/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /**************************************************************************** * Notes: * * This implementation makes use of 16 bit fixed point verio of two multiply * constants: * 1. sqrt(2) * cos (pi/8) * 2. sqrt(2) * sin (pi/8) * Becuase the first constant is bigger than 1, to maintain the same 16 bit * fixed point precision as the second one, we use a trick of * x * a = x + x*(a-1) * so * x * sqrt(2) * cos (pi/8) = x + x * (sqrt(2) *cos(pi/8)-1). **************************************************************************/ #include #include #include "./vpx_config.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_idct.h" static const int16_t idct_i4[16] = { 8192, 10703, 8192, 4433, 8192, 4433, -8192, -10703, 8192, -4433, -8192, 10703, 8192, -10703, 8192, -4433 }; static const int16_t iadst_i4[16] = { 3736, 9459, 10757, 7021, 7021, 9459, -3736, -10757, 9459, 0, -9459, 9459, 10757, -9459, 7021, -3736 }; static const int16_t idct_i8[64] = { 5793, 8035, 7568, 6811, 5793, 4551, 3135, 1598, 5793, 6811, 3135, -1598, -5793, -8035, -7568, -4551, 5793, 4551, -3135, -8035, -5793, 1598, 7568, 6811, 5793, 1598, -7568, -4551, 5793, 6811, -3135, -8035, 5793, -1598, -7568, 4551, 5793, -6811, -3135, 8035, 5793, -4551, -3135, 8035, -5793, -1598, 7568, -6811, 5793, -6811, 3135, 1598, -5793, 8035, -7568, 4551, 5793, -8035, 7568, -6811, 5793, -4551, 3135, -1598 }; static const int16_t iadst_i8[64] = { 1460, 4184, 6342, 7644, 7914, 7114, 5354, 2871, 2871, 7114, 7644, 4184, -1460, -6342, -7914, -5354, 4184, 7914, 2871, -5354, -7644, -1460, 6342, 7114, 5354, 6342, -4184, -7114, 2871, 7644, -1460, -7914, 6342, 2871, -7914, 1460, 7114, -5354, -4184, 7644, 7114, -1460, -5354, 7914, -4184, -2871, 7644, -6342, 7644, -5354, 1460, 2871, -6342, 7914, -7114, 4184, 7914, -7644, 7114, -6342, 5354, -4184, 2871, -1460 }; static const int16_t idct_i16[256] = { 4096, 5765, 5681, 5543, 5352, 5109, 4816, 4478, 4096, 3675, 3218, 2731, 2217, 1682, 1130, 568, 4096, 5543, 4816, 3675, 2217, 568, -1130, -2731, -4096, -5109, -5681, -5765, -5352, -4478, -3218, -1682, 4096, 5109, 3218, 568, -2217, -4478, -5681, -5543, -4096, -1682, 1130, 3675, 5352, 5765, 4816, 2731, 4096, 4478, 1130, -2731, -5352, -5543, -3218, 568, 4096, 5765, 4816, 1682, -2217, -5109, -5681, -3675, 4096, 3675, -1130, -5109, -5352, -1682, 3218, 5765, 4096, -568, -4816, -5543, -2217, 2731, 5681, 4478, 4096, 2731, -3218, -5765, -2217, 3675, 5681, 1682, -4096, -5543, -1130, 4478, 5352, 568, -4816, -5109, 4096, 1682, -4816, -4478, 2217, 5765, 1130, -5109, -4096, 2731, 5681, 568, -5352, -3675, 3218, 5543, 4096, 568, -5681, -1682, 5352, 2731, -4816, -3675, 4096, 4478, -3218, -5109, 2217, 5543, -1130, -5765, 4096, -568, -5681, 1682, 5352, -2731, -4816, 3675, 4096, -4478, -3218, 5109, 2217, -5543, -1130, 5765, 4096, -1682, -4816, 4478, 2217, -5765, 1130, 5109, -4096, -2731, 5681, -568, -5352, 3675, 3218, -5543, 4096, -2731, -3218, 5765, -2217, -3675, 5681, -1682, -4096, 5543, -1130, -4478, 5352, -568, -4816, 5109, 4096, -3675, -1130, 5109, -5352, 1682, 3218, -5765, 4096, 568, -4816, 5543, -2217, -2731, 5681, -4478, 4096, -4478, 1130, 2731, -5352, 5543, -3218, -568, 4096, -5765, 4816, -1682, -2217, 5109, -5681, 3675, 4096, -5109, 3218, -568, -2217, 4478, -5681, 5543, -4096, 1682, 1130, -3675, 5352, -5765, 4816, -2731, 4096, -5543, 4816, -3675, 2217, -568, -1130, 2731, -4096, 5109, -5681, 5765, -5352, 4478, -3218, 1682, 4096, -5765, 5681, -5543, 5352, -5109, 4816, -4478, 4096, -3675, 3218, -2731, 2217, -1682, 1130, -568 }; #if CONFIG_INTHT static const int16_t iadst_i16[256] = { 284, 850, 1407, 1951, 2476, 2977, 3450, 3889, 4291, 4652, 4967, 5235, 5453, 5618, 5729, 5784, 850, 2476, 3889, 4967, 5618, 5784, 5453, 4652, 3450, 1951, 284, -1407, -2977, -4291, -5235, -5729, 1407, 3889, 5453, 5729, 4652, 2476, -284, -2977, -4967, -5784, -5235, -3450, -850, 1951, 4291, 5618, 1951, 4967, 5729, 3889, 284, -3450, -5618, -5235, -2476, 1407, 4652, 5784, 4291, 850, -2977, -5453, 2476, 5618, 4652, 284, -4291, -5729, -2977, 1951, 5453, 4967, 850, -3889, -5784, -3450, 1407, 5235, 2977, 5784, 2476, -3450, -5729, -1951, 3889, 5618, 1407, -4291, -5453, -850, 4652, 5235, 284, -4967, 3450, 5453, -284, -5618, -2977, 3889, 5235, -850, -5729, -2476, 4291, 4967, -1407, -5784, -1951, 4652, 3889, 4652, -2977, -5235, 1951, 5618, -850, -5784, -284, 5729, 1407, -5453, -2476, 4967, 3450, -4291, 4291, 3450, -4967, -2476, 5453, 1407, -5729, -284, 5784, -850, -5618, 1951, 5235, -2977, -4652, 3889, 4652, 1951, -5784, 1407, 4967, -4291, -2476, 5729, -850, -5235, 3889, 2977, -5618, 284, 5453, -3450, 4967, 284, -5235, 4652, 850, -5453, 4291, 1407, -5618, 3889, 1951, -5729, 3450, 2476, -5784, 2977, 5235, -1407, -3450, 5784, -3889, -850, 4967, -5453, 1951, 2977, -5729, 4291, 284, -4652, 5618, -2476, 5453, -2977, -850, 4291, -5784, 4652, -1407, -2476, 5235, -5618, 3450, 284, -3889, 5729, -4967, 1951, 5618, -4291, 1951, 850, -3450, 5235, -5784, 4967, -2977, 284, 2476, -4652, 5729, -5453, 3889, -1407, 5729, -5235, 4291, -2977, 1407, 284, -1951, 3450, -4652, 5453, -5784, 5618, -4967, 3889, -2476, 850, 5784, -5729, 5618, -5453, 5235, -4967, 4652, -4291, 3889, -3450, 2977, -2476, 1951, -1407, 850, -284 }; #else static const int16_t iadst_i16[256] = { 542, 1607, 2614, 3526, 4311, 4940, 5390, 5646, 5698, 5543, 5189, 4646, 3936, 3084, 2120, 1080, 1080, 3084, 4646, 5543, 5646, 4940, 3526, 1607, -542, -2614, -4311, -5390, -5698, -5189, -3936, -2120, 1607, 4311, 5646, 5189, 3084, 0, -3084, -5189, -5646, -4311, -1607, 1607, 4311, 5646, 5189, 3084, 2120, 5189, 5390, 2614, -1607, -4940, -5543, -3084, 1080, 4646, 5646, 3526, -542, -4311, -5698, -3936, 2614, 5646, 3936, -1080, -5189, -4940, -542, 4311, 5543, 2120, -3084, -5698, -3526, 1607, 5390, 4646, 3084, 5646, 1607, -4311, -5189, 0, 5189, 4311, -1607, -5646, -3084, 3084, 5646, 1607, -4311, -5189, 3526, 5189, -1080, -5698, -1607, 4940, 3936, -3084, -5390, 542, 5646, 2120, -4646, -4311, 2614, 5543, 3936, 4311, -3526, -4646, 3084, 4940, -2614, -5189, 2120, 5390, -1607, -5543, 1080, 5646, -542, -5698, 4311, 3084, -5189, -1607, 5646, 0, -5646, 1607, 5189, -3084, -4311, 4311, 3084, -5189, -1607, 5646, 4646, 1607, -5698, 2120, 4311, -4940, -1080, 5646, -2614, -3936, 5189, 542, -5543, 3084, 3526, -5390, 4940, 0, -4940, 4940, 0, -4940, 4940, 0, -4940, 4940, 0, -4940, 4940, 0, -4940, 4940, 5189, -1607, -3084, 5646, -4311, 0, 4311, -5646, 3084, 1607, -5189, 5189, -1607, -3084, 5646, -4311, 5390, -3084, -542, 3936, -5646, 4940, -2120, -1607, 4646, -5698, 4311, -1080, -2614, 5189, -5543, 3526, 5543, -4311, 2120, 542, -3084, 4940, -5698, 5189, -3526, 1080, 1607, -3936, 5390, -5646, 4646, -2614, 5646, -5189, 4311, -3084, 1607, 0, -1607, 3084, -4311, 5189, -5646, 5646, -5189, 4311, -3084, 1607, 5698, -5646, 5543, -5390, 5189, -4940, 4646, -4311, 3936, -3526, 3084, -2614, 2120, -1607, 1080, -542 }; #endif /* Converted the transforms to integer form. */ #define HORIZONTAL_SHIFT 14 // 16 #define HORIZONTAL_ROUNDING ((1 << (HORIZONTAL_SHIFT - 1)) - 1) #define VERTICAL_SHIFT 17 // 15 #define VERTICAL_ROUNDING ((1 << (VERTICAL_SHIFT - 1)) - 1) void vp9_ihtllm_c(const int16_t *input, int16_t *output, int pitch, TX_TYPE tx_type, int tx_dim, uint16_t eobs) { int i, j, k; int nz_dim; int16_t imbuf[256]; const int16_t *ip = input; int16_t *op = output; int16_t *im = &imbuf[0]; /* pointers to vertical and horizontal transforms. */ const int16_t *ptv = NULL, *pth = NULL; int shortpitch = pitch >> 1; switch (tx_type) { case ADST_ADST : ptv = pth = (tx_dim == 4) ? &iadst_i4[0] : ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]); break; case ADST_DCT : ptv = (tx_dim == 4) ? &iadst_i4[0] : ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]); pth = (tx_dim == 4) ? &idct_i4[0] : ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]); break; case DCT_ADST : ptv = (tx_dim == 4) ? &idct_i4[0] : ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]); pth = (tx_dim == 4) ? &iadst_i4[0] : ((tx_dim == 8) ? &iadst_i8[0] : &iadst_i16[0]); break; case DCT_DCT : ptv = pth = (tx_dim == 4) ? &idct_i4[0] : ((tx_dim == 8) ? &idct_i8[0] : &idct_i16[0]); break; default: assert(0); break; } nz_dim = tx_dim; if(tx_dim > 4) { if(eobs < 36) { vpx_memset(im, 0, 512); nz_dim = 8; if(eobs < 3) { nz_dim = 2; } else if(eobs < 10) { nz_dim = 4; } } } /* 2-D inverse transform X = M1*Z*Transposed_M2 is calculated in 2 steps * from right to left: * 1. horizontal transform: Y= Z*Transposed_M2 * 2. vertical transform: X = M1*Y * In SIMD, doing this way could eliminate the transpose needed if it is * calculated from left to right. */ /* Horizontal transformation */ for (j = 0; j < tx_dim; j++) { for (i = 0; i < nz_dim; i++) { int temp = 0; for (k = 0; k < nz_dim; k++) { temp += ip[k] * pth[k]; } /* Calculate im and store it in its transposed position. */ im[i] = (int16_t)((temp + HORIZONTAL_ROUNDING) >> HORIZONTAL_SHIFT); ip += tx_dim; } im += tx_dim; pth += tx_dim; ip = input; } /* Vertical transformation */ im = &imbuf[0]; for (i = 0; i < tx_dim; i++) { for (j = 0; j < tx_dim; j++) { int temp = 0; for (k = 0; k < nz_dim; k++) { temp += ptv[k] * im[k]; } op[j] = (int16_t)((temp + VERTICAL_ROUNDING) >> VERTICAL_SHIFT); im += tx_dim; } im = &imbuf[0]; ptv += tx_dim; op += shortpitch; } } void vp9_short_inv_walsh4x4_c(int16_t *input, int16_t *output) { int i; int a1, b1, c1, d1; int16_t *ip = input; int16_t *op = output; for (i = 0; i < 4; i++) { a1 = ((ip[0] + ip[3])); b1 = ((ip[1] + ip[2])); c1 = ((ip[1] - ip[2])); d1 = ((ip[0] - ip[3])); op[0] = (a1 + b1 + 1) >> 1; op[1] = (c1 + d1) >> 1; op[2] = (a1 - b1) >> 1; op[3] = (d1 - c1) >> 1; ip += 4; op += 4; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[12]; b1 = ip[4] + ip[8]; c1 = ip[4] - ip[8]; d1 = ip[0] - ip[12]; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } } void vp9_short_inv_walsh4x4_1_c(int16_t *in, int16_t *out) { int i; int16_t tmp[4]; int16_t *ip = in; int16_t *op = tmp; op[0] = (ip[0] + 1) >> 1; op[1] = op[2] = op[3] = (ip[0] >> 1); ip = tmp; op = out; for (i = 0; i < 4; i++) { op[0] = (ip[0] + 1) >> 1; op[4] = op[8] = op[12] = (ip[0] >> 1); ip++; op++; } } #if CONFIG_LOSSLESS void vp9_short_inv_walsh4x4_lossless_c(int16_t *input, int16_t *output) { int i; int a1, b1, c1, d1; int16_t *ip = input; int16_t *op = output; for (i = 0; i < 4; i++) { a1 = ((ip[0] + ip[3])) >> Y2_WHT_UPSCALE_FACTOR; b1 = ((ip[1] + ip[2])) >> Y2_WHT_UPSCALE_FACTOR; c1 = ((ip[1] - ip[2])) >> Y2_WHT_UPSCALE_FACTOR; d1 = ((ip[0] - ip[3])) >> Y2_WHT_UPSCALE_FACTOR; op[0] = (a1 + b1 + 1) >> 1; op[1] = (c1 + d1) >> 1; op[2] = (a1 - b1) >> 1; op[3] = (d1 - c1) >> 1; ip += 4; op += 4; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[12]; b1 = ip[4] + ip[8]; c1 = ip[4] - ip[8]; d1 = ip[0] - ip[12]; op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[4] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[8] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[12] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR; ip++; op++; } } void vp9_short_inv_walsh4x4_1_lossless_c(int16_t *in, int16_t *out) { int i; int16_t tmp[4]; int16_t *ip = in; int16_t *op = tmp; op[0] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) + 1) >> 1; op[1] = op[2] = op[3] = ((ip[0] >> Y2_WHT_UPSCALE_FACTOR) >> 1); ip = tmp; op = out; for (i = 0; i < 4; i++) { op[0] = ((ip[0] + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[4] = op[8] = op[12] = ((ip[0] >> 1)) << Y2_WHT_UPSCALE_FACTOR; ip++; op++; } } void vp9_short_inv_walsh4x4_x8_c(int16_t *input, int16_t *output, int pitch) { int i; int a1, b1, c1, d1; int16_t *ip = input; int16_t *op = output; int shortpitch = pitch >> 1; for (i = 0; i < 4; i++) { a1 = ((ip[0] + ip[3])) >> WHT_UPSCALE_FACTOR; b1 = ((ip[1] + ip[2])) >> WHT_UPSCALE_FACTOR; c1 = ((ip[1] - ip[2])) >> WHT_UPSCALE_FACTOR; d1 = ((ip[0] - ip[3])) >> WHT_UPSCALE_FACTOR; op[0] = (a1 + b1 + 1) >> 1; op[1] = (c1 + d1) >> 1; op[2] = (a1 - b1) >> 1; op[3] = (d1 - c1) >> 1; ip += 4; op += shortpitch; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[shortpitch * 0] + ip[shortpitch * 3]; b1 = ip[shortpitch * 1] + ip[shortpitch * 2]; c1 = ip[shortpitch * 1] - ip[shortpitch * 2]; d1 = ip[shortpitch * 0] - ip[shortpitch * 3]; op[shortpitch * 0] = (a1 + b1 + 1) >> 1; op[shortpitch * 1] = (c1 + d1) >> 1; op[shortpitch * 2] = (a1 - b1) >> 1; op[shortpitch * 3] = (d1 - c1) >> 1; ip++; op++; } } void vp9_short_inv_walsh4x4_1_x8_c(int16_t *in, int16_t *out, int pitch) { int i; int16_t tmp[4]; int16_t *ip = in; int16_t *op = tmp; int shortpitch = pitch >> 1; op[0] = ((ip[0] >> WHT_UPSCALE_FACTOR) + 1) >> 1; op[1] = op[2] = op[3] = ((ip[0] >> WHT_UPSCALE_FACTOR) >> 1); ip = tmp; op = out; for (i = 0; i < 4; i++) { op[shortpitch * 0] = (ip[0] + 1) >> 1; op[shortpitch * 1] = op[shortpitch * 2] = op[shortpitch * 3] = ip[0] >> 1; ip++; op++; } } void vp9_dc_only_inv_walsh_add_c(short input_dc, uint8_t *pred_ptr, uint8_t *dst_ptr, int pitch, int stride) { int r, c; short tmp[16]; vp9_short_inv_walsh4x4_1_x8_c(&input_dc, tmp, 4 << 1); for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { dst_ptr[c] = clip_pixel(tmp[r * 4 + c] + pred_ptr[c]); } dst_ptr += stride; pred_ptr += pitch; } } #endif void idct4_1d(int16_t *input, int16_t *output) { int16_t step[4]; int temp1, temp2; // stage 1 temp1 = (input[0] + input[2]) * cospi_16_64; temp2 = (input[0] - input[2]) * cospi_16_64; step[0] = dct_const_round_shift(temp1); step[1] = dct_const_round_shift(temp2); temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; step[2] = dct_const_round_shift(temp1); step[3] = dct_const_round_shift(temp2); // stage 2 output[0] = step[0] + step[3]; output[1] = step[1] + step[2]; output[2] = step[1] - step[2]; output[3] = step[0] - step[3]; } void vp9_short_idct4x4llm_c(int16_t *input, int16_t *output, int pitch) { int16_t out[4 * 4]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[4], temp_out[4]; // First transform rows for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = input[j]; idct4_1d(temp_in, outptr); input += 4; outptr += 4; } // Then transform columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; idct4_1d(temp_in, temp_out); for (j = 0; j < 4; ++j) output[j * short_pitch + i] = (temp_out[j] + 8) >> 4; } } void vp9_short_idct4x4llm_1_c(int16_t *input, int16_t *output, int pitch) { int i; int a1; int16_t *op = output; int shortpitch = pitch >> 1; int tmp; int16_t out; tmp = input[0] * cospi_16_64; out = dct_const_round_shift(tmp); tmp = out * cospi_16_64; out = dct_const_round_shift(tmp); a1 = (out + 8) >> 4; for (i = 0; i < 4; i++) { op[0] = a1; op[1] = a1; op[2] = a1; op[3] = a1; op += shortpitch; } } void vp9_dc_only_idct_add_c(int input_dc, uint8_t *pred_ptr, uint8_t *dst_ptr, int pitch, int stride) { int a1; int r, c; int tmp; int16_t out; tmp = input_dc * cospi_16_64; out = dct_const_round_shift(tmp); tmp = out * cospi_16_64; out = dct_const_round_shift(tmp); a1 = (out + 8) >> 4; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { dst_ptr[c] = clip_pixel(a1 + pred_ptr[c]); } dst_ptr += stride; pred_ptr += pitch; } } void idct8_1d(int16_t *input, int16_t *output) { int16_t step1[8], step2[8]; int temp1, temp2; // stage 1 step1[0] = input[0]; step1[2] = input[4]; step1[1] = input[2]; step1[3] = input[6]; temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; step1[4] = dct_const_round_shift(temp1); step1[7] = dct_const_round_shift(temp2); temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); // stage 2 & stage 3 - even half idct4_1d(step1, step1); // stage 2 - odd half step2[4] = step1[4] + step1[5]; step2[5] = step1[4] - step1[5]; step2[6] = -step1[6] + step1[7]; step2[7] = step1[6] + step1[7]; // stage 3 -odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); step1[7] = step2[7]; // stage 4 output[0] = step1[0] + step1[7]; output[1] = step1[1] + step1[6]; output[2] = step1[2] + step1[5]; output[3] = step1[3] + step1[4]; output[4] = step1[3] - step1[4]; output[5] = step1[2] - step1[5]; output[6] = step1[1] - step1[6]; output[7] = step1[0] - step1[7]; } void vp9_short_idct8x8_c(int16_t *input, int16_t *output, int pitch) { int16_t out[8 * 8]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[8], temp_out[8]; // First transform rows for (i = 0; i < 8; ++i) { idct8_1d(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8_1d(temp_in, temp_out); for (j = 0; j < 8; ++j) output[j * short_pitch + i] = (temp_out[j] + 16) >> 5; } } #if CONFIG_INTHT4X4 static void iadst4_1d(int16_t *input, int16_t *output) { int x0, x1, x2, x3; int s0, s1, s2, s3, s4, s5, s6, s7; x0 = input[0]; x1 = input[1]; x2 = input[2]; x3 = input[3]; if (!(x0 | x1 | x2 | x3)) { output[0] = output[1] = output[2] = output[3] = 0; return; } s0 = sinpi_1_9 * x0; s1 = sinpi_2_9 * x0; s2 = sinpi_3_9 * x1; s3 = sinpi_4_9 * x2; s4 = sinpi_1_9 * x2; s5 = sinpi_2_9 * x3; s6 = sinpi_4_9 * x3; s7 = x0 - x2 + x3; x0 = s0 + s3 + s5; x1 = s1 - s4 - s6; x2 = sinpi_3_9 * s7; x3 = s2; s0 = x0 + x3; s1 = x1 + x3; s2 = x2; s3 = x0 + x1 - x3; // 1-D transform scaling factor is sqrt(2). // The overall dynamic range is 14b (input) + 14b (multiplication scaling) // + 1b (addition) = 29b. // Hence the output bit depth is 15b. output[0] = dct_const_round_shift(s0); output[1] = dct_const_round_shift(s1); output[2] = dct_const_round_shift(s2); output[3] = dct_const_round_shift(s3); } void vp9_short_iht4x4_c(int16_t *input, int16_t *output, int pitch, TX_TYPE tx_type) { int16_t out[16]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[4], temp_out[4]; void (*invr)(int16_t*, int16_t*); void (*invc)(int16_t*, int16_t*); switch (tx_type) { case ADST_ADST: invc = &iadst4_1d; invr = &iadst4_1d; break; case ADST_DCT: invc = &iadst4_1d; invr = &idct4_1d; break; case DCT_ADST: invc = &idct4_1d; invr = &iadst4_1d; break; case DCT_DCT: invc = &idct4_1d; invr = &idct4_1d; break; default: assert(0); } // inverse transform row vectors for (i = 0; i < 4; ++i) { invr(input, outptr); input += 4; outptr += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; invc(temp_in, temp_out); for (j = 0; j < 4; ++j) output[j * short_pitch + i] = (temp_out[j] + 8) >> 4; } } #endif #if CONFIG_INTHT static void iadst8_1d(int16_t *input, int16_t *output) { int x0, x1, x2, x3, x4, x5, x6, x7; int s0, s1, s2, s3, s4, s5, s6, s7; x0 = input[7]; x1 = input[0]; x2 = input[5]; x3 = input[2]; x4 = input[3]; x5 = input[4]; x6 = input[1]; x7 = input[6]; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = output[6] = output[7] = 0; return; } // stage 1 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; s1 = cospi_30_64 * x0 - cospi_2_64 * x1; s2 = cospi_10_64 * x2 + cospi_22_64 * x3; s3 = cospi_22_64 * x2 - cospi_10_64 * x3; s4 = cospi_18_64 * x4 + cospi_14_64 * x5; s5 = cospi_14_64 * x4 - cospi_18_64 * x5; s6 = cospi_26_64 * x6 + cospi_6_64 * x7; s7 = cospi_6_64 * x6 - cospi_26_64 * x7; x0 = dct_const_round_shift(s0 + s4); x1 = dct_const_round_shift(s1 + s5); x2 = dct_const_round_shift(s2 + s6); x3 = dct_const_round_shift(s3 + s7); x4 = dct_const_round_shift(s0 - s4); x5 = dct_const_round_shift(s1 - s5); x6 = dct_const_round_shift(s2 - s6); x7 = dct_const_round_shift(s3 - s7); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = cospi_8_64 * x4 + cospi_24_64 * x5; s5 = cospi_24_64 * x4 - cospi_8_64 * x5; s6 = - cospi_24_64 * x6 + cospi_8_64 * x7; s7 = cospi_8_64 * x6 + cospi_24_64 * x7; x0 = s0 + s2; x1 = s1 + s3; x2 = s0 - s2; x3 = s1 - s3; x4 = dct_const_round_shift(s4 + s6); x5 = dct_const_round_shift(s5 + s7); x6 = dct_const_round_shift(s4 - s6); x7 = dct_const_round_shift(s5 - s7); // stage 3 s2 = cospi_16_64 * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (x6 - x7); x2 = dct_const_round_shift(s2); x3 = dct_const_round_shift(s3); x6 = dct_const_round_shift(s6); x7 = dct_const_round_shift(s7); output[0] = x0; output[1] = - x4; output[2] = x6; output[3] = - x2; output[4] = x3; output[5] = - x7; output[6] = x5; output[7] = - x1; return; } void vp9_short_iht8x8_c(int16_t *input, int16_t *output, int pitch, TX_TYPE tx_type) { int16_t out[8 * 8]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[8], temp_out[8]; void (*invr)(int16_t*, int16_t*); void (*invc)(int16_t*, int16_t*); switch (tx_type) { case ADST_ADST: invc = &iadst8_1d; invr = &iadst8_1d; break; case ADST_DCT: invc = &iadst8_1d; invr = &idct8_1d; break; case DCT_ADST: invc = &idct8_1d; invr = &iadst8_1d; break; case DCT_DCT: invc = &idct8_1d; invr = &idct8_1d; break; default: assert(0); } // inverse transform row vectors for (i = 0; i < 8; ++i) { invr(input, outptr); input += 8; outptr += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; invc(temp_in, temp_out); for (j = 0; j < 8; ++j) output[j * short_pitch + i] = (temp_out[j] + 16) >> 5; } } #endif void vp9_short_idct10_8x8_c(int16_t *input, int16_t *output, int pitch) { int16_t out[8 * 8]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[8], temp_out[8]; vpx_memset(out, 0, sizeof(out)); // First transform rows // only first 4 row has non-zero coefs for (i = 0; i < 4; ++i) { idct8_1d(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8_1d(temp_in, temp_out); for (j = 0; j < 8; ++j) output[j * short_pitch + i] = (temp_out[j] + 16) >> 5; } } void vp9_short_idct1_8x8_c(int16_t *input, int16_t *output) { int tmp; int16_t out; tmp = input[0] * cospi_16_64; out = dct_const_round_shift(tmp); tmp = out * cospi_16_64; out = dct_const_round_shift(tmp); *output = (out + 16) >> 5; } void vp9_short_ihaar2x2_c(int16_t *input, int16_t *output, int pitch) { int i; int16_t *ip = input; // 0, 1, 4, 8 int16_t *op = output; for (i = 0; i < 16; i++) { op[i] = 0; } op[0] = (ip[0] + ip[1] + ip[4] + ip[8] + 1) >> 1; op[1] = (ip[0] - ip[1] + ip[4] - ip[8]) >> 1; op[4] = (ip[0] + ip[1] - ip[4] - ip[8]) >> 1; op[8] = (ip[0] - ip[1] - ip[4] + ip[8]) >> 1; } void idct16_1d(int16_t *input, int16_t *output) { int16_t step1[16], step2[16]; int temp1, temp2; // stage 1 step1[0] = input[0/2]; step1[1] = input[16/2]; step1[2] = input[8/2]; step1[3] = input[24/2]; step1[4] = input[4/2]; step1[5] = input[20/2]; step1[6] = input[12/2]; step1[7] = input[28/2]; step1[8] = input[2/2]; step1[9] = input[18/2]; step1[10] = input[10/2]; step1[11] = input[26/2]; step1[12] = input[6/2]; step1[13] = input[22/2]; step1[14] = input[14/2]; step1[15] = input[30/2]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = dct_const_round_shift(temp1); step2[15] = dct_const_round_shift(temp2); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = dct_const_round_shift(temp1); step2[14] = dct_const_round_shift(temp2); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = dct_const_round_shift(temp1); step2[12] = dct_const_round_shift(temp2); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = dct_const_round_shift(temp1); step1[7] = dct_const_round_shift(temp2); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); step1[8] = step2[8] + step2[9]; step1[9] = step2[8] - step2[9]; step1[10] = -step2[10] + step2[11]; step1[11] = step2[10] + step2[11]; step1[12] = step2[12] + step2[13]; step1[13] = step2[12] - step2[13]; step1[14] = -step2[14] + step2[15]; step1[15] = step2[14] + step2[15]; temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = dct_const_round_shift(temp1); step2[1] = dct_const_round_shift(temp2); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = dct_const_round_shift(temp1); step2[3] = dct_const_round_shift(temp2); step2[4] = step1[4] + step1[5]; step2[5] = step1[4] - step1[5]; step2[6] = -step1[6] + step1[7]; step2[7] = step1[6] + step1[7]; step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = dct_const_round_shift(temp1); step2[14] = dct_const_round_shift(temp2); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = step2[0] + step2[3]; step1[1] = step2[1] + step2[2]; step1[2] = step2[1] - step2[2]; step1[3] = step2[0] - step2[3]; step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); step1[7] = step2[7]; step1[8] = step2[8] + step2[11]; step1[9] = step2[9] + step2[10]; step1[10] = step2[9] - step2[10]; step1[11] = step2[8] - step2[11]; step1[12] = -step2[12] + step2[15]; step1[13] = -step2[13] + step2[14]; step1[14] = step2[13] + step2[14]; step1[15] = step2[12] + step2[15]; // stage 6 step2[0] = step1[0] + step1[7]; step2[1] = step1[1] + step1[6]; step2[2] = step1[2] + step1[5]; step2[3] = step1[3] + step1[4]; step2[4] = step1[3] - step1[4]; step2[5] = step1[2] - step1[5]; step2[6] = step1[1] - step1[6]; step2[7] = step1[0] - step1[7]; step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = dct_const_round_shift(temp1); step2[12] = dct_const_round_shift(temp2); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = step2[0] + step2[15]; output[1] = step2[1] + step2[14]; output[2] = step2[2] + step2[13]; output[3] = step2[3] + step2[12]; output[4] = step2[4] + step2[11]; output[5] = step2[5] + step2[10]; output[6] = step2[6] + step2[9]; output[7] = step2[7] + step2[8]; output[8] = step2[7] - step2[8]; output[9] = step2[6] - step2[9]; output[10] = step2[5] - step2[10]; output[11] = step2[4] - step2[11]; output[12] = step2[3] - step2[12]; output[13] = step2[2] - step2[13]; output[14] = step2[1] - step2[14]; output[15] = step2[0] - step2[15]; } void vp9_short_idct16x16_c(int16_t *input, int16_t *output, int pitch) { int16_t out[16 * 16]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[16], temp_out[16]; // First transform rows for (i = 0; i < 16; ++i) { idct16_1d(input, outptr); input += short_pitch; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; idct16_1d(temp_in, temp_out); for (j = 0; j < 16; ++j) output[j * 16 + i] = (temp_out[j] + 32) >> 6; } } void vp9_short_idct10_16x16_c(int16_t *input, int16_t *output, int pitch) { int16_t out[16 * 16]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[16], temp_out[16]; /* First transform rows. Since all non-zero dct coefficients are in * upper-left 4x4 area, we only need to calculate first 4 rows here. */ vpx_memset(out, 0, sizeof(out)); for (i = 0; i < 4; ++i) { idct16_1d(input, outptr); input += short_pitch; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; idct16_1d(temp_in, temp_out); for (j = 0; j < 16; ++j) output[j*16 + i] = (temp_out[j] + 32) >> 6; } } void vp9_short_idct1_16x16_c(int16_t *input, int16_t *output) { int tmp; int16_t out; tmp = input[0] * cospi_16_64; out = dct_const_round_shift(tmp); tmp = out * cospi_16_64; out = dct_const_round_shift(tmp); *output = (out + 32) >> 6; } #if !CONFIG_DWTDCTHYBRID void idct32_1d(int16_t *input, int16_t *output) { int16_t step1[32], step2[32]; int temp1, temp2; // stage 1 step1[0] = input[0]; step1[1] = input[16]; step1[2] = input[8]; step1[3] = input[24]; step1[4] = input[4]; step1[5] = input[20]; step1[6] = input[12]; step1[7] = input[28]; step1[8] = input[2]; step1[9] = input[18]; step1[10] = input[10]; step1[11] = input[26]; step1[12] = input[6]; step1[13] = input[22]; step1[14] = input[14]; step1[15] = input[30]; temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64; temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64; step1[16] = dct_const_round_shift(temp1); step1[31] = dct_const_round_shift(temp2); temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64; temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64; step1[17] = dct_const_round_shift(temp1); step1[30] = dct_const_round_shift(temp2); temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64; temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64; step1[18] = dct_const_round_shift(temp1); step1[29] = dct_const_round_shift(temp2); temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64; temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64; step1[19] = dct_const_round_shift(temp1); step1[28] = dct_const_round_shift(temp2); temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64; temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64; step1[20] = dct_const_round_shift(temp1); step1[27] = dct_const_round_shift(temp2); temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64; temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64; step1[21] = dct_const_round_shift(temp1); step1[26] = dct_const_round_shift(temp2); temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64; temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64; step1[22] = dct_const_round_shift(temp1); step1[25] = dct_const_round_shift(temp2); temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64; temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64; step1[23] = dct_const_round_shift(temp1); step1[24] = dct_const_round_shift(temp2); // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = dct_const_round_shift(temp1); step2[15] = dct_const_round_shift(temp2); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = dct_const_round_shift(temp1); step2[14] = dct_const_round_shift(temp2); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = dct_const_round_shift(temp1); step2[12] = dct_const_round_shift(temp2); step2[16] = step1[16] + step1[17]; step2[17] = step1[16] - step1[17]; step2[18] = -step1[18] + step1[19]; step2[19] = step1[18] + step1[19]; step2[20] = step1[20] + step1[21]; step2[21] = step1[20] - step1[21]; step2[22] = -step1[22] + step1[23]; step2[23] = step1[22] + step1[23]; step2[24] = step1[24] + step1[25]; step2[25] = step1[24] - step1[25]; step2[26] = -step1[26] + step1[27]; step2[27] = step1[26] + step1[27]; step2[28] = step1[28] + step1[29]; step2[29] = step1[28] - step1[29]; step2[30] = -step1[30] + step1[31]; step2[31] = step1[30] + step1[31]; // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = dct_const_round_shift(temp1); step1[7] = dct_const_round_shift(temp2); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); step1[8] = step2[8] + step2[9]; step1[9] = step2[8] - step2[9]; step1[10] = -step2[10] + step2[11]; step1[11] = step2[10] + step2[11]; step1[12] = step2[12] + step2[13]; step1[13] = step2[12] - step2[13]; step1[14] = -step2[14] + step2[15]; step1[15] = step2[14] + step2[15]; step1[16] = step2[16]; step1[31] = step2[31]; temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; step1[17] = dct_const_round_shift(temp1); step1[30] = dct_const_round_shift(temp2); temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; step1[18] = dct_const_round_shift(temp1); step1[29] = dct_const_round_shift(temp2); step1[19] = step2[19]; step1[20] = step2[20]; temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; step1[21] = dct_const_round_shift(temp1); step1[26] = dct_const_round_shift(temp2); temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; step1[22] = dct_const_round_shift(temp1); step1[25] = dct_const_round_shift(temp2); step1[23] = step2[23]; step1[24] = step2[24]; step1[27] = step2[27]; step1[28] = step2[28]; // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = dct_const_round_shift(temp1); step2[1] = dct_const_round_shift(temp2); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = dct_const_round_shift(temp1); step2[3] = dct_const_round_shift(temp2); step2[4] = step1[4] + step1[5]; step2[5] = step1[4] - step1[5]; step2[6] = -step1[6] + step1[7]; step2[7] = step1[6] + step1[7]; step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = dct_const_round_shift(temp1); step2[14] = dct_const_round_shift(temp2); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); step2[11] = step1[11]; step2[12] = step1[12]; step2[16] = step1[16] + step1[19]; step2[17] = step1[17] + step1[18]; step2[18] = step1[17] - step1[18]; step2[19] = step1[16] - step1[19]; step2[20] = -step1[20] + step1[23]; step2[21] = -step1[21] + step1[22]; step2[22] = step1[21] + step1[22]; step2[23] = step1[20] + step1[23]; step2[24] = step1[24] + step1[27]; step2[25] = step1[25] + step1[26]; step2[26] = step1[25] - step1[26]; step2[27] = step1[24] - step1[27]; step2[28] = -step1[28] + step1[31]; step2[29] = -step1[29] + step1[30]; step2[30] = step1[29] + step1[30]; step2[31] = step1[28] + step1[31]; // stage 5 step1[0] = step2[0] + step2[3]; step1[1] = step2[1] + step2[2]; step1[2] = step2[1] - step2[2]; step1[3] = step2[0] - step2[3]; step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = dct_const_round_shift(temp1); step1[6] = dct_const_round_shift(temp2); step1[7] = step2[7]; step1[8] = step2[8] + step2[11]; step1[9] = step2[9] + step2[10]; step1[10] = step2[9] - step2[10]; step1[11] = step2[8] - step2[11]; step1[12] = -step2[12] + step2[15]; step1[13] = -step2[13] + step2[14]; step1[14] = step2[13] + step2[14]; step1[15] = step2[12] + step2[15]; step1[16] = step2[16]; step1[17] = step2[17]; temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; step1[18] = dct_const_round_shift(temp1); step1[29] = dct_const_round_shift(temp2); temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; step1[19] = dct_const_round_shift(temp1); step1[28] = dct_const_round_shift(temp2); temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; step1[20] = dct_const_round_shift(temp1); step1[27] = dct_const_round_shift(temp2); temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; step1[21] = dct_const_round_shift(temp1); step1[26] = dct_const_round_shift(temp2); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 step2[0] = step1[0] + step1[7]; step2[1] = step1[1] + step1[6]; step2[2] = step1[2] + step1[5]; step2[3] = step1[3] + step1[4]; step2[4] = step1[3] - step1[4]; step2[5] = step1[2] - step1[5]; step2[6] = step1[1] - step1[6]; step2[7] = step1[0] - step1[7]; step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = dct_const_round_shift(temp1); step2[13] = dct_const_round_shift(temp2); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = dct_const_round_shift(temp1); step2[12] = dct_const_round_shift(temp2); step2[14] = step1[14]; step2[15] = step1[15]; step2[16] = step1[16] + step1[23]; step2[17] = step1[17] + step1[22]; step2[18] = step1[18] + step1[21]; step2[19] = step1[19] + step1[20]; step2[20] = step1[19] - step1[20]; step2[21] = step1[18] - step1[21]; step2[22] = step1[17] - step1[22]; step2[23] = step1[16] - step1[23]; step2[24] = -step1[24] + step1[31]; step2[25] = -step1[25] + step1[30]; step2[26] = -step1[26] + step1[29]; step2[27] = -step1[27] + step1[28]; step2[28] = step1[27] + step1[28]; step2[29] = step1[26] + step1[29]; step2[30] = step1[25] + step1[30]; step2[31] = step1[24] + step1[31]; // stage 7 step1[0] = step2[0] + step2[15]; step1[1] = step2[1] + step2[14]; step1[2] = step2[2] + step2[13]; step1[3] = step2[3] + step2[12]; step1[4] = step2[4] + step2[11]; step1[5] = step2[5] + step2[10]; step1[6] = step2[6] + step2[9]; step1[7] = step2[7] + step2[8]; step1[8] = step2[7] - step2[8]; step1[9] = step2[6] - step2[9]; step1[10] = step2[5] - step2[10]; step1[11] = step2[4] - step2[11]; step1[12] = step2[3] - step2[12]; step1[13] = step2[2] - step2[13]; step1[14] = step2[1] - step2[14]; step1[15] = step2[0] - step2[15]; step1[16] = step2[16]; step1[17] = step2[17]; step1[18] = step2[18]; step1[19] = step2[19]; temp1 = (-step2[20] + step2[27]) * cospi_16_64; temp2 = (step2[20] + step2[27]) * cospi_16_64; step1[20] = dct_const_round_shift(temp1); step1[27] = dct_const_round_shift(temp2); temp1 = (-step2[21] + step2[26]) * cospi_16_64; temp2 = (step2[21] + step2[26]) * cospi_16_64; step1[21] = dct_const_round_shift(temp1); step1[26] = dct_const_round_shift(temp2); temp1 = (-step2[22] + step2[25]) * cospi_16_64; temp2 = (step2[22] + step2[25]) * cospi_16_64; step1[22] = dct_const_round_shift(temp1); step1[25] = dct_const_round_shift(temp2); temp1 = (-step2[23] + step2[24]) * cospi_16_64; temp2 = (step2[23] + step2[24]) * cospi_16_64; step1[23] = dct_const_round_shift(temp1); step1[24] = dct_const_round_shift(temp2); step1[28] = step2[28]; step1[29] = step2[29]; step1[30] = step2[30]; step1[31] = step2[31]; // final stage output[0] = step1[0] + step1[31]; output[1] = step1[1] + step1[30]; output[2] = step1[2] + step1[29]; output[3] = step1[3] + step1[28]; output[4] = step1[4] + step1[27]; output[5] = step1[5] + step1[26]; output[6] = step1[6] + step1[25]; output[7] = step1[7] + step1[24]; output[8] = step1[8] + step1[23]; output[9] = step1[9] + step1[22]; output[10] = step1[10] + step1[21]; output[11] = step1[11] + step1[20]; output[12] = step1[12] + step1[19]; output[13] = step1[13] + step1[18]; output[14] = step1[14] + step1[17]; output[15] = step1[15] + step1[16]; output[16] = step1[15] - step1[16]; output[17] = step1[14] - step1[17]; output[18] = step1[13] - step1[18]; output[19] = step1[12] - step1[19]; output[20] = step1[11] - step1[20]; output[21] = step1[10] - step1[21]; output[22] = step1[9] - step1[22]; output[23] = step1[8] - step1[23]; output[24] = step1[7] - step1[24]; output[25] = step1[6] - step1[25]; output[26] = step1[5] - step1[26]; output[27] = step1[4] - step1[27]; output[28] = step1[3] - step1[28]; output[29] = step1[2] - step1[29]; output[30] = step1[1] - step1[30]; output[31] = step1[0] - step1[31]; } void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) { int16_t out[32 * 32]; int16_t *outptr = &out[0]; const int short_pitch = pitch >> 1; int i, j; int16_t temp_in[32], temp_out[32]; // First transform rows for (i = 0; i < 32; ++i) { idct32_1d(input, outptr); input += short_pitch; outptr += 32; } // Then transform columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32_1d(temp_in, temp_out); for (j = 0; j < 32; ++j) output[j * 32 + i] = (temp_out[j] + 32) >> 6; } } void vp9_short_idct1_32x32_c(int16_t *input, int16_t *output) { int tmp; int16_t out; tmp = input[0] * cospi_16_64; out = dct_const_round_shift(tmp); tmp = out * cospi_16_64; out = dct_const_round_shift(tmp); *output = (out + 32) >> 6; } #else // !CONFIG_DWTDCTHYBRID #if DWT_TYPE == 53 // Note: block length must be even for this implementation static void synthesis_53_row(int length, int16_t *lowpass, int16_t *highpass, int16_t *x) { int16_t r, *a, *b; int n; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ -= (r + (*b) + 1) >> 1; r = *b++; } n = length >> 1; b = highpass; a = lowpass; while (--n) { *x++ = ((r = *a++) + 1) >> 1; *x++ = *b++ + ((r + (*a) + 2) >> 2); } *x++ = ((r = *a) + 1) >> 1; *x++ = *b + ((r + 1) >> 1); } static void synthesis_53_col(int length, int16_t *lowpass, int16_t *highpass, int16_t *x) { int16_t r, *a, *b; int n; n = length >> 1; b = highpass; a = lowpass; r = *highpass; while (n--) { *a++ -= (r + (*b) + 1) >> 1; r = *b++; } n = length >> 1; b = highpass; a = lowpass; while (--n) { r = *a++; *x++ = r; *x++ = ((*b++) << 1) + ((r + (*a) + 1) >> 1); } *x++ = *a; *x++ = ((*b) << 1) + *a; } static void dyadic_synthesize_53(int levels, int width, int height, int16_t *c, int pitch_c, int16_t *x, int pitch_x) { int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width; short buffer[2 * DWT_MAX_LENGTH]; th[0] = hh; tw[0] = hw; for (i = 1; i <= levels; i++) { th[i] = (th[i - 1] + 1) >> 1; tw[i] = (tw[i - 1] + 1) >> 1; } for (lv = levels - 1; lv >= 0; lv--) { nh = th[lv]; nw = tw[lv]; hh = th[lv + 1]; hw = tw[lv + 1]; if ((nh < 2) || (nw < 2)) continue; for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i] = c[i * pitch_c + j]; synthesis_53_col(nh, buffer, buffer + hh, buffer + nh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i + nh]; } for (i = 0; i < nh; i++) { memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer)); synthesis_53_row(nw, buffer, buffer + hw, &c[i * pitch_c]); } } for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ? ((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) : -((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS); } } } #elif DWT_TYPE == 26 // Note: block length must be even for this implementation static void synthesis_26_row(int length, int16_t *lowpass, int16_t *highpass, int16_t *x) { int16_t r, s, *a, *b; int i, n = length >> 1; if (n >= 4) { a = lowpass; b = highpass; r = *lowpass; while (--n) { *b++ += (r - a[1] + 4) >> 3; r = *a++; } *b += (r - *a + 4) >> 3; } a = lowpass; b = highpass; for (i = length >> 1; i; i--) { s = *b++; r = *a++; *x++ = (r + s + 1) >> 1; *x++ = (r - s + 1) >> 1; } } static void synthesis_26_col(int length, int16_t *lowpass, int16_t *highpass, int16_t *x) { int16_t r, s, *a, *b; int i, n = length >> 1; if (n >= 4) { a = lowpass; b = highpass; r = *lowpass; while (--n) { *b++ += (r - a[1] + 4) >> 3; r = *a++; } *b += (r - *a + 4) >> 3; } a = lowpass; b = highpass; for (i = length >> 1; i; i--) { s = *b++; r = *a++; *x++ = r + s; *x++ = r - s; } } static void dyadic_synthesize_26(int levels, int width, int height, int16_t *c, int pitch_c, int16_t *x, int pitch_x) { int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width; int16_t buffer[2 * DWT_MAX_LENGTH]; th[0] = hh; tw[0] = hw; for (i = 1; i <= levels; i++) { th[i] = (th[i - 1] + 1) >> 1; tw[i] = (tw[i - 1] + 1) >> 1; } for (lv = levels - 1; lv >= 0; lv--) { nh = th[lv]; nw = tw[lv]; hh = th[lv + 1]; hw = tw[lv + 1]; if ((nh < 2) || (nw < 2)) continue; for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i] = c[i * pitch_c + j]; synthesis_26_col(nh, buffer, buffer + hh, buffer + nh); for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i + nh]; } for (i = 0; i < nh; i++) { memcpy(buffer, &c[i * pitch_c], nw * sizeof(*buffer)); synthesis_26_row(nw, buffer, buffer + hw, &c[i * pitch_c]); } } for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { x[i * pitch_x + j] = c[i * pitch_c + j] >= 0 ? ((c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS) : -((-c[i * pitch_c + j] + DWT_PRECISION_RND) >> DWT_PRECISION_BITS); } } } #elif DWT_TYPE == 97 static void synthesis_97(int length, double *lowpass, double *highpass, double *x) { static const double a_predict1 = -1.586134342; static const double a_update1 = -0.05298011854; static const double a_predict2 = 0.8829110762; static const double a_update2 = 0.4435068522; static const double s_low = 1.149604398; static const double s_high = 1/1.149604398; static const double inv_s_low = 1 / s_low; static const double inv_s_high = 1 / s_high; int i; double y[DWT_MAX_LENGTH]; // Undo pack and scale for (i = 0; i < length / 2; i++) { y[i * 2] = lowpass[i] * inv_s_low; y[i * 2 + 1] = highpass[i] * inv_s_high; } memcpy(x, y, sizeof(*y) * length); // Undo update 2 for (i = 2; i < length; i += 2) { x[i] -= a_update2 * (x[i-1] + x[i+1]); } x[0] -= 2 * a_update2 * x[1]; // Undo predict 2 for (i = 1; i < length - 2; i += 2) { x[i] -= a_predict2 * (x[i - 1] + x[i + 1]); } x[length - 1] -= 2 * a_predict2 * x[length - 2]; // Undo update 1 for (i = 2; i < length; i += 2) { x[i] -= a_update1 * (x[i - 1] + x[i + 1]); } x[0] -= 2 * a_update1 * x[1]; // Undo predict 1 for (i = 1; i < length - 2; i += 2) { x[i] -= a_predict1 * (x[i - 1] + x[i + 1]); } x[length - 1] -= 2 * a_predict1 * x[length - 2]; } static void dyadic_synthesize_97(int levels, int width, int height, int16_t *c, int pitch_c, int16_t *x, int pitch_x) { int th[16], tw[16], lv, i, j, nh, nw, hh = height, hw = width; double buffer[2 * DWT_MAX_LENGTH]; double y[DWT_MAX_LENGTH * DWT_MAX_LENGTH]; th[0] = hh; tw[0] = hw; for (i = 1; i <= levels; i++) { th[i] = (th[i - 1] + 1) >> 1; tw[i] = (tw[i - 1] + 1) >> 1; } for (lv = levels - 1; lv >= 0; lv--) { nh = th[lv]; nw = tw[lv]; hh = th[lv + 1]; hw = tw[lv + 1]; if ((nh < 2) || (nw < 2)) continue; for (j = 0; j < nw; j++) { for (i = 0; i < nh; i++) buffer[i] = c[i * pitch_c + j]; synthesis_97(nh, buffer, buffer + hh, buffer + nh); for (i = 0; i < nh; i++) y[i * DWT_MAX_LENGTH + j] = buffer[i + nh]; } for (i = 0; i < nh; i++) { memcpy(buffer, &y[i * DWT_MAX_LENGTH], nw * sizeof(*buffer)); synthesis_97(nw, buffer, buffer + hw, &y[i * DWT_MAX_LENGTH]); } } for (i = 0; i < height; i++) for (j = 0; j < width; j++) x[i * pitch_x + j] = round(y[i * DWT_MAX_LENGTH + j] / (1 << DWT_PRECISION_BITS)); } #endif // DWT_TYPE // TODO(debargha): Implement scaling differently so as not to have to use the // floating point 16x16 dct static void butterfly_16x16_idct_1d_f(double input[16], double output[16]) { static const double C1 = 0.995184726672197; static const double C2 = 0.98078528040323; static const double C3 = 0.956940335732209; static const double C4 = 0.923879532511287; static const double C5 = 0.881921264348355; static const double C6 = 0.831469612302545; static const double C7 = 0.773010453362737; static const double C8 = 0.707106781186548; static const double C9 = 0.634393284163646; static const double C10 = 0.555570233019602; static const double C11 = 0.471396736825998; static const double C12 = 0.38268343236509; static const double C13 = 0.290284677254462; static const double C14 = 0.195090322016128; static const double C15 = 0.098017140329561; vp9_clear_system_state(); // Make it simd safe : __asm emms; { double step[16]; double intermediate[16]; double temp1, temp2; // step 1 and 2 step[ 0] = input[0] + input[8]; step[ 1] = input[0] - input[8]; temp1 = input[4]*C12; temp2 = input[12]*C4; temp1 -= temp2; temp1 *= C8; step[ 2] = 2*(temp1); temp1 = input[4]*C4; temp2 = input[12]*C12; temp1 += temp2; temp1 = (temp1); temp1 *= C8; step[ 3] = 2*(temp1); temp1 = input[2]*C8; temp1 = 2*(temp1); temp2 = input[6] + input[10]; step[ 4] = temp1 + temp2; step[ 5] = temp1 - temp2; temp1 = input[14]*C8; temp1 = 2*(temp1); temp2 = input[6] - input[10]; step[ 6] = temp2 - temp1; step[ 7] = temp2 + temp1; // for odd input temp1 = input[3]*C12; temp2 = input[13]*C4; temp1 += temp2; temp1 = (temp1); temp1 *= C8; intermediate[ 8] = 2*(temp1); temp1 = input[3]*C4; temp2 = input[13]*C12; temp2 -= temp1; temp2 = (temp2); temp2 *= C8; intermediate[ 9] = 2*(temp2); intermediate[10] = 2*(input[9]*C8); intermediate[11] = input[15] - input[1]; intermediate[12] = input[15] + input[1]; intermediate[13] = 2*((input[7]*C8)); temp1 = input[11]*C12; temp2 = input[5]*C4; temp2 -= temp1; temp2 = (temp2); temp2 *= C8; intermediate[14] = 2*(temp2); temp1 = input[11]*C4; temp2 = input[5]*C12; temp1 += temp2; temp1 = (temp1); temp1 *= C8; intermediate[15] = 2*(temp1); step[ 8] = intermediate[ 8] + intermediate[14]; step[ 9] = intermediate[ 9] + intermediate[15]; step[10] = intermediate[10] + intermediate[11]; step[11] = intermediate[10] - intermediate[11]; step[12] = intermediate[12] + intermediate[13]; step[13] = intermediate[12] - intermediate[13]; step[14] = intermediate[ 8] - intermediate[14]; step[15] = intermediate[ 9] - intermediate[15]; // step 3 output[0] = step[ 0] + step[ 3]; output[1] = step[ 1] + step[ 2]; output[2] = step[ 1] - step[ 2]; output[3] = step[ 0] - step[ 3]; temp1 = step[ 4]*C14; temp2 = step[ 7]*C2; temp1 -= temp2; output[4] = (temp1); temp1 = step[ 4]*C2; temp2 = step[ 7]*C14; temp1 += temp2; output[7] = (temp1); temp1 = step[ 5]*C10; temp2 = step[ 6]*C6; temp1 -= temp2; output[5] = (temp1); temp1 = step[ 5]*C6; temp2 = step[ 6]*C10; temp1 += temp2; output[6] = (temp1); output[8] = step[ 8] + step[11]; output[9] = step[ 9] + step[10]; output[10] = step[ 9] - step[10]; output[11] = step[ 8] - step[11]; output[12] = step[12] + step[15]; output[13] = step[13] + step[14]; output[14] = step[13] - step[14]; output[15] = step[12] - step[15]; // output 4 step[ 0] = output[0] + output[7]; step[ 1] = output[1] + output[6]; step[ 2] = output[2] + output[5]; step[ 3] = output[3] + output[4]; step[ 4] = output[3] - output[4]; step[ 5] = output[2] - output[5]; step[ 6] = output[1] - output[6]; step[ 7] = output[0] - output[7]; temp1 = output[8]*C7; temp2 = output[15]*C9; temp1 -= temp2; step[ 8] = (temp1); temp1 = output[9]*C11; temp2 = output[14]*C5; temp1 += temp2; step[ 9] = (temp1); temp1 = output[10]*C3; temp2 = output[13]*C13; temp1 -= temp2; step[10] = (temp1); temp1 = output[11]*C15; temp2 = output[12]*C1; temp1 += temp2; step[11] = (temp1); temp1 = output[11]*C1; temp2 = output[12]*C15; temp2 -= temp1; step[12] = (temp2); temp1 = output[10]*C13; temp2 = output[13]*C3; temp1 += temp2; step[13] = (temp1); temp1 = output[9]*C5; temp2 = output[14]*C11; temp2 -= temp1; step[14] = (temp2); temp1 = output[8]*C9; temp2 = output[15]*C7; temp1 += temp2; step[15] = (temp1); // step 5 output[0] = (step[0] + step[15]); output[1] = (step[1] + step[14]); output[2] = (step[2] + step[13]); output[3] = (step[3] + step[12]); output[4] = (step[4] + step[11]); output[5] = (step[5] + step[10]); output[6] = (step[6] + step[ 9]); output[7] = (step[7] + step[ 8]); output[15] = (step[0] - step[15]); output[14] = (step[1] - step[14]); output[13] = (step[2] - step[13]); output[12] = (step[3] - step[12]); output[11] = (step[4] - step[11]); output[10] = (step[5] - step[10]); output[9] = (step[6] - step[ 9]); output[8] = (step[7] - step[ 8]); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } static void vp9_short_idct16x16_c_f(int16_t *input, int16_t *output, int pitch, int scale) { vp9_clear_system_state(); // Make it simd safe : __asm emms; { double out[16*16], out2[16*16]; const int short_pitch = pitch >> 1; int i, j; // First transform rows for (i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; ++j) temp_in[j] = input[j + i*short_pitch]; butterfly_16x16_idct_1d_f(temp_in, temp_out); for (j = 0; j < 16; ++j) out[j + i*16] = temp_out[j]; } // Then transform columns for (i = 0; i < 16; ++i) { double temp_in[16], temp_out[16]; for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; butterfly_16x16_idct_1d_f(temp_in, temp_out); for (j = 0; j < 16; ++j) out2[j*16 + i] = temp_out[j]; } for (i = 0; i < 16*16; ++i) output[i] = round(out2[i] / (128 >> scale)); } vp9_clear_system_state(); // Make it simd safe : __asm emms; } static void idct8_1d_f(double *x) { int i, j; double t[8]; static const double idctmat[64] = { 0.35355339059327, 0.49039264020162, 0.46193976625564, 0.41573480615127, 0.35355339059327, 0.2777851165098, 0.19134171618254, 0.097545161008064, 0.35355339059327, 0.41573480615127, 0.19134171618254, -0.097545161008064, -0.35355339059327, -0.49039264020161, -0.46193976625564, -0.2777851165098, 0.35355339059327, 0.2777851165098, -0.19134171618254, -0.49039264020162, -0.35355339059327, 0.097545161008064, 0.46193976625564, 0.41573480615127, 0.35355339059327, 0.097545161008063, -0.46193976625564, -0.2777851165098, 0.35355339059327, 0.41573480615127, -0.19134171618254, -0.49039264020162, 0.35355339059327, -0.097545161008063, -0.46193976625564, 0.2777851165098, 0.35355339059327, -0.41573480615127, -0.19134171618255, 0.49039264020162, 0.35355339059327, -0.2777851165098, -0.19134171618254, 0.49039264020161, -0.35355339059327, -0.097545161008064, 0.46193976625564, -0.41573480615127, 0.35355339059327, -0.41573480615127, 0.19134171618254, 0.097545161008065, -0.35355339059327, 0.49039264020162, -0.46193976625564, 0.2777851165098, 0.35355339059327, -0.49039264020162, 0.46193976625564, -0.41573480615127, 0.35355339059327, -0.2777851165098, 0.19134171618255, -0.097545161008064 }; for (i = 0; i < 8; ++i) { t[i] = 0; for (j = 0; j < 8; ++j) t[i] += idctmat[i * 8 + j] * x[j]; } for (i = 0; i < 8; ++i) { x[i] = t[i]; } } static void vp9_short_idct8x8_c_f(int16_t *coefs, int16_t *block, int pitch, int scale) { double X[8 * 8], Y[8]; int i, j; int shortpitch = pitch >> 1; vp9_clear_system_state(); // Make it simd safe : __asm emms; { for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { X[i * 8 + j] = (double)coefs[i * shortpitch + j]; } } for (i = 0; i < 8; i++) idct8_1d_f(X + 8 * i); for (i = 0; i < 8; i++) { for (j = 0; j < 8; ++j) Y[j] = X[i + 8 * j]; idct8_1d_f(Y); for (j = 0; j < 8; ++j) X[i + 8 * j] = Y[j]; } for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { block[i * 8 + j] = (int16_t)round(X[i * 8 + j] / (8 >> scale)); } } } vp9_clear_system_state(); // Make it simd safe : __asm emms; } #define multiply_bits(d, n) ((n) < 0 ? (d) >> (n) : (d) << (n)) #if DWTDCT_TYPE == DWTDCT16X16_LEAN void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) { // assume output is a 32x32 buffer // Temporary buffer to hold a 16x16 block for 16x16 inverse dct int16_t buffer[16 * 16]; // Temporary buffer to hold a 32x32 block for inverse 32x32 dwt int16_t buffer2[32 * 32]; // Note: pitch is in bytes, short_pitch is in short units const int short_pitch = pitch >> 1; int i, j; // TODO(debargha): Implement more efficiently by adding output pitch // argument to the idct16x16 function vp9_short_idct16x16_c_f(input, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(*buffer2) * 16); } for (i = 0; i < 16; ++i) { for (j = 16; j < 32; ++j) { buffer2[i * 32 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2); } } for (i = 16; i < 32; ++i) { for (j = 0; j < 32; ++j) { buffer2[i * 32 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2); } } #if DWT_TYPE == 26 dyadic_synthesize_26(1, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 97 dyadic_synthesize_97(1, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 53 dyadic_synthesize_53(1, 32, 32, buffer2, 32, output, 32); #endif } #elif DWTDCT_TYPE == DWTDCT16X16 void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) { // assume output is a 32x32 buffer // Temporary buffer to hold a 16x16 block for 16x16 inverse dct int16_t buffer[16 * 16]; // Temporary buffer to hold a 32x32 block for inverse 32x32 dwt int16_t buffer2[32 * 32]; // Note: pitch is in bytes, short_pitch is in short units const int short_pitch = pitch >> 1; int i, j; // TODO(debargha): Implement more efficiently by adding output pitch // argument to the idct16x16 function vp9_short_idct16x16_c_f(input, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 32, buffer + i * 16, sizeof(*buffer2) * 16); } vp9_short_idct16x16_c_f(input + 16, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 32 + 16, buffer + i * 16, sizeof(*buffer2) * 16); } vp9_short_idct16x16_c_f(input + 16 * short_pitch, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 32 + 16 * 32, buffer + i * 16, sizeof(*buffer2) * 16); } vp9_short_idct16x16_c_f(input + 16 * short_pitch + 16, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 32 + 16 * 33, buffer + i * 16, sizeof(*buffer2) * 16); } #if DWT_TYPE == 26 dyadic_synthesize_26(1, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 97 dyadic_synthesize_97(1, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 53 dyadic_synthesize_53(1, 32, 32, buffer2, 32, output, 32); #endif } #elif DWTDCT_TYPE == DWTDCT8X8 void vp9_short_idct32x32_c(int16_t *input, int16_t *output, int pitch) { // assume output is a 32x32 buffer // Temporary buffer to hold a 16x16 block for 16x16 inverse dct int16_t buffer[8 * 8]; // Temporary buffer to hold a 32x32 block for inverse 32x32 dwt int16_t buffer2[32 * 32]; // Note: pitch is in bytes, short_pitch is in short units const int short_pitch = pitch >> 1; int i, j; // TODO(debargha): Implement more efficiently by adding output pitch // argument to the idct16x16 function vp9_short_idct8x8_c_f(input, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 8; ++i) { vpx_memcpy(buffer2 + i * 32, buffer + i * 8, sizeof(*buffer2) * 8); } vp9_short_idct8x8_c_f(input + 8, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 8; ++i) { vpx_memcpy(buffer2 + i * 32 + 8, buffer + i * 8, sizeof(*buffer2) * 8); } vp9_short_idct8x8_c_f(input + 8 * short_pitch, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 8; ++i) { vpx_memcpy(buffer2 + i * 32 + 8 * 32, buffer + i * 8, sizeof(*buffer2) * 8); } vp9_short_idct8x8_c_f(input + 8 * short_pitch + 8, buffer, pitch, 1 + DWT_PRECISION_BITS); for (i = 0; i < 8; ++i) { vpx_memcpy(buffer2 + i * 32 + 8 * 33, buffer + i * 8, sizeof(*buffer2) * 8); } for (i = 0; i < 16; ++i) { for (j = 16; j < 32; ++j) { buffer2[i * 32 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2); } } for (i = 16; i < 32; ++i) { for (j = 0; j < 32; ++j) { buffer2[i * 32 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 2); } } #if DWT_TYPE == 26 dyadic_synthesize_26(2, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 97 dyadic_synthesize_97(2, 32, 32, buffer2, 32, output, 32); #elif DWT_TYPE == 53 dyadic_synthesize_53(2, 32, 32, buffer2, 32, output, 32); #endif } #endif #if CONFIG_TX64X64 void vp9_short_idct64x64_c(int16_t *input, int16_t *output, int pitch) { // assume output is a 64x64 buffer // Temporary buffer to hold a 16x16 block for 16x16 inverse dct int16_t buffer[16 * 16]; // Temporary buffer to hold a 32x32 block for inverse 32x32 dwt int16_t buffer2[64 * 64]; // Note: pitch is in bytes, short_pitch is in short units const int short_pitch = pitch >> 1; int i, j; // TODO(debargha): Implement more efficiently by adding output pitch // argument to the idct16x16 function vp9_short_idct16x16_c_f(input, buffer, pitch, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 64, buffer + i * 16, sizeof(*buffer2) * 16); } #if DWTDCT_TYPE == DWTDCT16X16_LEAN for (i = 0; i < 16; ++i) { for (j = 16; j < 64; ++j) { buffer2[i * 64 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1); } } for (i = 16; i < 64; ++i) { for (j = 0; j < 64; ++j) { buffer2[i * 64 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1); } } #elif DWTDCT_TYPE == DWTDCT16X16 vp9_short_idct16x16_c_f(input + 16, buffer, pitch, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 64 + 16, buffer + i * 16, sizeof(*buffer2) * 16); } vp9_short_idct16x16_c_f(input + 16 * short_pitch, buffer, pitch, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 64 + 16 * 64, buffer + i * 16, sizeof(*buffer2) * 16); } vp9_short_idct16x16_c_f(input + 16 * short_pitch + 16, buffer, pitch, 2 + DWT_PRECISION_BITS); for (i = 0; i < 16; ++i) { vpx_memcpy(buffer2 + i * 64 + 16 * 65, buffer + i * 16, sizeof(*buffer2) * 16); } // Copying and scaling highest bands into buffer2 for (i = 0; i < 32; ++i) { for (j = 32; j < 64; ++j) { buffer2[i * 64 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1); } } for (i = 32; i < 64; ++i) { for (j = 0; j < 64; ++j) { buffer2[i * 64 + j] = multiply_bits(input[i * short_pitch + j], DWT_PRECISION_BITS - 1); } } #endif // DWTDCT_TYPE #if DWT_TYPE == 26 dyadic_synthesize_26(2, 64, 64, buffer2, 64, output, 64); #elif DWT_TYPE == 97 dyadic_synthesize_97(2, 64, 64, buffer2, 64, output, 64); #elif DWT_TYPE == 53 dyadic_synthesize_53(2, 64, 64, buffer2, 64, output, 64); #endif } #endif // CONFIG_TX64X64 #endif // !CONFIG_DWTDCTHYBRID