/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include // SSE2 #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_idct.h" #if HAVE_SSE2 // In order to improve performance, clip absolute diff values to [0, 255], // which allows to keep the additions/subtractions in 8 bits. void vp9_dc_only_idct_add_sse2(int input_dc, uint8_t *pred_ptr, uint8_t *dst_ptr, int pitch, int stride) { int a1; int16_t out; uint8_t abs_diff; __m128i p0, p1, p2, p3; unsigned int extended_diff; __m128i diff; out = dct_const_round_shift(input_dc * cospi_16_64); out = dct_const_round_shift(out * cospi_16_64); a1 = ROUND_POWER_OF_TWO(out, 4); // Read prediction data. p0 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 0 * pitch)); p1 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 1 * pitch)); p2 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 2 * pitch)); p3 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 3 * pitch)); // Unpack prediction data, and store 4x4 array in 1 XMM register. p0 = _mm_unpacklo_epi32(p0, p1); p2 = _mm_unpacklo_epi32(p2, p3); p0 = _mm_unpacklo_epi64(p0, p2); // Clip dc value to [0, 255] range. Then, do addition or subtraction // according to its sign. if (a1 >= 0) { abs_diff = (a1 > 255) ? 255 : a1; extended_diff = abs_diff * 0x01010101u; diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); p1 = _mm_adds_epu8(p0, diff); } else { abs_diff = (a1 < -255) ? 255 : -a1; extended_diff = abs_diff * 0x01010101u; diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); p1 = _mm_subs_epu8(p0, diff); } // Store results to dst. *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); dst_ptr += stride; p1 = _mm_srli_si128(p1, 4); *(int *)dst_ptr = _mm_cvtsi128_si32(p1); } void vp9_short_idct4x4_sse2(int16_t *input, int16_t *output, int pitch) { const __m128i zero = _mm_setzero_si128(); const __m128i eight = _mm_set1_epi16(8); const __m128i cst = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)-cospi_16_64, (int16_t)cospi_24_64, (int16_t)-cospi_8_64, (int16_t)cospi_8_64, (int16_t)cospi_24_64); const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); const int half_pitch = pitch >> 1; __m128i input0, input1, input2, input3; // Rows input0 = _mm_loadl_epi64((__m128i *)input); input1 = _mm_loadl_epi64((__m128i *)(input + 4)); input2 = _mm_loadl_epi64((__m128i *)(input + 8)); input3 = _mm_loadl_epi64((__m128i *)(input + 12)); // Construct i3, i1, i3, i1, i2, i0, i2, i0 input0 = _mm_shufflelo_epi16(input0, 0xd8); input1 = _mm_shufflelo_epi16(input1, 0xd8); input2 = _mm_shufflelo_epi16(input2, 0xd8); input3 = _mm_shufflelo_epi16(input3, 0xd8); input0 = _mm_unpacklo_epi32(input0, input0); input1 = _mm_unpacklo_epi32(input1, input1); input2 = _mm_unpacklo_epi32(input2, input2); input3 = _mm_unpacklo_epi32(input3, input3); // Stage 1 input0 = _mm_madd_epi16(input0, cst); input1 = _mm_madd_epi16(input1, cst); input2 = _mm_madd_epi16(input2, cst); input3 = _mm_madd_epi16(input3, cst); input0 = _mm_add_epi32(input0, rounding); input1 = _mm_add_epi32(input1, rounding); input2 = _mm_add_epi32(input2, rounding); input3 = _mm_add_epi32(input3, rounding); input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); // Stage 2 input0 = _mm_packs_epi32(input0, zero); input1 = _mm_packs_epi32(input1, zero); input2 = _mm_packs_epi32(input2, zero); input3 = _mm_packs_epi32(input3, zero); // Transpose input1 = _mm_unpacklo_epi16(input0, input1); input3 = _mm_unpacklo_epi16(input2, input3); input0 = _mm_unpacklo_epi32(input1, input3); input1 = _mm_unpackhi_epi32(input1, input3); // Switch column2, column 3, and then, we got: // input2: column1, column 0; input3: column2, column 3. input1 = _mm_shuffle_epi32(input1, 0x4e); input2 = _mm_add_epi16(input0, input1); input3 = _mm_sub_epi16(input0, input1); // Columns // Construct i3, i1, i3, i1, i2, i0, i2, i0 input0 = _mm_shufflelo_epi16(input2, 0xd8); input1 = _mm_shufflehi_epi16(input2, 0xd8); input2 = _mm_shufflehi_epi16(input3, 0xd8); input3 = _mm_shufflelo_epi16(input3, 0xd8); input0 = _mm_unpacklo_epi32(input0, input0); input1 = _mm_unpackhi_epi32(input1, input1); input2 = _mm_unpackhi_epi32(input2, input2); input3 = _mm_unpacklo_epi32(input3, input3); // Stage 1 input0 = _mm_madd_epi16(input0, cst); input1 = _mm_madd_epi16(input1, cst); input2 = _mm_madd_epi16(input2, cst); input3 = _mm_madd_epi16(input3, cst); input0 = _mm_add_epi32(input0, rounding); input1 = _mm_add_epi32(input1, rounding); input2 = _mm_add_epi32(input2, rounding); input3 = _mm_add_epi32(input3, rounding); input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); // Stage 2 input0 = _mm_packs_epi32(input0, zero); input1 = _mm_packs_epi32(input1, zero); input2 = _mm_packs_epi32(input2, zero); input3 = _mm_packs_epi32(input3, zero); // Transpose input1 = _mm_unpacklo_epi16(input0, input1); input3 = _mm_unpacklo_epi16(input2, input3); input0 = _mm_unpacklo_epi32(input1, input3); input1 = _mm_unpackhi_epi32(input1, input3); // Switch column2, column 3, and then, we got: // input2: column1, column 0; input3: column2, column 3. input1 = _mm_shuffle_epi32(input1, 0x4e); input2 = _mm_add_epi16(input0, input1); input3 = _mm_sub_epi16(input0, input1); // Final round and shift input2 = _mm_add_epi16(input2, eight); input3 = _mm_add_epi16(input3, eight); input2 = _mm_srai_epi16(input2, 4); input3 = _mm_srai_epi16(input3, 4); // Store results _mm_storel_epi64((__m128i *)output, input2); input2 = _mm_srli_si128(input2, 8); _mm_storel_epi64((__m128i *)(output + half_pitch), input2); _mm_storel_epi64((__m128i *)(output + 3 * half_pitch), input3); input3 = _mm_srli_si128(input3, 8); _mm_storel_epi64((__m128i *)(output + 2 * half_pitch), input3); } void vp9_idct4_1d_sse2(int16_t *input, int16_t *output) { const __m128i zero = _mm_setzero_si128(); const __m128i c1 = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)cospi_16_64, (int16_t)-cospi_16_64, (int16_t)cospi_24_64, (int16_t)-cospi_8_64, (int16_t)cospi_8_64, (int16_t)cospi_24_64); const __m128i c2 = _mm_setr_epi16(1, 1, 1, 1, 1, -1, 1, -1); const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); __m128i in, temp; // Load input data. in = _mm_loadl_epi64((__m128i *)input); // Construct i3, i1, i3, i1, i2, i0, i2, i0 in = _mm_shufflelo_epi16(in, 0xd8); in = _mm_unpacklo_epi32(in, in); // Stage 1 in = _mm_madd_epi16(in, c1); in = _mm_add_epi32(in, rounding); in = _mm_srai_epi32(in, DCT_CONST_BITS); in = _mm_packs_epi32(in, zero); // Stage 2 temp = _mm_shufflelo_epi16(in, 0x9c); in = _mm_shufflelo_epi16(in, 0xc9); in = _mm_unpacklo_epi64(temp, in); in = _mm_madd_epi16(in, c2); in = _mm_packs_epi32(in, zero); // Store results _mm_storel_epi64((__m128i *)output, in); } #endif