/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_treereader.h" static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_intra_mode_tree, p); } static MB_PREDICTION_MODE read_inter_mode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_sb_mv_ref_tree, p); } static int read_segment_id(vp9_reader *r, const struct segmentation *seg) { return treed_read(r, vp9_segment_tree, seg->tree_probs); } static TX_SIZE read_selected_txfm_size(VP9_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, vp9_reader *r) { const int context = vp9_get_pred_context_tx_size(xd); const vp9_prob *tx_probs = vp9_get_pred_probs_tx_size(xd, &cm->fc.tx_probs); TX_SIZE txfm_size = vp9_read(r, tx_probs[0]); if (txfm_size != TX_4X4 && bsize >= BLOCK_SIZE_MB16X16) { txfm_size += vp9_read(r, tx_probs[1]); if (txfm_size != TX_8X8 && bsize >= BLOCK_SIZE_SB32X32) txfm_size += vp9_read(r, tx_probs[2]); } if (bsize >= BLOCK_SIZE_SB32X32) cm->fc.tx_counts.p32x32[context][txfm_size]++; else if (bsize >= BLOCK_SIZE_MB16X16) cm->fc.tx_counts.p16x16[context][txfm_size]++; else cm->fc.tx_counts.p8x8[context][txfm_size]++; return txfm_size; } static TX_SIZE read_txfm_size(VP9D_COMP *pbi, TXFM_MODE txfm_mode, BLOCK_SIZE_TYPE bsize, int select_cond, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (txfm_mode == TX_MODE_SELECT && bsize >= BLOCK_SIZE_SB8X8 && select_cond) return read_selected_txfm_size(cm, xd, bsize, r); else if (txfm_mode >= ALLOW_32X32 && bsize >= BLOCK_SIZE_SB32X32) return TX_32X32; else if (txfm_mode >= ALLOW_16X16 && bsize >= BLOCK_SIZE_MB16X16) return TX_16X16; else if (txfm_mode >= ALLOW_8X8 && bsize >= BLOCK_SIZE_SB8X8) return TX_8X8; else return TX_4X4; } static void set_segment_id(VP9_COMMON *cm, BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col, int segment_id) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y; assert(segment_id >= 0 && segment_id < MAX_MB_SEGMENTS); for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) cm->last_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { MACROBLOCKD *const xd = &pbi->mb; struct segmentation *const seg = &xd->seg; const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation if (!seg->update_map) return 0; segment_id = read_segment_id(r, seg); set_segment_id(&pbi->common, bsize, mi_row, mi_col, segment_id); return segment_id; } static int read_inter_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct segmentation *const seg = &xd->seg; const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; int pred_segment_id, segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); if (!seg->update_map) return pred_segment_id; if (seg->temporal_update) { const vp9_prob pred_prob = vp9_get_pred_prob_seg_id(xd); const int pred_flag = vp9_read(r, pred_prob); vp9_set_pred_flag_seg_id(cm, bsize, mi_row, mi_col, pred_flag); segment_id = pred_flag ? pred_segment_id : read_segment_id(r, seg); } else { segment_id = read_segment_id(r, seg); } set_segment_id(cm, bsize, mi_row, mi_col, segment_id); return segment_id; } static uint8_t read_skip_coeff(VP9D_COMP *pbi, int segment_id, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int skip_coeff = vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_SKIP); if (!skip_coeff) { const int ctx = vp9_get_pred_context_mbskip(xd); skip_coeff = vp9_read(r, vp9_get_pred_prob_mbskip(cm, xd)); cm->fc.mbskip_count[ctx][skip_coeff]++; } return skip_coeff; } static void read_intra_mode_info(VP9D_COMP *pbi, MODE_INFO *m, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &m->mbmi; const BLOCK_SIZE_TYPE bsize = mbmi->sb_type; const int mis = cm->mode_info_stride; mbmi->segment_id = read_intra_segment_id(pbi, mi_row, mi_col, r); mbmi->mb_skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r); mbmi->txfm_size = read_txfm_size(pbi, cm->txfm_mode, bsize, 1, r); mbmi->ref_frame[0] = INTRA_FRAME; if (bsize >= BLOCK_SIZE_SB8X8) { const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); const MB_PREDICTION_MODE L = xd->left_available ? left_block_mode(m, 0) : DC_PRED; mbmi->mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]); } else { // Only 4x4, 4x8, 8x4 blocks const int bw = 1 << b_width_log2(bsize); const int bh = 1 << b_height_log2(bsize); int idx, idy; for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { const int ib = idy * 2 + idx; const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis); const MB_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(m, ib) : DC_PRED; const MB_PREDICTION_MODE b_mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]); m->bmi[ib].as_mode = b_mode; if (bh == 2) m->bmi[ib + 2].as_mode = b_mode; if (bw == 2) m->bmi[ib + 1].as_mode = b_mode; } } mbmi->mode = m->bmi[3].as_mode; } mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]); } static int read_mv_component(vp9_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } // Fractional part fr = treed_read(r, vp9_mv_fp_tree, class0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vp9_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // Result mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int usehp) { const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints); MV diff = {0, 0}; usehp = usehp && vp9_use_mv_hp(ref); if (mv_joint_vertical(j)) diff.row = read_mv_component(r, &ctx->comps[0], usehp); if (mv_joint_horizontal(j)) diff.col = read_mv_component(r, &ctx->comps[1], usehp); vp9_inc_mv(&diff, counts); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static void update_mv(vp9_reader *r, vp9_prob *p, vp9_prob upd_p) { if (vp9_read(r, upd_p)) { #ifdef LOW_PRECISION_MV_UPDATE *p = (vp9_read_literal(r, 7) << 1) | 1; #else *p = vp9_read_literal(r, 8); #endif } } static void read_mv_probs(vp9_reader *r, nmv_context *mvc, int usehp) { int i, j, k; for (j = 0; j < MV_JOINTS - 1; ++j) update_mv(r, &mvc->joints[j], VP9_NMV_UPDATE_PROB); for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; update_mv(r, &comp->sign, VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_CLASSES - 1; ++j) update_mv(r, &comp->classes[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_mv(r, &comp->class0[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_OFFSET_BITS; ++j) update_mv(r, &comp->bits[j], VP9_NMV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) for (k = 0; k < 3; ++k) update_mv(r, &comp->class0_fp[j][k], VP9_NMV_UPDATE_PROB); for (j = 0; j < 3; ++j) update_mv(r, &comp->fp[j], VP9_NMV_UPDATE_PROB); } if (usehp) { for (i = 0; i < 2; ++i) { update_mv(r, &mvc->comps[i].class0_hp, VP9_NMV_UPDATE_PROB); update_mv(r, &mvc->comps[i].hp, VP9_NMV_UPDATE_PROB); } } } // Read the referncence frame static void read_ref_frame(VP9D_COMP *pbi, vp9_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = &cm->fc; if (vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = vp9_get_segdata(&xd->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } else { const int comp_ctx = vp9_get_pred_context_comp_inter_inter(cm, xd); int is_comp; if (cm->comp_pred_mode == HYBRID_PREDICTION) { is_comp = vp9_read(r, fc->comp_inter_prob[comp_ctx]); fc->comp_inter_count[comp_ctx][is_comp]++; } else { is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY; } // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (is_comp) { const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int ref_ctx = vp9_get_pred_context_comp_ref_p(cm, xd); const int b = vp9_read(r, fc->comp_ref_prob[ref_ctx]); fc->comp_ref_count[ref_ctx][b]++; ref_frame[fix_ref_idx] = cm->comp_fixed_ref; ref_frame[!fix_ref_idx] = cm->comp_var_ref[b]; } else { const int ref1_ctx = vp9_get_pred_context_single_ref_p1(cm, xd); ref_frame[1] = NONE; if (vp9_read(r, fc->single_ref_prob[ref1_ctx][0])) { const int ref2_ctx = vp9_get_pred_context_single_ref_p2(cm, xd); const int b = vp9_read(r, fc->single_ref_prob[ref2_ctx][1]); ref_frame[0] = b ? ALTREF_FRAME : GOLDEN_FRAME; fc->single_ref_count[ref1_ctx][0][1]++; fc->single_ref_count[ref2_ctx][1][b]++; } else { ref_frame[0] = LAST_FRAME; fc->single_ref_count[ref1_ctx][0][0]++; } } } } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < VP9_SWITCHABLE_FILTERS + 1; ++j) for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < VP9_INTER_MODES - 1; ++j) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src, int mb_to_left_edge, int mb_to_right_edge, int mb_to_top_edge, int mb_to_bottom_edge) { dst->as_int = src->as_int; clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type( VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const vp9_prob *probs = vp9_get_pred_probs_switchable_interp(cm, xd); const int index = treed_read(r, vp9_switchable_interp_tree, probs); const int ctx = vp9_get_pred_context_switchable_interp(cm, xd); ++cm->fc.switchable_interp_count[ctx][index]; return vp9_switchable_interp[index]; } static void read_intra_block_modes(VP9D_COMP *pbi, MODE_INFO *mi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); if (bsize >= BLOCK_SIZE_SB8X8) { const int size_group = MIN(3, MIN(bwl, bhl)); mbmi->mode = read_intra_mode(r, cm->fc.y_mode_prob[size_group]); cm->fc.y_mode_counts[size_group][mbmi->mode]++; } else { // Only 4x4, 4x8, 8x4 blocks const int bw = 1 << bwl, bh = 1 << bhl; int idx, idy; for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { const int ib = idy * 2 + idx; const int b_mode = read_intra_mode(r, cm->fc.y_mode_prob[0]); mi->bmi[ib].as_mode = b_mode; cm->fc.y_mode_counts[0][b_mode]++; if (bh == 2) mi->bmi[ib + 2].as_mode = b_mode; if (bw == 2) mi->bmi[ib + 1].as_mode = b_mode; } } mbmi->mode = mi->bmi[3].as_mode; } mbmi->uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[mbmi->mode]); cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; } static MV_REFERENCE_FRAME read_reference_frame(VP9D_COMP *pbi, int segment_id, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MV_REFERENCE_FRAME ref; if (!vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_REF_FRAME)) { const int ctx = vp9_get_pred_context_intra_inter(cm, xd); ref = (MV_REFERENCE_FRAME) vp9_read(r, vp9_get_pred_prob_intra_inter(cm, xd)); cm->fc.intra_inter_count[ctx][ref != INTRA_FRAME]++; } else { ref = (MV_REFERENCE_FRAME) vp9_get_segdata(&xd->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } return ref; } static void read_inter_mode_info(VP9D_COMP *pbi, MODE_INFO *mi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; nmv_context *const nmvc = &cm->fc.nmvc; MB_MODE_INFO *const mbmi = &mi->mbmi; int_mv *const mv0 = &mbmi->mv[0]; int_mv *const mv1 = &mbmi->mv[1]; const BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; const int bw = 1 << b_width_log2(bsize); const int bh = 1 << b_height_log2(bsize); int idx, idy; mbmi->segment_id = read_inter_segment_id(pbi, mi_row, mi_col, r); mbmi->mb_skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r); mbmi->ref_frame[0] = read_reference_frame(pbi, mbmi->segment_id, r); mbmi->ref_frame[1] = NONE; mbmi->txfm_size = read_txfm_size(pbi, cm->txfm_mode, bsize, (!mbmi->mb_skip_coeff || mbmi->ref_frame[0] == INTRA_FRAME), r); if (mbmi->ref_frame[0] != INTRA_FRAME) { int_mv nearest, nearby, best_mv; int_mv nearest_second, nearby_second, best_mv_second; vp9_prob *mv_ref_p; MV_REFERENCE_FRAME ref0, ref1; read_ref_frame(pbi, r, mbmi->segment_id, mbmi->ref_frame); ref0 = mbmi->ref_frame[0]; ref1 = mbmi->ref_frame[1]; vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context, ref0, mbmi->ref_mvs[ref0], cm->ref_frame_sign_bias); mv_ref_p = cm->fc.inter_mode_probs[mbmi->mb_mode_context[ref0]]; if (vp9_segfeature_active(&xd->seg, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; } else if (bsize >= BLOCK_SIZE_SB8X8) { mbmi->mode = read_inter_mode(r, mv_ref_p); vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[ref0]); } mbmi->uv_mode = DC_PRED; // nearest, nearby if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref0], &nearest, &nearby); best_mv.as_int = mbmi->ref_mvs[ref0][0].as_int; } mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE ? read_switchable_filter_type(pbi, r) : cm->mcomp_filter_type; if (ref1 > INTRA_FRAME) { vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context, ref1, mbmi->ref_mvs[ref1], cm->ref_frame_sign_bias); if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref1], &nearest_second, &nearby_second); best_mv_second.as_int = mbmi->ref_mvs[ref1][0].as_int; } } if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int_mv blockmv, secondmv; const int j = idy * 2 + idx; const int blockmode = read_inter_mode(r, mv_ref_p); vp9_accum_mv_refs(cm, blockmode, mbmi->mb_mode_context[ref0]); if (blockmode == NEARESTMV || blockmode == NEARMV) { vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0); if (ref1 > 0) vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest_second, &nearby_second, j, 1); } switch (blockmode) { case NEWMV: read_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); if (ref1 > 0) read_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); break; case NEARESTMV: blockmv.as_int = nearest.as_int; if (ref1 > 0) secondmv.as_int = nearest_second.as_int; break; case NEARMV: blockmv.as_int = nearby.as_int; if (ref1 > 0) secondmv.as_int = nearby_second.as_int; break; case ZEROMV: blockmv.as_int = 0; if (ref1 > 0) secondmv.as_int = 0; break; default: assert(!"Invalid inter mode value"); } mi->bmi[j].as_mv[0].as_int = blockmv.as_int; if (ref1 > 0) mi->bmi[j].as_mv[1].as_int = secondmv.as_int; if (bh == 2) mi->bmi[j + 2] = mi->bmi[j]; if (bw == 2) mi->bmi[j + 1] = mi->bmi[j]; mi->mbmi.mode = blockmode; } } mv0->as_int = mi->bmi[3].as_mv[0].as_int; mv1->as_int = mi->bmi[3].as_mv[1].as_int; } else { const int mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN; const int mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; const int mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN; const int mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; switch (mbmi->mode) { case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (ref1 > 0) assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case NEARESTMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (ref1 > 0) assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case ZEROMV: mv0->as_int = 0; if (ref1 > 0) mv1->as_int = 0; break; case NEWMV: read_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); if (ref1 > 0) read_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); break; default: assert(!"Invalid inter mode value"); } } } else { mv0->as_int = 0; // required for left and above block mv read_intra_block_modes(pbi, mi, r); } } static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) { int i; cm->comp_pred_mode = cm->allow_comp_inter_inter ? read_comp_pred_mode(r) : SINGLE_PREDICTION_ONLY; if (cm->comp_pred_mode == HYBRID_PREDICTION) for (i = 0; i < COMP_INTER_CONTEXTS; i++) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]); if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) { if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]); if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]); } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]); } void vp9_prepare_read_mode_info(VP9D_COMP* pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; int k; // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove. // vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs)); for (k = 0; k < MBSKIP_CONTEXTS; ++k) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.mbskip_probs[k]); if (cm->frame_type != KEY_FRAME && !cm->intra_only) { nmv_context *const nmvc = &pbi->common.fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; int i, j; read_inter_mode_probs(&cm->fc, r); if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(&cm->fc, r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.intra_inter_prob[i]); read_comp_pred(cm, r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < VP9_INTRA_MODES - 1; ++i) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.y_mode_prob[j][i]); for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &cm->fc.partition_prob[INTER_FRAME][j][i]); read_mv_probs(r, nmvc, xd->allow_high_precision_mv); } } void vp9_read_mode_info(VP9D_COMP* pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *mi = xd->mode_info_context; const BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int x_mis = MIN(bw, cm->mi_cols - mi_col); int x, y; if (cm->frame_type == KEY_FRAME || cm->intra_only) read_intra_mode_info(pbi, mi, mi_row, mi_col, r); else read_inter_mode_info(pbi, mi, mi_row, mi_col, r); for (y = 0; y < y_mis; y++) for (x = !y; x < x_mis; x++) mi[y * cm->mode_info_stride + x] = *mi; }