/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_treecoder.h" // TBD prediction functions for various bitstream signals // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { int pred_context; MODE_INFO *m = xd->mode_info_context; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. switch (pred_id) { case PRED_SEG_ID: pred_context = (m - cm->mode_info_stride)->mbmi.seg_id_predicted; if (xd->left_available) pred_context += (m - 1)->mbmi.seg_id_predicted; break; case PRED_REF: pred_context = (m - cm->mode_info_stride)->mbmi.ref_predicted; if (xd->left_available) pred_context += (m - 1)->mbmi.ref_predicted; break; case PRED_COMP: // Context based on use of comp pred flag by neighbours // pred_context = // ((m - 1)->mbmi.second_ref_frame > INTRA_FRAME) + // ((m - cm->mode_info_stride)->mbmi.second_ref_frame > INTRA_FRAME); // Context based on mode and reference frame // if ( m->mbmi.ref_frame == LAST_FRAME ) // pred_context = 0 + (m->mbmi.mode != ZEROMV); // else if ( m->mbmi.ref_frame == GOLDEN_FRAME ) // pred_context = 2 + (m->mbmi.mode != ZEROMV); // else // pred_context = 4 + (m->mbmi.mode != ZEROMV); if (m->mbmi.ref_frame == LAST_FRAME) pred_context = 0; else pred_context = 1; break; case PRED_MBSKIP: pred_context = (m - cm->mode_info_stride)->mbmi.mb_skip_coeff; if (xd->left_available) pred_context += (m - 1)->mbmi.mb_skip_coeff; break; case PRED_SWITCHABLE_INTERP: { int left_in_image = xd->left_available && (m - 1)->mbmi.mb_in_image; int above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image; int left_mode = (m - 1)->mbmi.mode; int above_mode = (m - cm->mode_info_stride)->mbmi.mode; int left_interp, above_interp; if (left_in_image && left_mode >= NEARESTMV && left_mode <= SPLITMV) left_interp = vp9_switchable_interp_map[(m - 1)->mbmi.interp_filter]; else left_interp = VP9_SWITCHABLE_FILTERS; assert(left_interp != -1); if (above_in_image && above_mode >= NEARESTMV && above_mode <= SPLITMV) above_interp = vp9_switchable_interp_map[ (m - cm->mode_info_stride)->mbmi.interp_filter]; else above_interp = VP9_SWITCHABLE_FILTERS; assert(above_interp != -1); if (left_interp == above_interp) pred_context = left_interp; else if (left_interp == VP9_SWITCHABLE_FILTERS && above_interp != VP9_SWITCHABLE_FILTERS) pred_context = above_interp; else if (left_interp != VP9_SWITCHABLE_FILTERS && above_interp == VP9_SWITCHABLE_FILTERS) pred_context = left_interp; else pred_context = VP9_SWITCHABLE_FILTERS; } break; default: // TODO *** add error trap code. pred_context = 0; break; } return pred_context; } // This function returns a context probability for coding a given // prediction signal vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { vp9_prob pred_probability; int pred_context; // Get the appropriate prediction context pred_context = vp9_get_pred_context(cm, xd, pred_id); switch (pred_id) { case PRED_SEG_ID: pred_probability = cm->segment_pred_probs[pred_context]; break; case PRED_REF: pred_probability = cm->ref_pred_probs[pred_context]; break; case PRED_COMP: // In keeping with convention elsewhre the probability returned is // the probability of a "0" outcome which in this case means the // probability of comp pred off. pred_probability = cm->prob_comppred[pred_context]; break; case PRED_MBSKIP: pred_probability = cm->mbskip_pred_probs[pred_context]; break; default: // TODO *** add error trap code. pred_probability = 128; break; } return pred_probability; } // This function returns a context probability ptr for coding a given // prediction signal const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, PRED_ID pred_id) { const vp9_prob *pred_probability; int pred_context; // Get the appropriate prediction context pred_context = vp9_get_pred_context(cm, xd, pred_id); switch (pred_id) { case PRED_SEG_ID: pred_probability = &cm->segment_pred_probs[pred_context]; break; case PRED_REF: pred_probability = &cm->ref_pred_probs[pred_context]; break; case PRED_COMP: // In keeping with convention elsewhre the probability returned is // the probability of a "0" outcome which in this case means the // probability of comp pred off. pred_probability = &cm->prob_comppred[pred_context]; break; case PRED_MBSKIP: pred_probability = &cm->mbskip_pred_probs[pred_context]; break; case PRED_SWITCHABLE_INTERP: pred_probability = &cm->fc.switchable_interp_prob[pred_context][0]; break; default: // TODO *** add error trap code. pred_probability = NULL; break; } return pred_probability; } // This function returns the status of the given prediction signal. // I.e. is the predicted value for the given signal correct. unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd, PRED_ID pred_id) { unsigned char pred_flag = 0; switch (pred_id) { case PRED_SEG_ID: pred_flag = xd->mode_info_context->mbmi.seg_id_predicted; break; case PRED_REF: pred_flag = xd->mode_info_context->mbmi.ref_predicted; break; case PRED_MBSKIP: pred_flag = xd->mode_info_context->mbmi.mb_skip_coeff; break; default: // TODO *** add error trap code. pred_flag = 0; break; } return pred_flag; } // This function sets the status of the given prediction signal. // I.e. is the predicted value for the given signal correct. void vp9_set_pred_flag(MACROBLOCKD *const xd, PRED_ID pred_id, unsigned char pred_flag) { const int mis = xd->mode_info_stride; switch (pred_id) { case PRED_SEG_ID: xd->mode_info_context->mbmi.seg_id_predicted = pred_flag; if (xd->mode_info_context->mbmi.sb_type) { #define sub(a, b) (b) < 0 ? (a) + (b) : (a) const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type; const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7); const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7); int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted = pred_flag; } } } break; case PRED_REF: xd->mode_info_context->mbmi.ref_predicted = pred_flag; if (xd->mode_info_context->mbmi.sb_type) { const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type; const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7); const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7); int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { xd->mode_info_context[y * mis + x].mbmi.ref_predicted = pred_flag; } } } break; case PRED_MBSKIP: xd->mode_info_context->mbmi.mb_skip_coeff = pred_flag; if (xd->mode_info_context->mbmi.sb_type) { const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type; const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7); const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7); int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag; } } } break; default: // TODO *** add error trap code. break; } } // The following contain the guts of the prediction code used to // peredict various bitstream signals. // Macroblock segment id prediction function unsigned char vp9_get_pred_mb_segid(const VP9_COMMON *const cm, const MACROBLOCKD *const xd, int MbIndex) { // Currently the prediction for the macroblock segment ID is // the value stored for this macroblock in the previous frame. if (!xd->mode_info_context->mbmi.sb_type) { return cm->last_frame_seg_map[MbIndex]; } else { const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type; const int mb_col = MbIndex % cm->mb_cols; const int mb_row = MbIndex / cm->mb_cols; const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col); const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row); int x, y; unsigned seg_id = -1; for (y = mb_row; y < mb_row + y_mbs; y++) { for (x = mb_col; x < mb_col + x_mbs; x++) { seg_id = MIN(seg_id, cm->last_frame_seg_map[cm->mb_cols * y + x]); } } return seg_id; } } MV_REFERENCE_FRAME vp9_get_pred_ref(const VP9_COMMON *const cm, const MACROBLOCKD *const xd) { MODE_INFO *m = xd->mode_info_context; MV_REFERENCE_FRAME left; MV_REFERENCE_FRAME above; MV_REFERENCE_FRAME above_left; MV_REFERENCE_FRAME pred_ref = LAST_FRAME; int segment_id = xd->mode_info_context->mbmi.segment_id; int seg_ref_active; int i; unsigned char frame_allowed[MAX_REF_FRAMES] = {1, 1, 1, 1}; unsigned char ref_score[MAX_REF_FRAMES]; unsigned char best_score = 0; unsigned char left_in_image; unsigned char above_in_image; unsigned char above_left_in_image; // Is segment coding ennabled seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); // Special case treatment if segment coding is enabled. // Dont allow prediction of a reference frame that the segment // does not allow if (seg_ref_active) { for (i = 0; i < MAX_REF_FRAMES; i++) { frame_allowed[i] = vp9_check_segref(xd, segment_id, i); // Score set to 0 if ref frame not allowed ref_score[i] = cm->ref_scores[i] * frame_allowed[i]; } } else vpx_memcpy(ref_score, cm->ref_scores, sizeof(ref_score)); // Reference frames used by neighbours left = (m - 1)->mbmi.ref_frame; above = (m - cm->mode_info_stride)->mbmi.ref_frame; above_left = (m - 1 - cm->mode_info_stride)->mbmi.ref_frame; // Are neighbours in image left_in_image = (m - 1)->mbmi.mb_in_image && xd->left_available; above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image; above_left_in_image = (m - 1 - cm->mode_info_stride)->mbmi.mb_in_image && xd->left_available; // Adjust scores for candidate reference frames based on neigbours if (frame_allowed[left] && left_in_image) { ref_score[left] += 16; if (above_left_in_image && (left == above_left)) ref_score[left] += 4; } if (frame_allowed[above] && above_in_image) { ref_score[above] += 16; if (above_left_in_image && (above == above_left)) ref_score[above] += 4; } // Now choose the candidate with the highest score for (i = 0; i < MAX_REF_FRAMES; i++) { if (ref_score[i] > best_score) { pred_ref = i; best_score = ref_score[i]; } } return pred_ref; } // Functions to computes a set of modified reference frame probabilities // to use when the prediction of the reference frame value fails void vp9_calc_ref_probs(int *count, vp9_prob *probs) { int tot_count; tot_count = count[0] + count[1] + count[2] + count[3]; probs[0] = get_prob(count[0], tot_count); tot_count -= count[0]; probs[1] = get_prob(count[1], tot_count); tot_count -= count[1]; probs[2] = get_prob(count[2], tot_count); } // Computes a set of modified conditional probabilities for the reference frame // Values willbe set to 0 for reference frame options that are not possible // because wither they were predicted and prediction has failed or because // they are not allowed for a given segment. void vp9_compute_mod_refprobs(VP9_COMMON *const cm) { int norm_cnt[MAX_REF_FRAMES]; int intra_count; int inter_count; int last_count; int gfarf_count; int gf_count; int arf_count; intra_count = cm->prob_intra_coded; inter_count = (255 - intra_count); last_count = (inter_count * cm->prob_last_coded) / 255; gfarf_count = inter_count - last_count; gf_count = (gfarf_count * cm->prob_gf_coded) / 255; arf_count = gfarf_count - gf_count; // Work out modified reference frame probabilities to use where prediction // of the reference frame fails norm_cnt[0] = 0; norm_cnt[1] = last_count; norm_cnt[2] = gf_count; norm_cnt[3] = arf_count; vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[INTRA_FRAME]); cm->mod_refprobs[INTRA_FRAME][0] = 0; // This branch implicit norm_cnt[0] = intra_count; norm_cnt[1] = 0; norm_cnt[2] = gf_count; norm_cnt[3] = arf_count; vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[LAST_FRAME]); cm->mod_refprobs[LAST_FRAME][1] = 0; // This branch implicit norm_cnt[0] = intra_count; norm_cnt[1] = last_count; norm_cnt[2] = 0; norm_cnt[3] = arf_count; vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[GOLDEN_FRAME]); cm->mod_refprobs[GOLDEN_FRAME][2] = 0; // This branch implicit norm_cnt[0] = intra_count; norm_cnt[1] = last_count; norm_cnt[2] = gf_count; norm_cnt[3] = 0; vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[ALTREF_FRAME]); cm->mod_refprobs[ALTREF_FRAME][2] = 0; // This branch implicit // Score the reference frames based on overal frequency. // These scores contribute to the prediction choices. // Max score 17 min 1 cm->ref_scores[INTRA_FRAME] = 1 + (intra_count * 16 / 255); cm->ref_scores[LAST_FRAME] = 1 + (last_count * 16 / 255); cm->ref_scores[GOLDEN_FRAME] = 1 + (gf_count * 16 / 255); cm->ref_scores[ALTREF_FRAME] = 1 + (arf_count * 16 / 255); }