/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_reconintra.h" #include "vp9_rtcd.h" #if CONFIG_NEWBINTRAMODES static int find_grad_measure(uint8_t *x, int stride, int n, int tx, int ty, int dx, int dy) { int i, j; int count = 0, gsum = 0, gdiv; /* TODO: Make this code more efficient by breaking up into two loops */ for (i = -ty; i < n; ++i) for (j = -tx; j < n; ++j) { int g; if (i >= 0 && j >= 0) continue; if (i + dy >= 0 && j + dx >= 0) continue; if (i + dy < -ty || i + dy >= n || j + dx < -tx || j + dx >= n) continue; g = abs(x[(i + dy) * stride + j + dx] - x[i * stride + j]); gsum += g * g; count++; } gdiv = (dx * dx + dy * dy) * count; return ((gsum << 8) + (gdiv >> 1)) / gdiv; } #if CONTEXT_PRED_REPLACEMENTS == 6 B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr, int stride, int n, int tx, int ty) { int g[8], i, imin, imax; g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1); g[2] = find_grad_measure(ptr, stride, n, tx, ty, 1, 1); g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2); g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2); g[6] = find_grad_measure(ptr, stride, n, tx, ty, -1, 1); g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1); imin = 1; for (i = 2; i < 8; i += 1 + (i == 3)) imin = (g[i] < g[imin] ? i : imin); imax = 1; for (i = 2; i < 8; i += 1 + (i == 3)) imax = (g[i] > g[imax] ? i : imax); /* printf("%d %d %d %d %d %d = %d %d\n", g[1], g[2], g[3], g[5], g[6], g[7], imin, imax); */ switch (imin) { case 1: return B_D153_PRED; case 2: return B_D135_PRED; case 3: return B_D117_PRED; case 5: return B_D63_PRED; case 6: return B_D45_PRED; case 7: return B_D27_PRED; default: assert(0); } } #elif CONTEXT_PRED_REPLACEMENTS == 4 B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr, int stride, int n, int tx, int ty) { int g[8], i, imin, imax; g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1); g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2); g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2); g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1); imin = 1; for (i = 3; i < 8; i+=2) imin = (g[i] < g[imin] ? i : imin); imax = 1; for (i = 3; i < 8; i+=2) imax = (g[i] > g[imax] ? i : imax); /* printf("%d %d %d %d = %d %d\n", g[1], g[3], g[5], g[7], imin, imax); */ switch (imin) { case 1: return B_D153_PRED; case 3: return B_D117_PRED; case 5: return B_D63_PRED; case 7: return B_D27_PRED; default: assert(0); } } #elif CONTEXT_PRED_REPLACEMENTS == 0 B_PREDICTION_MODE vp9_find_dominant_direction(uint8_t *ptr, int stride, int n, int tx, int ty) { int g[8], i, imin, imax; g[0] = find_grad_measure(ptr, stride, n, tx, ty, 1, 0); g[1] = find_grad_measure(ptr, stride, n, tx, ty, 2, 1); g[2] = find_grad_measure(ptr, stride, n, tx, ty, 1, 1); g[3] = find_grad_measure(ptr, stride, n, tx, ty, 1, 2); g[4] = find_grad_measure(ptr, stride, n, tx, ty, 0, 1); g[5] = find_grad_measure(ptr, stride, n, tx, ty, -1, 2); g[6] = find_grad_measure(ptr, stride, n, tx, ty, -1, 1); g[7] = find_grad_measure(ptr, stride, n, tx, ty, -2, 1); imax = 0; for (i = 1; i < 8; i++) imax = (g[i] > g[imax] ? i : imax); imin = 0; for (i = 1; i < 8; i++) imin = (g[i] < g[imin] ? i : imin); switch (imin) { case 0: return B_H_PRED; case 1: return B_D153_PRED; case 2: return B_D135_PRED; case 3: return B_D117_PRED; case 4: return B_V_PRED; case 5: return B_D63_PRED; case 6: return B_D45_PRED; case 7: return B_D27_PRED; default: assert(0); } } #endif B_PREDICTION_MODE vp9_find_bpred_context(MACROBLOCKD *xd, int block_idx, uint8_t *ptr, int stride) { const int have_top = (block_idx >> 2) || xd->up_available; const int have_left = (block_idx & 3) || xd->left_available; int tx = have_left ? 4 : 0; int ty = have_top ? 4 : 0; if (!have_left && !have_top) return B_DC_PRED; return vp9_find_dominant_direction(ptr, stride, 4, tx, ty); } void vp9_intra4x4_predict(MACROBLOCKD *xd, int block_idx, int b_mode, uint8_t *predictor, int ps) { int i, r, c; const int have_top = (block_idx >> 2) || xd->up_available; const int have_left = (block_idx & 3) || xd->left_available; const int have_right = (block_idx & 3) != 3 || xd->right_available; uint8_t left[4], above[8], top_left; /* * 127 127 127 .. 127 127 127 127 127 127 * 129 A B .. Y Z * 129 C D .. W X * 129 E F .. U V * 129 G H .. S T T T T T * .. */ if (have_left) { uint8_t *left_ptr = predictor - 1; const int stride = ps; left[0] = left_ptr[0 * stride]; left[1] = left_ptr[1 * stride]; left[2] = left_ptr[2 * stride]; left[3] = left_ptr[3 * stride]; } else { left[0] = left[1] = left[2] = left[3] = 129; } if (have_top) { uint8_t *above_ptr = predictor - ps; top_left = have_left ? above_ptr[-1] : 127; above[0] = above_ptr[0]; above[1] = above_ptr[1]; above[2] = above_ptr[2]; above[3] = above_ptr[3]; if (((block_idx & 3) != 3) || (have_right && block_idx == 3 && ((xd->mb_index != 3 && xd->sb_index != 3) || ((xd->mb_index & 1) == 0 && xd->sb_index == 3)))) { above[4] = above_ptr[4]; above[5] = above_ptr[5]; above[6] = above_ptr[6]; above[7] = above_ptr[7]; } else if (have_right) { uint8_t *above_right = above_ptr + 4; if (xd->sb_index == 3 && (xd->mb_index & 1)) above_right -= 32 * ps; if (xd->mb_index == 3) above_right -= 16 * ps; above_right -= (block_idx & ~3) * ps; /* use a more distant above-right (from closest available top-right * corner), but with a "localized DC" (similar'ish to TM-pred): * * A B C D E F G H * I J K L * M N O P * Q R S T * U V W X x1 x2 x3 x4 * * Where: * x1 = clip_pixel(E + X - D) * x2 = clip_pixel(F + X - D) * x3 = clip_pixel(G + X - D) * x4 = clip_pixel(H + X - D) * * This is applied anytime when we use a "distant" above-right edge * that is not immediately top-right to the block that we're going * to do intra prediction for. */ above[4] = clip_pixel(above_right[0] + above_ptr[3] - above_right[-1]); above[5] = clip_pixel(above_right[1] + above_ptr[3] - above_right[-1]); above[6] = clip_pixel(above_right[2] + above_ptr[3] - above_right[-1]); above[7] = clip_pixel(above_right[3] + above_ptr[3] - above_right[-1]); } else { // extend edge above[4] = above[5] = above[6] = above[7] = above[3]; } } else { above[0] = above[1] = above[2] = above[3] = 127; above[4] = above[5] = above[6] = above[7] = 127; top_left = 127; } #if CONFIG_NEWBINTRAMODES if (b_mode == B_CONTEXT_PRED) b_mode = xd->mode_info_context->bmi[block_idx].as_mode.context; #endif switch (b_mode) { case B_DC_PRED: { int expected_dc = 128; if (have_top || have_left) { int average = 0; int count = 0; if (have_top) { for (i = 0; i < 4; i++) average += above[i]; count += 4; } if (have_left) { for (i = 0; i < 4; i++) average += left[i]; count += 4; } expected_dc = (average + (count >> 1)) / count; } for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) predictor[c] = expected_dc; predictor += ps; } } break; case B_TM_PRED: { /* prediction similar to true_motion prediction */ for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) predictor[c] = clip_pixel(above[c] - top_left + left[r]); predictor += ps; } } break; case B_V_PRED: for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) predictor[c] = above[c]; predictor += ps; } break; case B_H_PRED: for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) predictor[c] = left[r]; predictor += ps; } break; case B_D45_PRED: { uint8_t *p = above; predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2); predictor[0 * ps + 1] = predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[0 * ps + 2] = predictor[1 * ps + 1] = predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2); predictor[0 * ps + 3] = predictor[1 * ps + 2] = predictor[2 * ps + 1] = predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2); predictor[1 * ps + 3] = predictor[2 * ps + 2] = predictor[3 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2); predictor[2 * ps + 3] = predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2); predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[7], 2); } break; case B_D135_PRED: { uint8_t p[9] = { left[3], left[2], left[1], left[0], top_left, above[0], above[1], above[2], above[3] }; predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2); predictor[3 * ps + 1] = predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[3 * ps + 2] = predictor[2 * ps + 1] = predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2); predictor[3 * ps + 3] = predictor[2 * ps + 2] = predictor[1 * ps + 1] = predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2); predictor[2 * ps + 3] = predictor[1 * ps + 2] = predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2); predictor[1 * ps + 3] = predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2); predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[8], 2); } break; case B_D117_PRED: { uint8_t p[9] = { left[3], left[2], left[1], left[0], top_left, above[0], above[1], above[2], above[3] }; predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2); predictor[3 * ps + 1] = predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2); predictor[2 * ps + 1] = predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[4] + p[5], 1); predictor[3 * ps + 2] = predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2); predictor[2 * ps + 2] = predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[5] + p[6], 1); predictor[3 * ps + 3] = predictor[1 * ps + 2] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2); predictor[2 * ps + 3] = predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[6] + p[7], 1); predictor[1 * ps + 3] = ROUND_POWER_OF_TWO(p[6] + p[7] * 2 + p[8], 2); predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[7] + p[8], 1); } break; case B_D63_PRED: { uint8_t *p = above; predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1); predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2); predictor[2 * ps + 0] = predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[1] + p[2], 1); predictor[1 * ps + 1] = predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[2 * ps + 1] = predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[2] + p[3], 1); predictor[3 * ps + 1] = predictor[1 * ps + 2] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2); predictor[0 * ps + 3] = predictor[2 * ps + 2] = ROUND_POWER_OF_TWO(p[3] + p[4], 1); predictor[1 * ps + 3] = predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2); predictor[2 * ps + 3] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2); predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2); } break; case B_D153_PRED: { uint8_t p[9] = { left[3], left[2], left[1], left[0], top_left, above[0], above[1], above[2], above[3] }; predictor[3 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1); predictor[3 * ps + 1] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2); predictor[2 * ps + 0] = predictor[3 * ps + 2] = ROUND_POWER_OF_TWO(p[1] + p[2], 1); predictor[2 * ps + 1] = predictor[3 * ps + 3] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[2 * ps + 2] = predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3], 1); predictor[2 * ps + 3] = predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[4], 2); predictor[1 * ps + 2] = predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[3] + p[4], 1); predictor[1 * ps + 3] = predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[3] + p[4] * 2 + p[5], 2); predictor[0 * ps + 2] = ROUND_POWER_OF_TWO(p[4] + p[5] * 2 + p[6], 2); predictor[0 * ps + 3] = ROUND_POWER_OF_TWO(p[5] + p[6] * 2 + p[7], 2); } break; case B_D27_PRED: { uint8_t *p = left; predictor[0 * ps + 0] = ROUND_POWER_OF_TWO(p[0] + p[1], 1); predictor[0 * ps + 1] = ROUND_POWER_OF_TWO(p[0] + p[1] * 2 + p[2], 2); predictor[0 * ps + 2] = predictor[1 * ps + 0] = ROUND_POWER_OF_TWO(p[1] + p[2], 1); predictor[0 * ps + 3] = predictor[1 * ps + 1] = ROUND_POWER_OF_TWO(p[1] + p[2] * 2 + p[3], 2); predictor[1 * ps + 2] = predictor[2 * ps + 0] = ROUND_POWER_OF_TWO(p[2] + p[3], 1); predictor[1 * ps + 3] = predictor[2 * ps + 1] = ROUND_POWER_OF_TWO(p[2] + p[3] * 2 + p[3], 2); predictor[2 * ps + 2] = predictor[2 * ps + 3] = predictor[3 * ps + 0] = predictor[3 * ps + 1] = predictor[3 * ps + 2] = predictor[3 * ps + 3] = p[3]; } break; #if CONFIG_NEWBINTRAMODES case B_CONTEXT_PRED: break; /* case B_CORNER_PRED: corner_predictor(predictor, 16, 4, above, left); break; */ #endif } } #endif