/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/decoder/vp9_treereader.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/common/vp9_mvref_common.h" #if CONFIG_DEBUG #include #endif // #define DEBUG_DEC_MV #ifdef DEBUG_DEC_MV int dec_mvcount = 0; #endif // #define DEC_DEBUG #ifdef DEC_DEBUG extern int dec_debug; #endif static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) { MB_PREDICTION_MODE m = treed_read(r, vp9_intra_mode_tree, p); return m; } static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) { return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs); } static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi, int mi_row, int mi_col, int segment_id) { const int mi_index = mi_row * cm->mi_cols + mi_col; const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type; const int bw = 1 << mi_width_log2(sb_type); const int bh = 1 << mi_height_log2(sb_type); const int ymis = MIN(cm->mi_rows - mi_row, bh); const int xmis = MIN(cm->mi_cols - mi_col, bw); int x, y; for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int index = mi_index + (y * cm->mi_cols + x); cm->last_frame_seg_map[index] = segment_id; } } } static TX_SIZE select_txfm_size(VP9_COMMON *cm, MACROBLOCKD *xd, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { const int context = vp9_get_pred_context(cm, xd, PRED_TX_SIZE); const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE); TX_SIZE txfm_size = vp9_read(r, tx_probs[0]); if (txfm_size != TX_4X4 && bsize >= BLOCK_SIZE_MB16X16) { txfm_size += vp9_read(r, tx_probs[1]); if (txfm_size != TX_8X8 && bsize >= BLOCK_SIZE_SB32X32) txfm_size += vp9_read(r, tx_probs[2]); } if (bsize >= BLOCK_SIZE_SB32X32) { cm->fc.tx_count_32x32p[context][txfm_size]++; } else if (bsize >= BLOCK_SIZE_MB16X16) { cm->fc.tx_count_16x16p[context][txfm_size]++; } else { cm->fc.tx_count_8x8p[context][txfm_size]++; } return txfm_size; } static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; // Read segmentation map if it is being updated explicitly this frame m->mbmi.segment_id = 0; if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { m->mbmi.segment_id = read_mb_segid(r, xd); set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id); } m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id, SEG_LVL_SKIP); if (!m->mbmi.mb_skip_coeff) { m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)] [m->mbmi.mb_skip_coeff]++; } if (cm->txfm_mode == TX_MODE_SELECT && m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { m->mbmi.txfm_size = select_txfm_size(cm, xd, r, m->mbmi.sb_type); } else if (cm->txfm_mode >= ALLOW_32X32 && m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) { m->mbmi.txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.sb_type >= BLOCK_SIZE_MB16X16) { m->mbmi.txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { m->mbmi.txfm_size = TX_8X8; } else { m->mbmi.txfm_size = TX_4X4; } // luma mode m->mbmi.ref_frame[0] = INTRA_FRAME; if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); const MB_PREDICTION_MODE L = xd->left_available ? left_block_mode(m, 0) : DC_PRED; m->mbmi.mode = read_intra_mode(r, cm->kf_y_mode_prob[A][L]); } else { int idx, idy; int bw = 1 << b_width_log2(m->mbmi.sb_type); int bh = 1 << b_height_log2(m->mbmi.sb_type); for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int ib = idy * 2 + idx; int k; const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis); const MB_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(m, ib) : DC_PRED; m->bmi[ib].as_mode.first = read_intra_mode(r, cm->kf_y_mode_prob[A][L]); for (k = 1; k < bh; ++k) m->bmi[ib + k * 2].as_mode.first = m->bmi[ib].as_mode.first; for (k = 1; k < bw; ++k) m->bmi[ib + k].as_mode.first = m->bmi[ib].as_mode.first; } } m->mbmi.mode = m->bmi[3].as_mode.first; } m->mbmi.uv_mode = read_intra_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]); } static int read_mv_component(vp9_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); // Integer part if (mv_class == MV_CLASS_0) { d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } // Fractional part fr = treed_read(r, vp9_mv_fp_tree, mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vp9_read(r, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // result mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static void update_nmv(vp9_reader *r, vp9_prob *const p, const vp9_prob upd_p) { if (vp9_read(r, upd_p)) { #ifdef LOW_PRECISION_MV_UPDATE *p = (vp9_read_literal(r, 7) << 1) | 1; #else *p = (vp9_read_literal(r, 8)); #endif } } static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx, int usehp) { int i, j, k; #ifdef MV_GROUP_UPDATE if (!vp9_read_bit(r)) return; #endif for (j = 0; j < MV_JOINTS - 1; ++j) update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB); for (i = 0; i < 2; ++i) { update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_CLASSES - 1; ++j) update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_OFFSET_BITS; ++j) update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { for (j = 0; j < CLASS0_SIZE; ++j) for (k = 0; k < 3; ++k) update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB); for (j = 0; j < 3; ++j) update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB); } if (usehp) { for (i = 0; i < 2; ++i) { update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB); update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB); } } } // Read the referncence frame static void read_ref_frame(VP9D_COMP *pbi, vp9_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); // Segment reference frame features not available. if (!seg_ref_active) { int is_comp; int comp_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_INTER_INTER); if (cm->comp_pred_mode == HYBRID_PREDICTION) { is_comp = vp9_read(r, cm->fc.comp_inter_prob[comp_ctx]); cm->fc.comp_inter_count[comp_ctx][is_comp]++; } else { is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY; } // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (is_comp) { int b, fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; int ref_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_REF_P); ref_frame[fix_ref_idx] = cm->comp_fixed_ref; b = vp9_read(r, cm->fc.comp_ref_prob[ref_ctx]); cm->fc.comp_ref_count[ref_ctx][b]++; ref_frame[!fix_ref_idx] = cm->comp_var_ref[b]; } else { int ref1_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P1); ref_frame[1] = NONE; if (vp9_read(r, cm->fc.single_ref_prob[ref1_ctx][0])) { int ref2_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P2); int b2 = vp9_read(r, cm->fc.single_ref_prob[ref2_ctx][1]); ref_frame[0] = b2 ? ALTREF_FRAME : GOLDEN_FRAME; cm->fc.single_ref_count[ref1_ctx][0][1]++; cm->fc.single_ref_count[ref2_ctx][1][b2]++; } else { ref_frame[0] = LAST_FRAME; cm->fc.single_ref_count[ref1_ctx][0][0]++; } } } else { ref_frame[0] = vp9_get_segdata(xd, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } } static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p); } #ifdef VPX_MODE_COUNT unsigned int vp9_mv_cont_count[5][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; #endif static void read_switchable_interp_probs(VP9_COMMON* const cm, vp9_reader *r) { int i, j; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) { cm->fc.switchable_interp_prob[j][i] = // vp9_read_prob(r); vp9_read_prob_diff_update(r, cm->fc.switchable_interp_prob[j][i]); } } } static void read_inter_mode_probs(VP9_COMMON *const cm, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < VP9_INTER_MODES - 1; ++j) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) { // cm->fc.inter_mode_probs[i][j] = vp9_read_prob(r); cm->fc.inter_mode_probs[i][j] = vp9_read_prob_diff_update(r, cm->fc.inter_mode_probs[i][j]); } } } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; if ((cm->frame_type != KEY_FRAME) && (!cm->intra_only)) { nmv_context *const nmvc = &pbi->common.fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; int i, j; read_inter_mode_probs(cm, r); if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(cm, r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) cm->fc.intra_inter_prob[i] = vp9_read_prob_diff_update(r, cm->fc.intra_inter_prob[i]); } if (cm->allow_comp_inter_inter) { cm->comp_pred_mode = read_comp_pred_mode(r); if (cm->comp_pred_mode == HYBRID_PREDICTION) for (i = 0; i < COMP_INTER_CONTEXTS; i++) if (vp9_read(r, VP9_DEF_UPDATE_PROB)) cm->fc.comp_inter_prob[i] = vp9_read_prob_diff_update(r, cm->fc.comp_inter_prob[i]); } else { cm->comp_pred_mode = SINGLE_PREDICTION_ONLY; } if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) cm->fc.single_ref_prob[i][0] = vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][0]); if (vp9_read(r, VP9_DEF_UPDATE_PROB)) cm->fc.single_ref_prob[i][1] = vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][1]); } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) if (vp9_read(r, VP9_DEF_UPDATE_PROB)) cm->fc.comp_ref_prob[i] = vp9_read_prob_diff_update(r, cm->fc.comp_ref_prob[i]); // VP9_INTRA_MODES for (j = 0; j < BLOCK_SIZE_GROUPS; j++) { for (i = 0; i < VP9_INTRA_MODES - 1; ++i) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) { cm->fc.y_mode_prob[j][i] = vp9_read_prob_diff_update(r, cm->fc.y_mode_prob[j][i]); } } } for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) { for (i = 0; i < PARTITION_TYPES - 1; ++i) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) { cm->fc.partition_prob[INTER_FRAME][j][i] = vp9_read_prob_diff_update(r, cm->fc.partition_prob[INTER_FRAME][j][i]); } } } read_nmvprobs(r, nmvc, xd->allow_high_precision_mv); } } // This function either reads the segment id for the current macroblock from // the bitstream or if the value is temporally predicted asserts the predicted // value static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *const mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (!xd->segmentation_enabled) return 0; // Default for disabled segmentation if (xd->update_mb_segmentation_map) { int segment_id; if (cm->temporal_update) { // Temporal coding of the segment id for this mb is enabled. // Get the context based probability for reading the // prediction status flag const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID); const int pred_flag = vp9_read(r, pred_prob); vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag); // If the value is flagged as correctly predicted // then use the predicted value, otherwise decode it explicitly segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col) : read_mb_segid(r, xd); } else { segment_id = read_mb_segid(r, xd); // Normal unpredicted coding mode } set_segment_id(cm, mbmi, mi_row, mi_col, segment_id); // Side effect return segment_id; } else { return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col); } } static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src, int mb_to_left_edge, int mb_to_right_edge, int mb_to_top_edge, int mb_to_bottom_edge) { dst->as_int = src->as_int; clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int usehp) { const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints); MV diff = {0, 0}; usehp = usehp && vp9_use_nmv_hp(ref); if (mv_joint_vertical(j)) diff.row = read_mv_component(r, &ctx->comps[0], usehp); if (mv_joint_horizontal(j)) diff.col = read_mv_component(r, &ctx->comps[1], usehp); vp9_increment_nmv(&diff, ref, counts, usehp); mv->row = diff.row + ref->row; mv->col = diff.col + ref->col; } static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type( VP9D_COMP *pbi, vp9_reader *r) { const int index = treed_read(r, vp9_switchable_interp_tree, vp9_get_pred_probs(&pbi->common, &pbi->mb, PRED_SWITCHABLE_INTERP)); ++pbi->common.fc.switchable_interp_count [vp9_get_pred_context( &pbi->common, &pbi->mb, PRED_SWITCHABLE_INTERP)][index]; return vp9_switchable_interp[index]; } static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; nmv_context *const nmvc = &cm->fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; int_mv *const mv0 = &mbmi->mv[0]; int_mv *const mv1 = &mbmi->mv[1]; BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; int bw = 1 << b_width_log2(bsize); int bh = 1 << b_height_log2(bsize); int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge; int j, idx, idy; mbmi->need_to_clamp_mvs = 0; mbmi->need_to_clamp_secondmv = 0; mbmi->ref_frame[1] = NONE; // Make sure the MACROBLOCKD mode info pointer is pointed at the // correct entry for the current macroblock. xd->mode_info_context = mi; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV values // that are in 1/8th pel units set_mi_row_col(cm, xd, mi_row, 1 << mi_height_log2(bsize), mi_col, 1 << mi_width_log2(bsize)); mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN; mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN; mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; // Read the macroblock segment id. mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r); mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP); if (!mbmi->mb_skip_coeff) { mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)] [mbmi->mb_skip_coeff]++; } // Read the reference frame if (!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_REF_FRAME)) { mbmi->ref_frame[0] = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_INTRA_INTER)); cm->fc.intra_inter_count[vp9_get_pred_context(cm, xd, PRED_INTRA_INTER)] [mbmi->ref_frame[0] != INTRA_FRAME]++; } else { mbmi->ref_frame[0] = vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } if (cm->txfm_mode == TX_MODE_SELECT && (mbmi->mb_skip_coeff == 0 || mbmi->ref_frame[0] == INTRA_FRAME) && bsize >= BLOCK_SIZE_SB8X8) { mbmi->txfm_size = select_txfm_size(cm, xd, r, bsize); } else if (bsize >= BLOCK_SIZE_SB32X32 && cm->txfm_mode >= ALLOW_32X32) { mbmi->txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && bsize >= BLOCK_SIZE_MB16X16) { mbmi->txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && (bsize >= BLOCK_SIZE_SB8X8)) { mbmi->txfm_size = TX_8X8; } else { mbmi->txfm_size = TX_4X4; } // If reference frame is an Inter frame if (mbmi->ref_frame[0] != INTRA_FRAME) { int_mv nearest, nearby, best_mv; int_mv nearest_second, nearby_second, best_mv_second; vp9_prob mv_ref_p[VP9_INTER_MODES - 1]; read_ref_frame(pbi, r, mbmi->segment_id, mbmi->ref_frame); { #ifdef DEC_DEBUG if (dec_debug) printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row, xd->mode_info_context->mbmi.mv[0].as_mv.col); #endif vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context, mbmi->ref_frame[0], mbmi->ref_mvs[mbmi->ref_frame[0]], cm->ref_frame_sign_bias); vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[mbmi->ref_frame[0]]); // If the segment level skip mode enabled if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; } else if (bsize >= BLOCK_SIZE_SB8X8) { mbmi->mode = read_sb_mv_ref(r, mv_ref_p); vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[mbmi->ref_frame[0]]); } if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[mbmi->ref_frame[0]], &nearest, &nearby); best_mv.as_int = mbmi->ref_mvs[mbmi->ref_frame[0]][0].as_int; } #ifdef DEC_DEBUG if (dec_debug) printf("[D %d %d] %d %d %d %d\n", ref_frame, mbmi->mb_mode_context[ref_frame], mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]); #endif } mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE ? read_switchable_filter_type(pbi, r) : cm->mcomp_filter_type; if (mbmi->ref_frame[1] > INTRA_FRAME) { vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context, mbmi->ref_frame[1], mbmi->ref_mvs[mbmi->ref_frame[1]], cm->ref_frame_sign_bias); if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[mbmi->ref_frame[1]], &nearest_second, &nearby_second); best_mv_second.as_int = mbmi->ref_mvs[mbmi->ref_frame[1]][0].as_int; } } mbmi->uv_mode = DC_PRED; if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { mbmi->need_to_clamp_mvs = 0; for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int_mv blockmv, secondmv; int blockmode; int i; j = idy * 2 + idx; blockmode = read_sb_mv_ref(r, mv_ref_p); vp9_accum_mv_refs(cm, blockmode, mbmi->mb_mode_context[mbmi->ref_frame[0]]); if (blockmode == NEARESTMV || blockmode == NEARMV) { MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1]; vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0); if (rf2 > 0) { vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest_second, &nearby_second, j, 1); } } switch (blockmode) { case NEWMV: decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); if (mbmi->ref_frame[1] > 0) decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][3]++; #endif break; case NEARESTMV: blockmv.as_int = nearest.as_int; if (mbmi->ref_frame[1] > 0) secondmv.as_int = nearest_second.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][0]++; #endif break; case NEARMV: blockmv.as_int = nearby.as_int; if (mbmi->ref_frame[1] > 0) secondmv.as_int = nearby_second.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][1]++; #endif break; case ZEROMV: blockmv.as_int = 0; if (mbmi->ref_frame[1] > 0) secondmv.as_int = 0; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][2]++; #endif break; default: break; } mi->bmi[j].as_mv[0].as_int = blockmv.as_int; if (mbmi->ref_frame[1] > 0) mi->bmi[j].as_mv[1].as_int = secondmv.as_int; for (i = 1; i < bh; ++i) vpx_memcpy(&mi->bmi[j + i * 2], &mi->bmi[j], sizeof(mi->bmi[j])); for (i = 1; i < bw; ++i) vpx_memcpy(&mi->bmi[j + i], &mi->bmi[j], sizeof(mi->bmi[j])); mi->mbmi.mode = blockmode; } } mv0->as_int = mi->bmi[3].as_mv[0].as_int; mv1->as_int = mi->bmi[3].as_mv[1].as_int; } else { switch (mbmi->mode) { case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->ref_frame[1] > 0) assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case NEARESTMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->ref_frame[1] > 0) assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case ZEROMV: mv0->as_int = 0; if (mbmi->ref_frame[1] > 0) mv1->as_int = 0; break; case NEWMV: decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); mbmi->need_to_clamp_mvs = check_mv_bounds(mv0, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->ref_frame[1] > 0) { decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; default: #if CONFIG_DEBUG assert(0); #endif break; } } } else { // required for left and above block mv mv0->as_int = 0; if (bsize >= BLOCK_SIZE_SB8X8) { const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); const int bsl = MIN(bwl, bhl); mbmi->mode = read_intra_mode(r, cm->fc.y_mode_prob[MIN(3, bsl)]); cm->fc.y_mode_counts[MIN(3, bsl)][mbmi->mode]++; } else { int idx, idy; for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int ib = idy * 2 + idx, k; int m = read_intra_mode(r, cm->fc.y_mode_prob[0]); mi->bmi[ib].as_mode.first = m; cm->fc.y_mode_counts[0][m]++; for (k = 1; k < bh; ++k) mi->bmi[ib + k * 2].as_mode.first = m; for (k = 1; k < bw; ++k) mi->bmi[ib + k].as_mode.first = m; } } mbmi->mode = mi->bmi[3].as_mode.first; } mbmi->uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[mbmi->mode]); cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; } } void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) { VP9_COMMON *cm = &pbi->common; int k; // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove. // vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs)); for (k = 0; k < MBSKIP_CONTEXTS; ++k) { if (vp9_read(r, VP9_DEF_UPDATE_PROB)) { cm->fc.mbskip_probs[k] = vp9_read_prob_diff_update(r, cm->fc.mbskip_probs[k]); } // cm->fc.mbskip_probs[k] = vp9_read_prob(r); } mb_mode_mv_init(pbi, r); } void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi, MACROBLOCKD* const xd, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if ((cm->frame_type == KEY_FRAME) || cm->intra_only) { kfread_modes(pbi, mi, mi_row, mi_col, r); } else { read_mb_modes_mv(pbi, mi, &mi->mbmi, mi_row, mi_col, r); } if (1) { const int bw = 1 << mi_width_log2(mbmi->sb_type); const int bh = 1 << mi_height_log2(mbmi->sb_type); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int x_mis = MIN(bw, cm->mi_cols - mi_col); const int mis = cm->mode_info_stride; int x, y; for (y = 0; y < y_mis; y++) for (x = !y; x < x_mis; x++) mi[y * mis + x] = *mi; } }