allow_16x16, int allow_32x32) { TX_SIZE txfm_size = vp9_read(r, cm->prob_tx[0]); // TX_4X4 or >TX_4X4 if (txfm_size != TX_4X4 && allow_16x16) { txfm_size += vp9_read(r, cm->prob_tx[1]); // TX_8X8 or >TX_8X8 if (txfm_size != TX_8X8 && allow_32x32) txfm_size += vp9_read(r, cm->prob_tx[2]); // TX_16X16 or >TX_16X16 } return txfm_size; } static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; m->mbmi.ref_frame = INTRA_FRAME; // Read segmentation map if it is being updated explicitly this frame m->mbmi.segment_id = 0; if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { m->mbmi.segment_id = read_mb_segid(r, xd); set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id); } m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id, SEG_LVL_SKIP); if (!m->mbmi.mb_skip_coeff) m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); // luma mode #if CONFIG_AB4X4 if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) m->mbmi.mode = read_kf_sb_ymode(r, cm->sb_kf_ymode_prob[cm->kf_ymode_probs_index]); else m->mbmi.mode = I4X4_PRED; #else m->mbmi.mode = m->mbmi.sb_type > BLOCK_SIZE_SB8X8 ? read_kf_sb_ymode(r, cm->sb_kf_ymode_prob[cm->kf_ymode_probs_index]): read_kf_mb_ymode(r, cm->kf_ymode_prob[cm->kf_ymode_probs_index]); #endif m->mbmi.ref_frame = INTRA_FRAME; #if CONFIG_AB4X4 if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { #else if (m->mbmi.mode == I4X4_PRED) { #endif int i; for (i = 0; i < 4; ++i) { const B_PREDICTION_MODE a = above_block_mode(m, i, mis); const B_PREDICTION_MODE l = xd->left_available || (i & 1) ? left_block_mode(m, i) : B_DC_PRED; m->bmi[i].as_mode.first = read_kf_bmode(r, cm->kf_bmode_prob[a][l]); } } m->mbmi.uv_mode = read_uv_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]); if (cm->txfm_mode == TX_MODE_SELECT && !m->mbmi.mb_skip_coeff && #if CONFIG_AB4X4 m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 #else m->mbmi.mode != I4X4_PRED #endif ) { const int allow_16x16 = m->mbmi.sb_type >= BLOCK_SIZE_MB16X16; const int allow_32x32 = m->mbmi.sb_type >= BLOCK_SIZE_SB32X32; m->mbmi.txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32); } else if (cm->txfm_mode >= ALLOW_32X32 && m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) { m->mbmi.txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && m->mbmi.mode <= TM_PRED) { m->mbmi.txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && #if CONFIG_AB4X4 m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 #else m->mbmi.mode != I4X4_PRED #endif ) { m->mbmi.txfm_size = TX_8X8; } else { m->mbmi.txfm_size = TX_4X4; } } static int read_nmv_component(vp9_reader *r, int rv, const nmv_component *mvcomp) { int mag, d; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); if (mv_class == MV_CLASS_0) { d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } mag = vp9_get_mv_mag(mv_class, d << 3); return sign ? -(mag + 8) : (mag + 8); } static int read_nmv_component_fp(vp9_reader *r, int v, int rv, const nmv_component *mvcomp, int usehp) { const int sign = v < 0; int mag = ((sign ? -v : v) - 1) & ~7; // magnitude - 1 int offset; const int mv_class = vp9_get_mv_class(mag, &offset); const int f = mv_class == MV_CLASS_0 ? treed_read(r, vp9_mv_fp_tree, mvcomp->class0_fp[offset >> 3]): treed_read(r, vp9_mv_fp_tree, mvcomp->fp); offset += f << 1; if (usehp) { const vp9_prob p = mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp; offset += vp9_read(r, p); } else { offset += 1; // If hp is not used, the default value of the hp bit is 1 } mag = vp9_get_mv_mag(mv_class, offset); return sign ? -(mag + 1) : (mag + 1); } static void read_nmv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *mvctx) { const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, mvctx->joints); mv->row = mv->col = 0; if (mv_joint_vertical(j)) mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]); if (mv_joint_horizontal(j)) mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]); } static void read_nmv_fp(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *mvctx, int usehp) { const MV_JOINT_TYPE j = vp9_get_mv_joint(mv); usehp = usehp && vp9_use_nmv_hp(ref); if (mv_joint_vertical(j)) mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0], usehp); if (mv_joint_horizontal(j)) mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1], usehp); } static void update_nmv(vp9_reader *r, vp9_prob *const p, const vp9_prob upd_p) { if (vp9_read(r, upd_p)) { #ifdef LOW_PRECISION_MV_UPDATE *p = (vp9_read_literal(r, 7) << 1) | 1; #else *p = (vp9_read_literal(r, 8)); #endif } } static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx, int usehp) { int i, j, k; #ifdef MV_GROUP_UPDATE if (!vp9_read_bit(r)) return; #endif for (j = 0; j < MV_JOINTS - 1; ++j) update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB); for (i = 0; i < 2; ++i) { update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_CLASSES - 1; ++j) update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_OFFSET_BITS; ++j) update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { for (j = 0; j < CLASS0_SIZE; ++j) for (k = 0; k < 3; ++k) update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB); for (j = 0; j < 3; ++j) update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB); } if (usehp) { for (i = 0; i < 2; ++i) { update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB); update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB); } } } // Read the referncence frame static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi, vp9_reader *r, int segment_id) { MV_REFERENCE_FRAME ref_frame; VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int seg_ref_count = 0; const int seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); const int intra = vp9_check_segref(xd, segment_id, INTRA_FRAME); const int last = vp9_check_segref(xd, segment_id, LAST_FRAME); const int golden = vp9_check_segref(xd, segment_id, GOLDEN_FRAME); const int altref = vp9_check_segref(xd, segment_id, ALTREF_FRAME); // If segment coding enabled does the segment allow for more than one // possible reference frame if (seg_ref_active) seg_ref_count = intra + last + golden + altref; // Segment reference frame features not available or allows for // multiple reference frame options if (!seg_ref_active || seg_ref_count > 1) { // Values used in prediction model coding MV_REFERENCE_FRAME pred_ref; // Get the context probability the prediction flag vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); // Read the prediction status flag unsigned char prediction_flag = vp9_read(r, pred_prob); // Store the prediction flag. vp9_set_pred_flag(xd, PRED_REF, prediction_flag); // Get the predicted reference frame. pred_ref = vp9_get_pred_ref(cm, xd); // If correctly predicted then use the predicted value if (prediction_flag) { ref_frame = pred_ref; } else { // decode the explicitly coded value vp9_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_ref], sizeof(mod_refprobs)); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if (seg_ref_active) { mod_refprobs[INTRA_FRAME] *= intra; mod_refprobs[LAST_FRAME] *= last; mod_refprobs[GOLDEN_FRAME] *= golden * altref; } // Default to INTRA_FRAME (value 0) ref_frame = INTRA_FRAME; // Do we need to decode the Intra/Inter branch if (mod_refprobs[0]) ref_frame = vp9_read(r, mod_refprobs[0]); else ref_frame++; if (ref_frame) { // Do we need to decode the Last/Gf_Arf branch if (mod_refprobs[1]) ref_frame += vp9_read(r, mod_refprobs[1]); else ref_frame++; if (ref_frame > 1) { // Do we need to decode the GF/Arf branch if (mod_refprobs[2]) { ref_frame += vp9_read(r, mod_refprobs[2]); } else { if (seg_ref_active) ref_frame = pred_ref == GOLDEN_FRAME || !golden ? ALTREF_FRAME : GOLDEN_FRAME; else ref_frame = pred_ref == GOLDEN_FRAME ? ALTREF_FRAME : GOLDEN_FRAME; } } } } } else { // Segment reference frame features are enabled // The reference frame for the mb is considered as correclty predicted // if it is signaled at the segment level for the purposes of the // common prediction model vp9_set_pred_flag(xd, PRED_REF, 1); ref_frame = vp9_get_pred_ref(cm, xd); } return ref_frame; } static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p); } static MB_PREDICTION_MODE read_mv_ref(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE) treed_read(r, vp9_mv_ref_tree, p); } static B_PREDICTION_MODE read_sub_mv_ref(vp9_reader *r, const vp9_prob *p) { return (B_PREDICTION_MODE) treed_read(r, vp9_sub_mv_ref_tree, p); } #ifdef VPX_MODE_COUNT unsigned int vp9_mv_cont_count[5][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; #endif static void read_switchable_interp_probs(VP9D_COMP* const pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; int i, j; for (j = 0; j < VP9_SWITCHABLE_FILTERS + 1; ++j) for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) cm->fc.switchable_interp_prob[j][i] = vp9_read_prob(r); } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; if (cm->frame_type == KEY_FRAME) { if (!cm->kf_ymode_probs_update) cm->kf_ymode_probs_index = vp9_read_literal(r, 3); } else { nmv_context *const nmvc = &pbi->common.fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; int i, j; if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(pbi, r); // Baseline probabilities for decoding reference frame cm->prob_intra_coded = vp9_read_prob(r); cm->prob_last_coded = vp9_read_prob(r); cm->prob_gf_coded = vp9_read_prob(r); // Computes a modified set of probabilities for use when reference // frame prediction fails. vp9_compute_mod_refprobs(cm); cm->comp_pred_mode = read_comp_pred_mode(r); if (cm->comp_pred_mode == HYBRID_PREDICTION) for (i = 0; i < COMP_PRED_CONTEXTS; i++) cm->prob_comppred[i] = vp9_read_prob(r); // VP9_YMODES if (vp9_read_bit(r)) for (i = 0; i < VP9_YMODES - 1; ++i) cm->fc.ymode_prob[i] = vp9_read_prob(r); // VP9_I32X32_MODES if (vp9_read_bit(r)) for (i = 0; i < VP9_I32X32_MODES - 1; ++i) cm->fc.sb_ymode_prob[i] = vp9_read_prob(r); for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) if (vp9_read_bit(r)) for (i = 0; i < PARTITION_TYPES - 1; ++i) cm->fc.partition_prob[j][i] = vp9_read_prob(r); read_nmvprobs(r, nmvc, xd->allow_high_precision_mv); } } // This function either reads the segment id for the current macroblock from // the bitstream or if the value is temporally predicted asserts the predicted // value static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *const mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (!xd->segmentation_enabled) return 0; // Default for disabled segmentation if (xd->update_mb_segmentation_map) { int segment_id; if (cm->temporal_update) { // Temporal coding of the segment id for this mb is enabled. // Get the context based probability for reading the // prediction status flag const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID); const int pred_flag = vp9_read(r, pred_prob); vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag); // If the value is flagged as correctly predicted // then use the predicted value, otherwise decode it explicitly segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col) : read_mb_segid(r, xd); } else { segment_id = read_mb_segid(r, xd); // Normal unpredicted coding mode } set_segment_id(cm, mbmi, mi_row, mi_col, segment_id); // Side effect return segment_id; } else { return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col); } } static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src, int mb_to_left_edge, int mb_to_right_edge, int mb_to_top_edge, int mb_to_bottom_edge) { dst->as_int = src->as_int; clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } static INLINE void process_mv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *nmvc, nmv_context_counts *mvctx, int usehp) { read_nmv(r, mv, ref, nmvc); read_nmv_fp(r, mv, ref, nmvc, usehp); vp9_increment_nmv(mv, ref, mvctx, usehp); mv->row += ref->row; mv->col += ref->col; } static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type( VP9D_COMP *pbi, vp9_reader *r) { const int index = treed_read(r, vp9_switchable_interp_tree, vp9_get_pred_probs(&pbi->common, &pbi->mb, PRED_SWITCHABLE_INTERP)); return vp9_switchable_interp[index]; } static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi, MODE_INFO *prev_mi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; nmv_context *const nmvc = &cm->fc.nmvc; const int mis = cm->mode_info_stride; MACROBLOCKD *const xd = &pbi->mb; int_mv *const mv0 = &mbmi->mv[0]; int_mv *const mv1 = &mbmi->mv[1]; const int bw = 1 << mi_width_log2(mi->mbmi.sb_type); const int bh = 1 << mi_height_log2(mi->mbmi.sb_type); const int use_prev_in_find_mv_refs = cm->width == cm->last_width && cm->height == cm->last_height && !cm->error_resilient_mode && cm->last_show_frame; int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge; mbmi->need_to_clamp_mvs = 0; mbmi->need_to_clamp_secondmv = 0; mbmi->second_ref_frame = NONE; // Make sure the MACROBLOCKD mode info pointer is pointed at the // correct entry for the current macroblock. xd->mode_info_context = mi; xd->prev_mode_info_context = prev_mi; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV values // that are in 1/8th pel units set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN; mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN; mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; // Read the macroblock segment id. mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r); mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP); if (!mbmi->mb_skip_coeff) mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); // Read the reference frame mbmi->ref_frame = read_ref_frame(pbi, r, mbmi->segment_id); // If reference frame is an Inter frame if (mbmi->ref_frame) { int_mv nearest, nearby, best_mv; int_mv nearest_second, nearby_second, best_mv_second; vp9_prob mv_ref_p[VP9_MVREFS - 1]; const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame; struct scale_factors *sf0 = &xd->scale_factor[0]; *sf0 = cm->active_ref_scale[mbmi->ref_frame - 1]; { // Select the appropriate reference frame for this MB const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1]; setup_pre_planes(xd, &cm->yv12_fb[ref_fb_idx], NULL, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); #ifdef DEC_DEBUG if (dec_debug) printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row, xd->mode_info_context->mbmi.mv[0].as_mv.col); #endif vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL, ref_frame, mbmi->ref_mvs[ref_frame], cm->ref_frame_sign_bias); vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[ref_frame]); // If the segment level skip mode enabled if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; } else { #if CONFIG_AB4X4 if (mbmi->sb_type >= BLOCK_SIZE_SB8X8) mbmi->mode = read_sb_mv_ref(r, mv_ref_p); else mbmi->mode = SPLITMV; #else mbmi->mode = mbmi->sb_type > BLOCK_SIZE_SB8X8 ? read_sb_mv_ref(r, mv_ref_p) : read_mv_ref(r, mv_ref_p); #endif vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[ref_frame]); } if (mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref_frame], &nearest, &nearby); best_mv.as_int = mbmi->ref_mvs[ref_frame][0].as_int; } #ifdef DEC_DEBUG if (dec_debug) printf("[D %d %d] %d %d %d %d\n", ref_frame, mbmi->mb_mode_context[ref_frame], mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]); #endif } mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE ? read_switchable_filter_type(pbi, r) : cm->mcomp_filter_type; if (cm->comp_pred_mode == COMP_PREDICTION_ONLY || (cm->comp_pred_mode == HYBRID_PREDICTION && vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_COMP)))) { /* Since we have 3 reference frames, we can only have 3 unique * combinations of combinations of 2 different reference frames * (A-G, G-L or A-L). In the bitstream, we use this to simply * derive the second reference frame from the first reference * frame, by saying it's the next one in the enumerator, and * if that's > n_refs, then the second reference frame is the * first one in the enumerator. */ mbmi->second_ref_frame = mbmi->ref_frame + 1; if (mbmi->second_ref_frame == 4) mbmi->second_ref_frame = 1; if (mbmi->second_ref_frame > 0) { const MV_REFERENCE_FRAME second_ref_frame = mbmi->second_ref_frame; struct scale_factors *sf1 = &xd->scale_factor[1]; const int second_ref_fb_idx = cm->active_ref_idx[second_ref_frame - 1]; *sf1 = cm->active_ref_scale[second_ref_frame - 1]; setup_pre_planes(xd, NULL, &cm->yv12_fb[second_ref_fb_idx], mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL, second_ref_frame, mbmi->ref_mvs[second_ref_frame], cm->ref_frame_sign_bias); if (mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[second_ref_frame], &nearest_second, &nearby_second); best_mv_second.as_int = mbmi->ref_mvs[second_ref_frame][0].as_int; } } } mbmi->uv_mode = DC_PRED; switch (mbmi->mode) { case SPLITMV: { const int num_p = 4; int j = 0; mbmi->need_to_clamp_mvs = 0; do { // for each subset j int_mv leftmv, abovemv, second_leftmv, second_abovemv; int_mv blockmv, secondmv; int mv_contz; int blockmode; int k = j; leftmv.as_int = left_block_mv(xd, mi, k); abovemv.as_int = above_block_mv(mi, k, mis); second_leftmv.as_int = 0; second_abovemv.as_int = 0; if (mbmi->second_ref_frame > 0) { second_leftmv.as_int = left_block_second_mv(xd, mi, k); second_abovemv.as_int = above_block_second_mv(mi, k, mis); } mv_contz = vp9_mv_cont(&leftmv, &abovemv); blockmode = read_sub_mv_ref(r, cm->fc.sub_mv_ref_prob[mv_contz]); cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++; switch (blockmode) { case NEW4X4: process_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); if (mbmi->second_ref_frame > 0) process_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][3]++; #endif break; case LEFT4X4: blockmv.as_int = leftmv.as_int; if (mbmi->second_ref_frame > 0) secondmv.as_int = second_leftmv.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][0]++; #endif break; case ABOVE4X4: blockmv.as_int = abovemv.as_int; if (mbmi->second_ref_frame > 0) secondmv.as_int = second_abovemv.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][1]++; #endif break; case ZERO4X4: blockmv.as_int = 0; if (mbmi->second_ref_frame > 0) secondmv.as_int = 0; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][2]++; #endif break; default: break; } mi->bmi[j].as_mv[0].as_int = blockmv.as_int; if (mbmi->second_ref_frame > 0) mi->bmi[j].as_mv[1].as_int = secondmv.as_int; } while (++j < num_p); } mv0->as_int = mi->bmi[3].as_mv[0].as_int; mv1->as_int = mi->bmi[3].as_mv[1].as_int; break; /* done with SPLITMV */ case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case NEARESTMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case ZEROMV: mv0->as_int = 0; if (mbmi->second_ref_frame > 0) mv1->as_int = 0; break; case NEWMV: process_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); mbmi->need_to_clamp_mvs = check_mv_bounds(mv0, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) { process_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; default: ; #if CONFIG_DEBUG assert(0); #endif } } else { // required for left and above block mv mv0->as_int = 0; #if CONFIG_AB4X4 if (mbmi->sb_type >= BLOCK_SIZE_SB8X8) { mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob); cm->fc.sb_ymode_counts[mbmi->mode]++; } else { mbmi->mode = I4X4_PRED; } #else if (mbmi->sb_type > BLOCK_SIZE_SB8X8) { mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob); cm->fc.sb_ymode_counts[mbmi->mode]++; } else { mbmi->mode = read_ymode(r, cm->fc.ymode_prob); cm->fc.ymode_counts[mbmi->mode]++; } #endif // If MB mode is I4X4_PRED read the block modes #if CONFIG_AB4X4 if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { #else if (mbmi->mode == I4X4_PRED) { #endif int j = 0; do { int m = read_bmode(r, cm->fc.bmode_prob); mi->bmi[j].as_mode.first = m; cm->fc.bmode_counts[m]++; } while (++j < 4); } mbmi->uv_mode = read_uv_mode(r, cm->fc.uv_mode_prob[mbmi->mode]); cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; } #if CONFIG_AB4X4 if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 && mbmi->sb_type >= BLOCK_SIZE_SB8X8) { #else if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 && ((mbmi->ref_frame == INTRA_FRAME && mbmi->mode != I4X4_PRED) || (mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) { #endif const int allow_16x16 = mbmi->sb_type >= BLOCK_SIZE_MB16X16; const int allow_32x32 = mbmi->sb_type >= BLOCK_SIZE_SB32X32; mbmi->txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32); } else if (mbmi->sb_type >= BLOCK_SIZE_SB32X32 && cm->txfm_mode >= ALLOW_32X32) { mbmi->txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && mbmi->sb_type >= BLOCK_SIZE_MB16X16 #if !CONFIG_AB4X4 && ((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) || (mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV)) #endif ) { mbmi->txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && #if CONFIG_AB4X4 (mbmi->sb_type >= BLOCK_SIZE_SB8X8)) #else (!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == I4X4_PRED) && !(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV))) #endif { mbmi->txfm_size = TX_8X8; } else { mbmi->txfm_size = TX_4X4; } } void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) { VP9_COMMON *cm = &pbi->common; int k; // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove. vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs)); for (k = 0; k < MBSKIP_CONTEXTS; ++k) cm->mbskip_pred_probs[k] = vp9_read_prob(r); mb_mode_mv_init(pbi, r); } void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi, MACROBLOCKD* const xd, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MODE_INFO *mi = xd->mode_info_context; MODE_INFO *prev_mi = xd->prev_mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (cm->frame_type == KEY_FRAME) { kfread_modes(pbi, mi, mi_row, mi_col, r); } else { read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mi_row, mi_col, r); set_scale_factors(xd, mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1, cm->active_ref_scale); } if (1) { const int bw = 1 << mi_width_log2(mbmi->sb_type); const int bh = 1 << mi_height_log2(mbmi->sb_type); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int mis = cm->mode_info_stride; int x, y; for (y = 0; y < y_mis; y++) for (x = !y; x < x_mis; x++) mi[y * mis + x] = *mi; } }