/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, YV12_BUFFER_CONFIG *other, int this_w, int this_h) { int other_h = other->y_crop_height; int other_w = other->y_crop_width; scale->x_num = other_w; scale->x_den = this_w; scale->x_offset_q4 = 0; // calculated per-mb scale->x_step_q4 = 16 * other_w / this_w; scale->y_num = other_h; scale->y_den = this_h; scale->y_offset_q4 = 0; // calculated per-mb scale->y_step_q4 = 16 * other_h / this_h; if (scale->x_num == scale->x_den && scale->y_num == scale->y_den) { scale->scale_value_x = unscaled_value; scale->scale_value_y = unscaled_value; scale->set_scaled_offsets = set_offsets_without_scaling; scale->scale_motion_vector_q3_to_q4 = motion_vector_q3_to_q4_without_scaling; scale->scale_motion_vector_component_q4 = motion_vector_component_q4_without_scaling; } else { scale->scale_value_x = scale_value_x_with_scaling; scale->scale_value_y = scale_value_y_with_scaling; scale->set_scaled_offsets = set_offsets_with_scaling; scale->scale_motion_vector_q3_to_q4 = motion_vector_q3_to_q4_with_scaling; scale->scale_motion_vector_component_q4 = motion_vector_component_q4_with_scaling; } // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT if (scale->x_step_q4 == 16) { if (scale->y_step_q4 == 16) { // No scaling in either direction. scale->predict[0][0][0] = vp9_convolve_copy; scale->predict[0][0][1] = vp9_convolve_1by8; scale->predict[0][0][2] = vp9_convolve_qtr; scale->predict[0][0][3] = vp9_convolve_3by8; scale->predict[0][0][4] = vp9_convolve_avg; scale->predict[0][0][5] = vp9_convolve_5by8; scale->predict[0][0][6] = vp9_convolve_3qtr; scale->predict[0][0][7] = vp9_convolve_7by8; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_1by8_vert; scale->predict[0][1][2] = vp9_convolve8_qtr_vert; scale->predict[0][1][3] = vp9_convolve8_3by8_vert; scale->predict[0][1][4] = vp9_convolve8_avg_vert; scale->predict[0][1][5] = vp9_convolve8_5by8_vert; scale->predict[0][1][6] = vp9_convolve8_3qtr_vert; scale->predict[0][1][7] = vp9_convolve8_7by8_vert; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_1by8_horiz; scale->predict[1][0][2] = vp9_convolve8_qtr_horiz; scale->predict[1][0][3] = vp9_convolve8_3by8_horiz; scale->predict[1][0][4] = vp9_convolve8_avg_horiz; scale->predict[1][0][5] = vp9_convolve8_5by8_horiz; scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz; scale->predict[1][0][7] = vp9_convolve8_7by8_horiz; } else { // No scaling in x direction. Must always scale in the y direction. scale->predict[0][0][0] = vp9_convolve8_vert; scale->predict[0][0][1] = vp9_convolve8_1by8_vert; scale->predict[0][0][2] = vp9_convolve8_qtr_vert; scale->predict[0][0][3] = vp9_convolve8_3by8_vert; scale->predict[0][0][4] = vp9_convolve8_avg_vert; scale->predict[0][0][5] = vp9_convolve8_5by8_vert; scale->predict[0][0][6] = vp9_convolve8_3qtr_vert; scale->predict[0][0][7] = vp9_convolve8_7by8_vert; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_1by8_vert; scale->predict[0][1][2] = vp9_convolve8_qtr_vert; scale->predict[0][1][3] = vp9_convolve8_3by8_vert; scale->predict[0][1][4] = vp9_convolve8_avg_vert; scale->predict[0][1][5] = vp9_convolve8_5by8_vert; scale->predict[0][1][6] = vp9_convolve8_3qtr_vert; scale->predict[0][1][7] = vp9_convolve8_7by8_vert; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_1by8; scale->predict[1][0][2] = vp9_convolve8_qtr; scale->predict[1][0][3] = vp9_convolve8_3by8; scale->predict[1][0][4] = vp9_convolve8_avg; scale->predict[1][0][5] = vp9_convolve8_5by8; scale->predict[1][0][6] = vp9_convolve8_3qtr; scale->predict[1][0][7] = vp9_convolve8_7by8; } } else { if (scale->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. scale->predict[0][0][0] = vp9_convolve8_horiz; scale->predict[0][0][1] = vp9_convolve8_1by8_horiz; scale->predict[0][0][2] = vp9_convolve8_qtr_horiz; scale->predict[0][0][3] = vp9_convolve8_3by8_horiz; scale->predict[0][0][4] = vp9_convolve8_avg_horiz; scale->predict[0][0][5] = vp9_convolve8_5by8_horiz; scale->predict[0][0][6] = vp9_convolve8_3qtr_horiz; scale->predict[0][0][7] = vp9_convolve8_7by8_horiz; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_1by8; scale->predict[0][1][2] = vp9_convolve8_qtr; scale->predict[0][1][3] = vp9_convolve8_3by8; scale->predict[0][1][4] = vp9_convolve8_avg; scale->predict[0][1][5] = vp9_convolve8_5by8; scale->predict[0][1][6] = vp9_convolve8_3qtr; scale->predict[0][1][7] = vp9_convolve8_7by8; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_1by8_horiz; scale->predict[1][0][2] = vp9_convolve8_qtr_horiz; scale->predict[1][0][3] = vp9_convolve8_3by8_horiz; scale->predict[1][0][4] = vp9_convolve8_avg_horiz; scale->predict[1][0][5] = vp9_convolve8_5by8_horiz; scale->predict[1][0][6] = vp9_convolve8_3qtr_horiz; scale->predict[1][0][7] = vp9_convolve8_7by8_horiz; } else { // Must always scale in both directions. scale->predict[0][0][0] = vp9_convolve8; scale->predict[0][0][1] = vp9_convolve8_1by8; scale->predict[0][0][2] = vp9_convolve8_qtr; scale->predict[0][0][3] = vp9_convolve8_3by8; scale->predict[0][0][4] = vp9_convolve8_avg; scale->predict[0][0][5] = vp9_convolve8_5by8; scale->predict[0][0][6] = vp9_convolve8_3qtr; scale->predict[0][0][7] = vp9_convolve8_7by8; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_1by8; scale->predict[0][1][2] = vp9_convolve8_qtr; scale->predict[0][1][3] = vp9_convolve8_3by8; scale->predict[0][1][4] = vp9_convolve8_avg; scale->predict[0][1][5] = vp9_convolve8_5by8; scale->predict[0][1][6] = vp9_convolve8_3qtr; scale->predict[0][1][7] = vp9_convolve8_7by8; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_1by8; scale->predict[1][0][2] = vp9_convolve8_qtr; scale->predict[1][0][3] = vp9_convolve8_3by8; scale->predict[1][0][4] = vp9_convolve8_avg; scale->predict[1][0][5] = vp9_convolve8_5by8; scale->predict[1][0][6] = vp9_convolve8_3qtr; scale->predict[1][0][7] = vp9_convolve8_7by8; } } // 2D subpel motion always gets filtered in both directions scale->predict[1][1][0] = vp9_convolve8; scale->predict[1][1][1] = vp9_convolve8_1by8; scale->predict[1][1][2] = vp9_convolve8_qtr; scale->predict[1][1][3] = vp9_convolve8_3by8; scale->predict[1][1][4] = vp9_convolve8_avg; scale->predict[1][1][5] = vp9_convolve8_5by8; scale->predict[1][1][6] = vp9_convolve8_3qtr; scale->predict[1][1][7] = vp9_convolve8_7by8; } #else if (scale->x_step_q4 == 16) { if (scale->y_step_q4 == 16) { // No scaling in either direction. scale->predict[0][0][0] = vp9_convolve_copy; scale->predict[0][0][1] = vp9_convolve_avg; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. scale->predict[0][0][0] = vp9_convolve8_vert; scale->predict[0][0][1] = vp9_convolve8_avg_vert; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } else { if (scale->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. scale->predict[0][0][0] = vp9_convolve8_horiz; scale->predict[0][0][1] = vp9_convolve8_avg_horiz; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // Must always scale in both directions. scale->predict[0][0][0] = vp9_convolve8; scale->predict[0][0][1] = vp9_convolve8_avg; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions scale->predict[1][1][0] = vp9_convolve8; scale->predict[1][1][1] = vp9_convolve8_avg; } #endif void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATIONFILTERTYPE mcomp_filter_type, VP9_COMMON *cm) { if (xd->mode_info_context) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; set_scale_factors(xd, mbmi->ref_frame - 1, mbmi->second_ref_frame - 1, cm->active_ref_scale); } switch (mcomp_filter_type) { case EIGHTTAP: case SWITCHABLE: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; break; case EIGHTTAP_SMOOTH: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; break; case EIGHTTAP_SHARP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; break; case BILINEAR: xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; break; #if CONFIG_ENABLE_6TAP case SIXTAP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_6; break; #endif } assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); } void vp9_copy_mem16x16_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; ((uint32_t *)dst)[2] = ((const uint32_t *)src)[2]; ((uint32_t *)dst)[3] = ((const uint32_t *)src)[3]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x8_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x4_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 4; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int_mv *mv_q3, const struct scale_factors *scale, int w, int h, int weight, const struct subpix_fn_table *subpix) { int_mv32 mv = scale->scale_motion_vector_q3_to_q4(mv_q3, scale); src += (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4); scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][weight]( src, src_stride, dst, dst_stride, subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4, subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4, w, h); } void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int_mv *mv_q4, const struct scale_factors *scale, int w, int h, int weight, const struct subpix_fn_table *subpix) { const int scaled_mv_row_q4 = scale->scale_motion_vector_component_q4(mv_q4->as_mv.row, scale->y_num, scale->y_den, scale->y_offset_q4); const int scaled_mv_col_q4 = scale->scale_motion_vector_component_q4(mv_q4->as_mv.col, scale->x_num, scale->x_den, scale->x_offset_q4); const int subpel_x = scaled_mv_col_q4 & 15; const int subpel_y = scaled_mv_row_q4 & 15; src += (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4); scale->predict[!!subpel_x][!!subpel_y][weight]( src, src_stride, dst, dst_stride, subpix->filter_x[subpel_x], scale->x_step_q4, subpix->filter_y[subpel_y], scale->y_step_q4, w, h); } static void build_2x1_inter_predictor_wh(const BLOCKD *d0, const BLOCKD *d1, struct scale_factors *s, uint8_t *predictor, int block_size, int stride, int which_mv, int weight, int width, int height, const struct subpix_fn_table *subpix, int row, int col) { struct scale_factors * scale = &s[which_mv]; assert(d1->dst - d0->dst == block_size); assert(d1->pre == d0->pre + block_size); scale->set_scaled_offsets(scale, row, col); if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) { uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre; vp9_build_inter_predictor(*base_pre + d0->pre, d0->pre_stride, predictor, stride, &d0->bmi.as_mv[which_mv], scale, width, height, weight, subpix); } else { uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre; uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre; vp9_build_inter_predictor(*base_pre0 + d0->pre, d0->pre_stride, predictor, stride, &d0->bmi.as_mv[which_mv], scale, width > block_size ? block_size : width, height, weight, subpix); if (width <= block_size) return; scale->set_scaled_offsets(scale, row, col + block_size); vp9_build_inter_predictor(*base_pre1 + d1->pre, d1->pre_stride, predictor + block_size, stride, &d1->bmi.as_mv[which_mv], scale, width - block_size, height, weight, subpix); } } static void build_2x1_inter_predictor(const BLOCKD *d0, const BLOCKD *d1, struct scale_factors *s, int block_size, int stride, int which_mv, int weight, const struct subpix_fn_table *subpix, int row, int col) { uint8_t *d0_predictor = *(d0->base_dst) + d0->dst; uint8_t *d1_predictor = *(d1->base_dst) + d1->dst; struct scale_factors * scale = &s[which_mv]; stride = d0->dst_stride; assert(d1_predictor - d0_predictor == block_size); assert(d1->pre == d0->pre + block_size); scale->set_scaled_offsets(scale, row, col); if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) { uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre; vp9_build_inter_predictor(*base_pre + d0->pre, d0->pre_stride, d0_predictor, stride, &d0->bmi.as_mv[which_mv], scale, 2 * block_size, block_size, weight, subpix); } else { uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre; uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre; vp9_build_inter_predictor(*base_pre0 + d0->pre, d0->pre_stride, d0_predictor, stride, &d0->bmi.as_mv[which_mv], scale, block_size, block_size, weight, subpix); scale->set_scaled_offsets(scale, row, col + block_size); vp9_build_inter_predictor(*base_pre1 + d1->pre, d1->pre_stride, d1_predictor, stride, &d1->bmi.as_mv[which_mv], scale, block_size, block_size, weight, subpix); } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */ if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } /* A version of the above function for chroma block MVs.*/ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { const int extend = VP9_INTERP_EXTEND; mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col; mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col; mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row; mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row; } #if !CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT // TODO(jkoleszar): yet another mv clamping function :-( MV clamp_mv_to_umv_border_sb(const MV *src_mv, int bwl, int bhl, int ss_x, int ss_y, int mb_to_left_edge, int mb_to_top_edge, int mb_to_right_edge, int mb_to_bottom_edge) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. */ const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4; const int spel_right = spel_left - (1 << 4); const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4; const int spel_bottom = spel_top - (1 << 4); MV clamped_mv; assert(ss_x <= 1); assert(ss_y <= 1); clamped_mv.col = clamp(src_mv->col << (1 - ss_x), (mb_to_left_edge << (1 - ss_x)) - spel_left, (mb_to_right_edge << (1 - ss_x)) + spel_right); clamped_mv.row = clamp(src_mv->row << (1 - ss_y), (mb_to_top_edge << (1 - ss_y)) - spel_top, (mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); return clamped_mv; } struct build_inter_predictors_args { MACROBLOCKD *xd; int x; int y; uint8_t* dst[MAX_MB_PLANE]; int dst_stride[MAX_MB_PLANE]; uint8_t* pre[2][MAX_MB_PLANE]; int pre_stride[2][MAX_MB_PLANE]; }; static void build_inter_predictors(int plane, int block, BLOCK_SIZE_TYPE bsize, int pred_w, int pred_h, void *argv) { const struct build_inter_predictors_args* const arg = argv; const int bwl = pred_w, bw = 4 << bwl; const int bhl = pred_h, bh = 4 << bhl; const int x_idx = block & ((1 << bwl) - 1), y_idx = block >> bwl; const int x = x_idx * 4, y = y_idx * 4; MACROBLOCKD * const xd = arg->xd; const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int which_mv; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { const MV* const mv = (xd->mode_info_context->mbmi.mode == SPLITMV) ? &xd->block[block].bmi.as_mv[which_mv].as_mv : &xd->mode_info_context->mbmi.mv[which_mv].as_mv; const uint8_t * const base_pre = arg->pre[which_mv][plane]; const int pre_stride = arg->pre_stride[which_mv][plane]; const uint8_t *const pre = base_pre + scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]); struct scale_factors * const scale = plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv]; int_mv clamped_mv; /* TODO(jkoleszar): This clamping is done in the incorrect place for the * scaling case. It needs to be done on the scaled MV, not the pre-scaling * MV. Note however that it performs the subsampling aware scaling so * that the result is always q4. */ clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y, xd->mb_to_left_edge, xd->mb_to_top_edge, xd->mb_to_right_edge, xd->mb_to_bottom_edge); scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); vp9_build_inter_predictor_q4(pre, pre_stride, arg->dst[plane], arg->dst_stride[plane], &clamped_mv, &xd->scale_factor[which_mv], bw, bh, which_mv, &xd->subpix); } } void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, uint8_t *dst_y, int dst_ystride, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { struct build_inter_predictors_args args = { xd, mb_col * 16, mb_row * 16, {dst_y, NULL, NULL}, {dst_ystride, 0, 0}, {{xd->pre.y_buffer, NULL, NULL}, {xd->second_pre.y_buffer, NULL, NULL}}, {{xd->pre.y_stride, 0, 0}, {xd->second_pre.y_stride, 0, 0}}, }; foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args); } void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, uint8_t *dst_u, uint8_t *dst_v, int dst_uvstride, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { struct build_inter_predictors_args args = { xd, mb_col * 16, mb_row * 16, {NULL, dst_u, dst_v}, {0, dst_uvstride, dst_uvstride}, {{NULL, xd->pre.u_buffer, xd->pre.v_buffer}, {NULL, xd->second_pre.u_buffer, xd->second_pre.v_buffer}}, {{0, xd->pre.uv_stride, xd->pre.uv_stride}, {0, xd->second_pre.uv_stride, xd->second_pre.uv_stride}}, }; foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args); } #endif #define AVERAGE_WEIGHT (1 << (2 * CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT)) #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT // Whether to use implicit weighting for UV #define USE_IMPLICIT_WEIGHT_UV // Whether to use implicit weighting for SplitMV // #define USE_IMPLICIT_WEIGHT_SPLITMV // #define SEARCH_MIN3 static int64_t get_consistency_metric(MACROBLOCKD *xd, uint8_t *tmp_y, int tmp_ystride) { int block_size = 16 << xd->mode_info_context->mbmi.sb_type; uint8_t *rec_y = xd->dst.y_buffer; int rec_ystride = xd->dst.y_stride; int64_t metric = 0; int i; if (xd->up_available) { for (i = 0; i < block_size; ++i) { int diff = abs(*(rec_y - rec_ystride + i) - *(tmp_y + i)); #ifdef SEARCH_MIN3 // Searches for the min abs diff among 3 pixel neighbors in the border int diff1 = xd->left_available ? abs(*(rec_y - rec_ystride + i - 1) - *(tmp_y + i)) : diff; int diff2 = i < block_size - 1 ? abs(*(rec_y - rec_ystride + i + 1) - *(tmp_y + i)) : diff; diff = diff <= diff1 ? diff : diff1; diff = diff <= diff2 ? diff : diff2; #endif metric += diff; } } if (xd->left_available) { for (i = 0; i < block_size; ++i) { int diff = abs(*(rec_y - 1 + i * rec_ystride) - *(tmp_y + i * tmp_ystride)); #ifdef SEARCH_MIN3 // Searches for the min abs diff among 3 pixel neighbors in the border int diff1 = xd->up_available ? abs(*(rec_y - 1 + (i - 1) * rec_ystride) - *(tmp_y + i * tmp_ystride)) : diff; int diff2 = i < block_size - 1 ? abs(*(rec_y - 1 + (i + 1) * rec_ystride) - *(tmp_y + i * tmp_ystride)) : diff; diff = diff <= diff1 ? diff : diff1; diff = diff <= diff2 ? diff : diff2; #endif metric += diff; } } return metric; } static int get_weight(MACROBLOCKD *xd, int64_t metric_1, int64_t metric_2) { int weight = AVERAGE_WEIGHT; if (2 * metric_1 < metric_2) weight = 6; else if (4 * metric_1 < 3 * metric_2) weight = 5; else if (2 * metric_2 < metric_1) weight = 2; else if (4 * metric_2 < 3 * metric_1) weight = 3; return weight; } #ifdef USE_IMPLICIT_WEIGHT_SPLITMV static int get_implicit_compoundinter_weight_splitmv( MACROBLOCKD *xd, int mb_row, int mb_col) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; BLOCKD *blockd = xd->block; const int use_second_ref = mbmi->second_ref_frame > 0; int64_t metric_2 = 0, metric_1 = 0; int i, which_mv, weight; uint8_t tmp_y[256]; const int tmp_ystride = 16; if (!use_second_ref) return 0; if (!(xd->up_available || xd->left_available)) return AVERAGE_WEIGHT; assert(xd->mode_info_context->mbmi.mode == SPLITMV); which_mv = 1; // second predictor if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) { for (i = 0; i < 16; i += 8) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 2]; const int y = i & 8; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2]; if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd); } if (i == 0) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16, which_mv, 0, 16, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16); build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16, which_mv, 0, 1, 8, &xd->subpix, mb_row * 16 + y, mb_col * 16); } else { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16, 8, 16, which_mv, 0, 1, 8, &xd->subpix, mb_row * 16 + y, mb_col * 16); } } } else { for (i = 0; i < 16; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = (i & 3) * 4; const int y = (i >> 2) * 4; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1]; if (i >= 4 && (i & 3) != 0) continue; if (i == 0) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16, which_mv, 0, 8, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16, which_mv, 0, 1, 4, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } else if (i < 4) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16, which_mv, 0, 8, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } else { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16, 4, 16, which_mv, 0, 1, 4, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } } } metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride); which_mv = 0; // first predictor if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) { for (i = 0; i < 16; i += 8) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 2]; const int y = i & 8; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2]; if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd); } if (i == 0) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16, which_mv, 0, 16, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16); build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 8, 16, which_mv, 0, 1, 8, &xd->subpix, mb_row * 16 + y, mb_col * 16); } else { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + 8 * 16, 8, 16, which_mv, 0, 1, 8, &xd->subpix, mb_row * 16 + y, mb_col * 16); } } } else { for (i = 0; i < 16; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = (i & 3) * 4; const int y = (i >> 2) * 4; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1]; if (i >= 4 && (i & 3) != 0) continue; if (i == 0) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16, which_mv, 0, 8, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y, 4, 16, which_mv, 0, 1, 4, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } else if (i < 4) { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + x, 4, 16, which_mv, 0, 8, 1, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } else { build_2x1_inter_predictor_wh(d0, d1, xd->scale_factor, tmp_y + y * 16, 4, 16, which_mv, 0, 1, 4, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } } } metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride); // Choose final weight for averaging weight = get_weight(xd, metric_1, metric_2); return weight; } #endif static int get_implicit_compoundinter_weight(MACROBLOCKD *xd, int mb_row, int mb_col) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int64_t metric_2 = 0, metric_1 = 0; int n, clamp_mvs, pre_stride; uint8_t *base_pre; int_mv ymv; uint8_t tmp_y[4096]; const int tmp_ystride = 64; int weight; int edge[4]; int block_size = 16 << xd->mode_info_context->mbmi.sb_type; struct scale_factors *scale; if (!use_second_ref) return 0; if (!(xd->up_available || xd->left_available)) return AVERAGE_WEIGHT; edge[0] = xd->mb_to_top_edge; edge[1] = xd->mb_to_bottom_edge; edge[2] = xd->mb_to_left_edge; edge[3] = xd->mb_to_right_edge; clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_secondmv; base_pre = xd->second_pre.y_buffer; pre_stride = xd->second_pre.y_stride; ymv.as_int = xd->mode_info_context->mbmi.mv[1].as_int; // First generate the second predictor scale = &xd->scale_factor[1]; for (n = 0; n < block_size; n += 16) { xd->mb_to_left_edge = edge[2] - (n << 3); xd->mb_to_right_edge = edge[3] + ((16 - n) << 3); if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n); // predict a single row of pixels vp9_build_inter_predictor(base_pre + scaled_buffer_offset(n, 0, pre_stride, scale), pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix); } xd->mb_to_left_edge = edge[2]; xd->mb_to_right_edge = edge[3]; for (n = 0; n < block_size; n += 16) { xd->mb_to_top_edge = edge[0] - (n << 3); xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3); if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16); // predict a single col of pixels vp9_build_inter_predictor(base_pre + scaled_buffer_offset(0, n, pre_stride, scale), pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv, scale, 1, 16, 0, &xd->subpix); } xd->mb_to_top_edge = edge[0]; xd->mb_to_bottom_edge = edge[1]; // Compute consistency metric metric_2 = get_consistency_metric(xd, tmp_y, tmp_ystride); clamp_mvs = xd->mode_info_context->mbmi.need_to_clamp_mvs; base_pre = xd->pre.y_buffer; pre_stride = xd->pre.y_stride; ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int; // Now generate the first predictor scale = &xd->scale_factor[0]; for (n = 0; n < block_size; n += 16) { xd->mb_to_left_edge = edge[2] - (n << 3); xd->mb_to_right_edge = edge[3] + ((16 - n) << 3); if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16 + n); // predict a single row of pixels vp9_build_inter_predictor(base_pre + scaled_buffer_offset(n, 0, pre_stride, scale), pre_stride, tmp_y + n, tmp_ystride, &ymv, scale, 16, 1, 0, &xd->subpix); } xd->mb_to_left_edge = edge[2]; xd->mb_to_right_edge = edge[3]; for (n = 0; n < block_size; n += 16) { xd->mb_to_top_edge = edge[0] - (n << 3); xd->mb_to_bottom_edge = edge[1] + ((16 - n) << 3); if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); scale->set_scaled_offsets(scale, mb_row * 16 + n, mb_col * 16); // predict a single col of pixels vp9_build_inter_predictor(base_pre + scaled_buffer_offset(0, n, pre_stride, scale), pre_stride, tmp_y + n * tmp_ystride, tmp_ystride, &ymv, scale, 1, 16, 0, &xd->subpix); } xd->mb_to_top_edge = edge[0]; xd->mb_to_bottom_edge = edge[1]; metric_1 = get_consistency_metric(xd, tmp_y, tmp_ystride); // Choose final weight for averaging weight = get_weight(xd, metric_1, metric_2); return weight; } static void build_inter16x16_predictors_mby_w(MACROBLOCKD *xd, uint8_t *dst_y, int dst_ystride, int weight, int mb_row, int mb_col) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int which_mv; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { const int clamp_mvs = which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv : xd->mode_info_context->mbmi.need_to_clamp_mvs; uint8_t *base_pre = which_mv ? xd->second_pre.y_buffer : xd->pre.y_buffer; int pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride; int_mv ymv; struct scale_factors *scale = &xd->scale_factor[which_mv]; ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int; if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16); vp9_build_inter_predictor(base_pre, pre_stride, dst_y, dst_ystride, &ymv, scale, 16, 16, which_mv ? weight : 0, &xd->subpix); } } #endif #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT static void build_inter16x16_predictors_mbuv_w(MACROBLOCKD *xd, uint8_t *dst_u, uint8_t *dst_v, int dst_uvstride, int weight, int mb_row, int mb_col) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int which_mv; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { const int clamp_mvs = which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv : xd->mode_info_context->mbmi.need_to_clamp_mvs; uint8_t *uptr, *vptr; int pre_stride = which_mv ? xd->second_pre.uv_stride : xd->pre.uv_stride; int_mv mv; struct scale_factors *scale = &xd->scale_factor_uv[which_mv]; mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int; if (clamp_mvs) clamp_mv_to_umv_border(&mv.as_mv, xd); uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer); vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer); scale->set_scaled_offsets(scale, mb_row * 16, mb_col * 16); vp9_build_inter_predictor_q4( uptr, pre_stride, dst_u, dst_uvstride, &mv, scale, 8, 8, which_mv ? weight : 0, &xd->subpix); vp9_build_inter_predictor_q4( vptr, pre_stride, dst_v, dst_uvstride, &mv, scale, 8, 8, which_mv ? weight : 0, &xd->subpix); } } #endif #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT static void build_inter_predictors_sby_w(MACROBLOCKD *x, uint8_t *dst_y, int dst_ystride, int weight, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bw = 1 << bwl; const int bhl = mb_height_log2(bsize), bh = 1 << bhl; uint8_t *y1 = x->pre.y_buffer; uint8_t *y2 = x->second_pre.y_buffer; int edge[4], n; edge[0] = x->mb_to_top_edge; edge[1] = x->mb_to_bottom_edge; edge[2] = x->mb_to_left_edge; edge[3] = x->mb_to_right_edge; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3); x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3); x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3); x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3); x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 16, y_idx * 16, x->pre.y_stride, &x->scale_factor[0]); if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2 + scaled_buffer_offset(x_idx * 16, y_idx * 16, x->second_pre.y_stride, &x->scale_factor[1]); } build_inter16x16_predictors_mby_w(x, dst_y + y_idx * 16 * dst_ystride + x_idx * 16, dst_ystride, weight, mb_row + y_idx, mb_col + x_idx); } x->mb_to_top_edge = edge[0]; x->mb_to_bottom_edge = edge[1]; x->mb_to_left_edge = edge[2]; x->mb_to_right_edge = edge[3]; x->pre.y_buffer = y1; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2; } } void vp9_build_inter_predictors_sby(MACROBLOCKD *x, uint8_t *dst_y, int dst_ystride, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { int weight = get_implicit_compoundinter_weight(x, mb_row, mb_col); build_inter_predictors_sby_w(x, dst_y, dst_ystride, weight, mb_row, mb_col, bsize); } #endif #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT static void build_inter_predictors_sbuv_w(MACROBLOCKD *x, uint8_t *dst_u, uint8_t *dst_v, int dst_uvstride, int weight, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bw = 1 << bwl; const int bhl = mb_height_log2(bsize), bh = 1 << bhl; uint8_t *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer; uint8_t *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer; int edge[4], n; edge[0] = x->mb_to_top_edge; edge[1] = x->mb_to_bottom_edge; edge[2] = x->mb_to_left_edge; edge[3] = x->mb_to_right_edge; for (n = 0; n < bw * bh; n++) { int scaled_uv_offset; const int x_idx = n & (bw - 1), y_idx = n >> bwl; x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3); x->mb_to_bottom_edge = edge[1] + (((bh - 1 - y_idx) * 16) << 3); x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3); x->mb_to_right_edge = edge[3] + (((bw - 1 - x_idx) * 16) << 3); scaled_uv_offset = scaled_buffer_offset(x_idx * 8, y_idx * 8, x->pre.uv_stride, &x->scale_factor_uv[0]); x->pre.u_buffer = u1 + scaled_uv_offset; x->pre.v_buffer = v1 + scaled_uv_offset; if (x->mode_info_context->mbmi.second_ref_frame > 0) { scaled_uv_offset = scaled_buffer_offset(x_idx * 8, y_idx * 8, x->second_pre.uv_stride, &x->scale_factor_uv[1]); x->second_pre.u_buffer = u2 + scaled_uv_offset; x->second_pre.v_buffer = v2 + scaled_uv_offset; } build_inter16x16_predictors_mbuv_w(x, dst_u + y_idx * 8 * dst_uvstride + x_idx * 8, dst_v + y_idx * 8 * dst_uvstride + x_idx * 8, dst_uvstride, weight, mb_row + y_idx, mb_col + x_idx); } x->mb_to_top_edge = edge[0]; x->mb_to_bottom_edge = edge[1]; x->mb_to_left_edge = edge[2]; x->mb_to_right_edge = edge[3]; x->pre.u_buffer = u1; x->pre.v_buffer = v1; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.u_buffer = u2; x->second_pre.v_buffer = v2; } } void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, uint8_t *dst_u, uint8_t *dst_v, int dst_uvstride, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { #ifdef USE_IMPLICIT_WEIGHT_UV int weight = get_implicit_compoundinter_weight(xd, mb_row, mb_col); #else int weight = AVERAGE_WEIGHT; #endif build_inter_predictors_sbuv_w(xd, dst_u, dst_v, dst_uvstride, weight, mb_row, mb_col, bsize); } #endif void vp9_build_inter_predictors_sb(MACROBLOCKD *mb, int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) { uint8_t *const y = mb->dst.y_buffer; uint8_t *const u = mb->dst.u_buffer; uint8_t *const v = mb->dst.v_buffer; const int y_stride = mb->dst.y_stride; const int uv_stride = mb->dst.uv_stride; vp9_build_inter_predictors_sby(mb, y, y_stride, mb_row, mb_col, bsize); vp9_build_inter_predictors_sbuv(mb, u, v, uv_stride, mb_row, mb_col, bsize); #if CONFIG_COMP_INTERINTRA_PRED if (mb->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { if (bsize == BLOCK_SIZE_SB32X32) vp9_build_interintra_32x32_predictors_sb(mb, y, u, v, y_stride, uv_stride); else vp9_build_interintra_64x64_predictors_sb(mb, y, u, v, y_stride, uv_stride); } #endif } static void build_inter4x4_predictors_mb(MACROBLOCKD *xd, int mb_row, int mb_col) { int i; MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; BLOCKD *blockd = xd->block; int which_mv = 0; const int use_second_ref = mbmi->second_ref_frame > 0; #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && defined(USE_IMPLICIT_WEIGHT_SPLITMV) int weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col); #else int weight = AVERAGE_WEIGHT; #endif if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) { for (i = 0; i < 16; i += 8) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 2]; const int y = i & 8; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd); } build_2x1_inter_predictor(d0, d1, xd->scale_factor, 8, 16, which_mv, which_mv ? weight : 0, &xd->subpix, mb_row * 16 + y, mb_col * 16); } } } else { for (i = 0; i < 16; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = (i & 3) * 4; const int y = (i >> 2) * 4; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor, 4, 16, which_mv, which_mv ? weight : 0, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } } } #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT #if !defined(USE_IMPLICIT_WEIGHT_UV) weight = AVERAGE_WEIGHT; #endif #endif for (i = 16; i < 24; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = 4 * (i & 1); const int y = ((i - 16) >> 1) * 4; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv, which_mv ? weight : 0, &xd->subpix, mb_row * 8 + y, mb_col * 8 + x); } } } static INLINE int round_mv_comp(int value) { return (value < 0 ? value - 4 : value + 4) / 8; } static int mi_mv_pred_row(MACROBLOCKD *mb, int off, int idx) { const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.row + mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.row; return round_mv_comp(temp); } static int mi_mv_pred_col(MACROBLOCKD *mb, int off, int idx) { const int temp = mb->mode_info_context->bmi[off + 0].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[off + 1].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[off + 4].as_mv[idx].as_mv.col + mb->mode_info_context->bmi[off + 5].as_mv[idx].as_mv.col; return round_mv_comp(temp); } static int b_mv_pred_row(MACROBLOCKD *mb, int off, int idx) { BLOCKD *const blockd = mb->block; const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.row + blockd[off + 1].bmi.as_mv[idx].as_mv.row + blockd[off + 4].bmi.as_mv[idx].as_mv.row + blockd[off + 5].bmi.as_mv[idx].as_mv.row; return round_mv_comp(temp); } static int b_mv_pred_col(MACROBLOCKD *mb, int off, int idx) { BLOCKD *const blockd = mb->block; const int temp = blockd[off + 0].bmi.as_mv[idx].as_mv.col + blockd[off + 1].bmi.as_mv[idx].as_mv.col + blockd[off + 4].bmi.as_mv[idx].as_mv.col + blockd[off + 5].bmi.as_mv[idx].as_mv.col; return round_mv_comp(temp); } static void build_4x4uvmvs(MACROBLOCKD *xd) { int i, j; BLOCKD *blockd = xd->block; for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { const int yoffset = i * 8 + j * 2; const int uoffset = 16 + i * 2 + j; const int voffset = 20 + i * 2 + j; MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv; MV *v = &blockd[voffset].bmi.as_mv[0].as_mv; u->row = mi_mv_pred_row(xd, yoffset, 0); u->col = mi_mv_pred_col(xd, yoffset, 0); // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(u, xd); // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(u, xd); v->row = u->row; v->col = u->col; if (xd->mode_info_context->mbmi.second_ref_frame > 0) { u = &blockd[uoffset].bmi.as_mv[1].as_mv; v = &blockd[voffset].bmi.as_mv[1].as_mv; u->row = mi_mv_pred_row(xd, yoffset, 1); u->col = mi_mv_pred_col(xd, yoffset, 1); // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border(u, xd); // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border(u, xd); v->row = u->row; v->col = u->col; } } } } void vp9_build_inter_predictors_mb(MACROBLOCKD *xd, int mb_row, int mb_col) { if (xd->mode_info_context->mbmi.mode != SPLITMV) { vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16); } else { build_4x4uvmvs(xd); build_inter4x4_predictors_mb(xd, mb_row, mb_col); } } /*encoder only*/ void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd, int mb_row, int mb_col) { int i, j, weight; BLOCKD *const blockd = xd->block; /* build uv mvs */ for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { const int yoffset = i * 8 + j * 2; const int uoffset = 16 + i * 2 + j; const int voffset = 20 + i * 2 + j; MV *u = &blockd[uoffset].bmi.as_mv[0].as_mv; MV *v = &blockd[voffset].bmi.as_mv[0].as_mv; v->row = u->row = b_mv_pred_row(xd, yoffset, 0); v->col = u->col = b_mv_pred_col(xd, yoffset, 0); if (xd->mode_info_context->mbmi.second_ref_frame > 0) { u = &blockd[uoffset].bmi.as_mv[1].as_mv; v = &blockd[voffset].bmi.as_mv[1].as_mv; v->row = u->row = b_mv_pred_row(xd, yoffset, 1); v->col = u->col = b_mv_pred_col(xd, yoffset, 1); } } } #if CONFIG_IMPLICIT_COMPOUNDINTER_WEIGHT && \ defined(USE_IMPLICIT_WEIGHT_SPLITMV) && \ defined(USE_IMPLICIT_WEIGHT_UV) weight = get_implicit_compoundinter_weight_splitmv(xd, mb_row, mb_col); #else weight = AVERAGE_WEIGHT; #endif for (i = 16; i < 24; i += 2) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; const int x = 4 * (i & 1); const int y = ((i - 16) >> 1) * 4; int which_mv; BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv, which_mv ? weight : 0, &xd->subpix, mb_row * 8 + y, mb_col * 8 + x); } } }