/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, YV12_BUFFER_CONFIG *other, int this_w, int this_h) { int other_w, other_h; other_h = other->y_height; other_w = other->y_width; scale->x_num = other_w; scale->x_den = this_w; scale->x_offset_q4 = 0; // calculated per-mb scale->x_step_q4 = 16 * other_w / this_w; scale->y_num = other_h; scale->y_den = this_h; scale->y_offset_q4 = 0; // calculated per-mb scale->y_step_q4 = 16 * other_h / this_h; // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. if (scale->x_step_q4 == 16) { if (scale->y_step_q4 == 16) { // No scaling in either direction. scale->predict[0][0][0] = vp9_convolve_copy; scale->predict[0][0][1] = vp9_convolve_avg; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. scale->predict[0][0][0] = vp9_convolve8_vert; scale->predict[0][0][1] = vp9_convolve8_avg_vert; scale->predict[0][1][0] = vp9_convolve8_vert; scale->predict[0][1][1] = vp9_convolve8_avg_vert; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } else { if (scale->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. scale->predict[0][0][0] = vp9_convolve8_horiz; scale->predict[0][0][1] = vp9_convolve8_avg_horiz; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8_horiz; scale->predict[1][0][1] = vp9_convolve8_avg_horiz; } else { // Must always scale in both directions. scale->predict[0][0][0] = vp9_convolve8; scale->predict[0][0][1] = vp9_convolve8_avg; scale->predict[0][1][0] = vp9_convolve8; scale->predict[0][1][1] = vp9_convolve8_avg; scale->predict[1][0][0] = vp9_convolve8; scale->predict[1][0][1] = vp9_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions scale->predict[1][1][0] = vp9_convolve8; scale->predict[1][1][1] = vp9_convolve8_avg; } void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATIONFILTERTYPE mcomp_filter_type, VP9_COMMON *cm) { int i; /* Calculate scaling factors for each of the 3 available references */ for (i = 0; i < 3; ++i) { if (cm->active_ref_idx[i] >= NUM_YV12_BUFFERS) { memset(&cm->active_ref_scale[i], 0, sizeof(cm->active_ref_scale[i])); continue; } vp9_setup_scale_factors_for_frame(&cm->active_ref_scale[i], &cm->yv12_fb[cm->active_ref_idx[i]], cm->mb_cols * 16, cm->mb_rows * 16); } if (xd->mode_info_context) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; set_scale_factors(xd, mbmi->ref_frame - 1, mbmi->second_ref_frame - 1, cm->active_ref_scale); } switch (mcomp_filter_type) { case EIGHTTAP: case SWITCHABLE: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; break; case EIGHTTAP_SMOOTH: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; break; case EIGHTTAP_SHARP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; break; case BILINEAR: xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; break; #if CONFIG_ENABLE_6TAP case SIXTAP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_6; break; #endif } assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); } void vp9_copy_mem16x16_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; ((uint32_t *)dst)[2] = ((const uint32_t *)src)[2]; ((uint32_t *)dst)[3] = ((const uint32_t *)src)[3]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x8_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x4_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride) { int r; for (r = 0; r < 4; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((const uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((const uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } static void set_scaled_offsets(struct scale_factors *scale, int row, int col) { const int x_q4 = 16 * col; const int y_q4 = 16 * row; scale->x_offset_q4 = (x_q4 * scale->x_num / scale->x_den) & 0xf; scale->y_offset_q4 = (y_q4 * scale->y_num / scale->y_den) & 0xf; } static int32_t scale_motion_vector_component_q3(int mv_q3, int num, int den, int offset_q4) { // returns the scaled and offset value of the mv component. const int32_t mv_q4 = mv_q3 << 1; /* TODO(jkoleszar): make fixed point, or as a second multiply? */ return mv_q4 * num / den + offset_q4; } static int32_t scale_motion_vector_component_q4(int mv_q4, int num, int den, int offset_q4) { // returns the scaled and offset value of the mv component. /* TODO(jkoleszar): make fixed point, or as a second multiply? */ return mv_q4 * num / den + offset_q4; } static int_mv32 scale_motion_vector_q3_to_q4( const int_mv *src_mv, const struct scale_factors *scale) { // returns mv * scale + offset int_mv32 result; result.as_mv.row = scale_motion_vector_component_q3(src_mv->as_mv.row, scale->y_num, scale->y_den, scale->y_offset_q4); result.as_mv.col = scale_motion_vector_component_q3(src_mv->as_mv.col, scale->x_num, scale->x_den, scale->x_offset_q4); return result; } void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int_mv *mv_q3, const struct scale_factors *scale, int w, int h, int do_avg, const struct subpix_fn_table *subpix) { int_mv32 mv; mv = scale_motion_vector_q3_to_q4(mv_q3, scale); src = src + (mv.as_mv.row >> 4) * src_stride + (mv.as_mv.col >> 4); scale->predict[!!(mv.as_mv.col & 15)][!!(mv.as_mv.row & 15)][do_avg]( src, src_stride, dst, dst_stride, subpix->filter_x[mv.as_mv.col & 15], scale->x_step_q4, subpix->filter_y[mv.as_mv.row & 15], scale->y_step_q4, w, h); } /* Like vp9_build_inter_predictor, but takes the full-pel part of the * mv separately, and the fractional part as a q4. */ void vp9_build_inter_predictor_q4(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int_mv *fullpel_mv_q3, const int_mv *frac_mv_q4, const struct scale_factors *scale, int w, int h, int do_avg, const struct subpix_fn_table *subpix) { const int mv_row_q4 = ((fullpel_mv_q3->as_mv.row >> 3) << 4) + (frac_mv_q4->as_mv.row & 0xf); const int mv_col_q4 = ((fullpel_mv_q3->as_mv.col >> 3) << 4) + (frac_mv_q4->as_mv.col & 0xf); const int scaled_mv_row_q4 = scale_motion_vector_component_q4(mv_row_q4, scale->y_num, scale->y_den, scale->y_offset_q4); const int scaled_mv_col_q4 = scale_motion_vector_component_q4(mv_col_q4, scale->x_num, scale->x_den, scale->x_offset_q4); const int subpel_x = scaled_mv_col_q4 & 15; const int subpel_y = scaled_mv_row_q4 & 15; src = src + (scaled_mv_row_q4 >> 4) * src_stride + (scaled_mv_col_q4 >> 4); scale->predict[!!subpel_x][!!subpel_y][do_avg]( src, src_stride, dst, dst_stride, subpix->filter_x[subpel_x], scale->x_step_q4, subpix->filter_y[subpel_y], scale->y_step_q4, w, h); } static void build_2x1_inter_predictor(const BLOCKD *d0, const BLOCKD *d1, struct scale_factors *scale, int block_size, int stride, int which_mv, const struct subpix_fn_table *subpix, int row, int col) { assert(d1->predictor - d0->predictor == block_size); assert(d1->pre == d0->pre + block_size); set_scaled_offsets(&scale[which_mv], row, col); if (d0->bmi.as_mv[which_mv].as_int == d1->bmi.as_mv[which_mv].as_int) { uint8_t **base_pre = which_mv ? d0->base_second_pre : d0->base_pre; vp9_build_inter_predictor(*base_pre + d0->pre, d0->pre_stride, d0->predictor, stride, &d0->bmi.as_mv[which_mv], &scale[which_mv], 2 * block_size, block_size, which_mv, subpix); } else { uint8_t **base_pre0 = which_mv ? d0->base_second_pre : d0->base_pre; uint8_t **base_pre1 = which_mv ? d1->base_second_pre : d1->base_pre; vp9_build_inter_predictor(*base_pre0 + d0->pre, d0->pre_stride, d0->predictor, stride, &d0->bmi.as_mv[which_mv], &scale[which_mv], block_size, block_size, which_mv, subpix); set_scaled_offsets(&scale[which_mv], row, col + block_size); vp9_build_inter_predictor(*base_pre1 + d1->pre, d1->pre_stride, d1->predictor, stride, &d1->bmi.as_mv[which_mv], &scale[which_mv], block_size, block_size, which_mv, subpix); } } /*encoder only*/ void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd, int mb_row, int mb_col) { int i, j; BLOCKD *blockd = xd->block; /* build uv mvs */ for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { int yoffset = i * 8 + j * 2; int uoffset = 16 + i * 2 + j; int voffset = 20 + i * 2 + j; int temp; temp = blockd[yoffset ].bmi.as_mv[0].as_mv.row + blockd[yoffset + 1].bmi.as_mv[0].as_mv.row + blockd[yoffset + 4].bmi.as_mv[0].as_mv.row + blockd[yoffset + 5].bmi.as_mv[0].as_mv.row; if (temp < 0) temp -= 4; else temp += 4; xd->block[uoffset].bmi.as_mv[0].as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = blockd[yoffset ].bmi.as_mv[0].as_mv.col + blockd[yoffset + 1].bmi.as_mv[0].as_mv.col + blockd[yoffset + 4].bmi.as_mv[0].as_mv.col + blockd[yoffset + 5].bmi.as_mv[0].as_mv.col; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv[0].as_mv.col = (temp / 8) & xd->fullpixel_mask; blockd[voffset].bmi.as_mv[0].as_mv.row = blockd[uoffset].bmi.as_mv[0].as_mv.row; blockd[voffset].bmi.as_mv[0].as_mv.col = blockd[uoffset].bmi.as_mv[0].as_mv.col; if (xd->mode_info_context->mbmi.second_ref_frame > 0) { temp = blockd[yoffset ].bmi.as_mv[1].as_mv.row + blockd[yoffset + 1].bmi.as_mv[1].as_mv.row + blockd[yoffset + 4].bmi.as_mv[1].as_mv.row + blockd[yoffset + 5].bmi.as_mv[1].as_mv.row; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv[1].as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = blockd[yoffset ].bmi.as_mv[1].as_mv.col + blockd[yoffset + 1].bmi.as_mv[1].as_mv.col + blockd[yoffset + 4].bmi.as_mv[1].as_mv.col + blockd[yoffset + 5].bmi.as_mv[1].as_mv.col; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv[1].as_mv.col = (temp / 8) & xd->fullpixel_mask; blockd[voffset].bmi.as_mv[1].as_mv.row = blockd[uoffset].bmi.as_mv[1].as_mv.row; blockd[voffset].bmi.as_mv[1].as_mv.col = blockd[uoffset].bmi.as_mv[1].as_mv.col; } } } for (i = 16; i < 24; i += 2) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; const int x = 4 * (i & 1); const int y = ((i - 16) >> 1) * 4; int which_mv; BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv, &xd->subpix, mb_row * 8 + y, mb_col * 8 + x); } } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */ if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } /* A version of the above function for chroma block MVs.*/ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { const int extend = VP9_INTERP_EXTEND; mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col; mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col; mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row; mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row; } /*encoder only*/ void vp9_build_inter16x16_predictors_mby(MACROBLOCKD *xd, uint8_t *dst_y, int dst_ystride, int mb_row, int mb_col) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int which_mv; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { const int clamp_mvs = which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv : xd->mode_info_context->mbmi.need_to_clamp_mvs; uint8_t *base_pre; int_mv ymv; int pre_stride; ymv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int; base_pre = which_mv ? xd->second_pre.y_buffer : xd->pre.y_buffer; pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride; if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); set_scaled_offsets(&xd->scale_factor[which_mv], mb_row * 16, mb_col * 16); vp9_build_inter_predictor(base_pre, pre_stride, dst_y, dst_ystride, &ymv, &xd->scale_factor[which_mv], 16, 16, which_mv, &xd->subpix); } } void vp9_build_inter16x16_predictors_mbuv(MACROBLOCKD *xd, uint8_t *dst_u, uint8_t *dst_v, int dst_uvstride, int mb_row, int mb_col) { const int use_second_ref = xd->mode_info_context->mbmi.second_ref_frame > 0; int which_mv; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { const int clamp_mvs = which_mv ? xd->mode_info_context->mbmi.need_to_clamp_secondmv : xd->mode_info_context->mbmi.need_to_clamp_mvs; uint8_t *uptr, *vptr; int pre_stride = which_mv ? xd->second_pre.y_stride : xd->pre.y_stride; int_mv _o16x16mv; int_mv _16x16mv; _16x16mv.as_int = xd->mode_info_context->mbmi.mv[which_mv].as_int; if (clamp_mvs) clamp_mv_to_umv_border(&_16x16mv.as_mv, xd); _o16x16mv = _16x16mv; /* calc uv motion vectors */ if (_16x16mv.as_mv.row < 0) _16x16mv.as_mv.row -= 1; else _16x16mv.as_mv.row += 1; if (_16x16mv.as_mv.col < 0) _16x16mv.as_mv.col -= 1; else _16x16mv.as_mv.col += 1; _16x16mv.as_mv.row /= 2; _16x16mv.as_mv.col /= 2; _16x16mv.as_mv.row &= xd->fullpixel_mask; _16x16mv.as_mv.col &= xd->fullpixel_mask; pre_stride >>= 1; uptr = (which_mv ? xd->second_pre.u_buffer : xd->pre.u_buffer); vptr = (which_mv ? xd->second_pre.v_buffer : xd->pre.v_buffer); set_scaled_offsets(&xd->scale_factor_uv[which_mv], mb_row * 16, mb_col * 16); vp9_build_inter_predictor_q4(uptr, pre_stride, dst_u, dst_uvstride, &_16x16mv, &_o16x16mv, &xd->scale_factor_uv[which_mv], 8, 8, which_mv, &xd->subpix); vp9_build_inter_predictor_q4(vptr, pre_stride, dst_v, dst_uvstride, &_16x16mv, &_o16x16mv, &xd->scale_factor_uv[which_mv], 8, 8, which_mv, &xd->subpix); } } void vp9_build_inter32x32_predictors_sb(MACROBLOCKD *x, uint8_t *dst_y, uint8_t *dst_u, uint8_t *dst_v, int dst_ystride, int dst_uvstride, int mb_row, int mb_col) { uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer; uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer; int edge[4], n; edge[0] = x->mb_to_top_edge; edge[1] = x->mb_to_bottom_edge; edge[2] = x->mb_to_left_edge; edge[3] = x->mb_to_right_edge; for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; int scaled_uv_offset; x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3); x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3); x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3); x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3); x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 16, y_idx * 16, x->pre.y_stride, &x->scale_factor[0]); scaled_uv_offset = scaled_buffer_offset(x_idx * 8, y_idx * 8, x->pre.uv_stride, &x->scale_factor_uv[0]); x->pre.u_buffer = u1 + scaled_uv_offset; x->pre.v_buffer = v1 + scaled_uv_offset; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2 + scaled_buffer_offset(x_idx * 16, y_idx * 16, x->second_pre.y_stride, &x->scale_factor[1]); scaled_uv_offset = scaled_buffer_offset(x_idx * 8, y_idx * 8, x->second_pre.uv_stride, &x->scale_factor_uv[1]); x->second_pre.u_buffer = u2 + scaled_uv_offset; x->second_pre.v_buffer = v2 + scaled_uv_offset; } vp9_build_inter16x16_predictors_mb(x, dst_y + y_idx * 16 * dst_ystride + x_idx * 16, dst_u + y_idx * 8 * dst_uvstride + x_idx * 8, dst_v + y_idx * 8 * dst_uvstride + x_idx * 8, dst_ystride, dst_uvstride, mb_row + y_idx, mb_col + x_idx); } x->mb_to_top_edge = edge[0]; x->mb_to_bottom_edge = edge[1]; x->mb_to_left_edge = edge[2]; x->mb_to_right_edge = edge[3]; x->pre.y_buffer = y1; x->pre.u_buffer = u1; x->pre.v_buffer = v1; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2; x->second_pre.u_buffer = u2; x->second_pre.v_buffer = v2; } #if CONFIG_COMP_INTERINTRA_PRED if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_32x32_predictors_sb( x, dst_y, dst_u, dst_v, dst_ystride, dst_uvstride); } #endif } void vp9_build_inter64x64_predictors_sb(MACROBLOCKD *x, uint8_t *dst_y, uint8_t *dst_u, uint8_t *dst_v, int dst_ystride, int dst_uvstride, int mb_row, int mb_col) { uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer; uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer; int edge[4], n; edge[0] = x->mb_to_top_edge; edge[1] = x->mb_to_bottom_edge; edge[2] = x->mb_to_left_edge; edge[3] = x->mb_to_right_edge; for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; int scaled_uv_offset; x->mb_to_top_edge = edge[0] - ((y_idx * 32) << 3); x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 32) << 3); x->mb_to_left_edge = edge[2] - ((x_idx * 32) << 3); x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 32) << 3); x->pre.y_buffer = y1 + scaled_buffer_offset(x_idx * 32, y_idx * 32, x->pre.y_stride, &x->scale_factor[0]); scaled_uv_offset = scaled_buffer_offset(x_idx * 16, y_idx * 16, x->pre.uv_stride, &x->scale_factor_uv[0]); x->pre.u_buffer = u1 + scaled_uv_offset; x->pre.v_buffer = v1 + scaled_uv_offset; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2 + scaled_buffer_offset(x_idx * 32, y_idx * 32, x->second_pre.y_stride, &x->scale_factor[1]); scaled_uv_offset = scaled_buffer_offset(x_idx * 16, y_idx * 16, x->second_pre.uv_stride, &x->scale_factor_uv[1]); x->second_pre.u_buffer = u2 + scaled_uv_offset; x->second_pre.v_buffer = v2 + scaled_uv_offset; } vp9_build_inter32x32_predictors_sb(x, dst_y + y_idx * 32 * dst_ystride + x_idx * 32, dst_u + y_idx * 16 * dst_uvstride + x_idx * 16, dst_v + y_idx * 16 * dst_uvstride + x_idx * 16, dst_ystride, dst_uvstride, mb_row + y_idx * 2, mb_col + x_idx * 2); } x->mb_to_top_edge = edge[0]; x->mb_to_bottom_edge = edge[1]; x->mb_to_left_edge = edge[2]; x->mb_to_right_edge = edge[3]; x->pre.y_buffer = y1; x->pre.u_buffer = u1; x->pre.v_buffer = v1; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2; x->second_pre.u_buffer = u2; x->second_pre.v_buffer = v2; } #if CONFIG_COMP_INTERINTRA_PRED if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_64x64_predictors_sb(x, dst_y, dst_u, dst_v, dst_ystride, dst_uvstride); } #endif } static void build_inter4x4_predictors_mb(MACROBLOCKD *xd, int mb_row, int mb_col) { int i; MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; BLOCKD *blockd = xd->block; int which_mv = 0; const int use_second_ref = mbmi->second_ref_frame > 0; if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) { for (i = 0; i < 16; i += 8) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 2]; const int y = i & 8; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 2].bmi = xd->mode_info_context->bmi[i + 2]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv[which_mv].as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 2].bmi.as_mv[which_mv].as_mv, xd); } build_2x1_inter_predictor(d0, d1, xd->scale_factor, 8, 16, which_mv, &xd->subpix, mb_row * 16 + y, mb_col * 16); } } } else { for (i = 0; i < 16; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = (i & 3) * 4; const int y = (i >> 2) * 4; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1]; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor, 4, 16, which_mv, &xd->subpix, mb_row * 16 + y, mb_col * 16 + x); } } } for (i = 16; i < 24; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; const int x = 4 * (i & 1); const int y = ((i - 16) >> 1) * 4; for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { build_2x1_inter_predictor(d0, d1, xd->scale_factor_uv, 4, 8, which_mv, &xd->subpix, mb_row * 8 + y, mb_col * 8 + x); } } } static void build_4x4uvmvs(MACROBLOCKD *xd) { int i, j; BLOCKD *blockd = xd->block; for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { int yoffset = i * 8 + j * 2; int uoffset = 16 + i * 2 + j; int voffset = 20 + i * 2 + j; int temp; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv[0].as_mv.row + xd->mode_info_context->bmi[yoffset + 1].as_mv[0].as_mv.row + xd->mode_info_context->bmi[yoffset + 4].as_mv[0].as_mv.row + xd->mode_info_context->bmi[yoffset + 5].as_mv[0].as_mv.row; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv[0].as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv[0].as_mv.col + xd->mode_info_context->bmi[yoffset + 1].as_mv[0].as_mv.col + xd->mode_info_context->bmi[yoffset + 4].as_mv[0].as_mv.col + xd->mode_info_context->bmi[yoffset + 5].as_mv[0].as_mv.col; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv[0].as_mv.col = (temp / 8) & xd->fullpixel_mask; // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv[0].as_mv, xd); // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv[0].as_mv, xd); blockd[voffset].bmi.as_mv[0].as_mv.row = blockd[uoffset].bmi.as_mv[0].as_mv.row; blockd[voffset].bmi.as_mv[0].as_mv.col = blockd[uoffset].bmi.as_mv[0].as_mv.col; if (xd->mode_info_context->mbmi.second_ref_frame > 0) { temp = xd->mode_info_context->bmi[yoffset + 0].as_mv[1].as_mv.row + xd->mode_info_context->bmi[yoffset + 1].as_mv[1].as_mv.row + xd->mode_info_context->bmi[yoffset + 4].as_mv[1].as_mv.row + xd->mode_info_context->bmi[yoffset + 5].as_mv[1].as_mv.row; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv[1].as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv[1].as_mv.col + xd->mode_info_context->bmi[yoffset + 1].as_mv[1].as_mv.col + xd->mode_info_context->bmi[yoffset + 4].as_mv[1].as_mv.col + xd->mode_info_context->bmi[yoffset + 5].as_mv[1].as_mv.col; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv[1].as_mv.col = (temp / 8) & xd->fullpixel_mask; // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border( &blockd[uoffset].bmi.as_mv[1].as_mv, xd); // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border( &blockd[uoffset].bmi.as_mv[1].as_mv, xd); blockd[voffset].bmi.as_mv[1].as_mv.row = blockd[uoffset].bmi.as_mv[1].as_mv.row; blockd[voffset].bmi.as_mv[1].as_mv.col = blockd[uoffset].bmi.as_mv[1].as_mv.col; } } } } void vp9_build_inter16x16_predictors_mb(MACROBLOCKD *xd, uint8_t *dst_y, uint8_t *dst_u, uint8_t *dst_v, int dst_ystride, int dst_uvstride, int mb_row, int mb_col) { vp9_build_inter16x16_predictors_mby(xd, dst_y, dst_ystride, mb_row, mb_col); vp9_build_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride, mb_row, mb_col); } void vp9_build_inter_predictors_mb(MACROBLOCKD *xd, int mb_row, int mb_col) { if (xd->mode_info_context->mbmi.mode != SPLITMV) { vp9_build_inter16x16_predictors_mb(xd, xd->predictor, &xd->predictor[256], &xd->predictor[320], 16, 8, mb_row, mb_col); #if CONFIG_COMP_INTERINTRA_PRED if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_16x16_predictors_mb(xd, xd->predictor, &xd->predictor[256], &xd->predictor[320], 16, 8); } #endif } else { build_4x4uvmvs(xd); build_inter4x4_predictors_mb(xd, mb_row, mb_col); } }