/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_scale/yv12config.h" #include "math.h" #define C1 (float)(64 * 64 * 0.01*255*0.01*255) #define C2 (float)(64 * 64 * 0.03*255*0.03*255) static int width_y; static int height_y; static int height_uv; static int width_uv; static int stride_uv; static int stride; static int lumimask; static int luminance; static double plane_summed_weights = 0; static short img12_sum_block[8*4096*4096*2] ; static short img1_sum[8*4096*2]; static short img2_sum[8*4096*2]; static int img1_sq_sum[8*4096*2]; static int img2_sq_sum[8*4096*2]; static int img12_mul_sum[8*4096*2]; double vp8_similarity ( int mu_x, int mu_y, int pre_mu_x2, int pre_mu_y2, int pre_mu_xy2 ) { int mu_x2, mu_y2, mu_xy, theta_x2, theta_y2, theta_xy; mu_x2 = mu_x * mu_x; mu_y2 = mu_y * mu_y; mu_xy = mu_x * mu_y; theta_x2 = 64 * pre_mu_x2 - mu_x2; theta_y2 = 64 * pre_mu_y2 - mu_y2; theta_xy = 64 * pre_mu_xy2 - mu_xy; return (2 * mu_xy + C1) * (2 * theta_xy + C2) / ((mu_x2 + mu_y2 + C1) * (theta_x2 + theta_y2 + C2)); } double vp8_ssim ( const unsigned char *img1, const unsigned char *img2, int stride_img1, int stride_img2, int width, int height ) { int x, y, x2, y2, img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block, temp; double plane_quality, weight, mean; short *img1_sum_ptr1, *img1_sum_ptr2; short *img2_sum_ptr1, *img2_sum_ptr2; int *img1_sq_sum_ptr1, *img1_sq_sum_ptr2; int *img2_sq_sum_ptr1, *img2_sq_sum_ptr2; int *img12_mul_sum_ptr1, *img12_mul_sum_ptr2; plane_quality = 0; if (lumimask) plane_summed_weights = 0.0f; else plane_summed_weights = (height - 7) * (width - 7); //some prologue for the main loop temp = 8 * width; img1_sum_ptr1 = img1_sum + temp; img2_sum_ptr1 = img2_sum + temp; img1_sq_sum_ptr1 = img1_sq_sum + temp; img2_sq_sum_ptr1 = img2_sq_sum + temp; img12_mul_sum_ptr1 = img12_mul_sum + temp; for (x = 0; x < width; x++) { img1_sum[x] = img1[x]; img2_sum[x] = img2[x]; img1_sq_sum[x] = img1[x] * img1[x]; img2_sq_sum[x] = img2[x] * img2[x]; img12_mul_sum[x] = img1[x] * img2[x]; img1_sum_ptr1[x] = 0; img2_sum_ptr1[x] = 0; img1_sq_sum_ptr1[x] = 0; img2_sq_sum_ptr1[x] = 0; img12_mul_sum_ptr1[x] = 0; } //the main loop for (y = 1; y < height; y++) { img1 += stride_img1; img2 += stride_img2; temp = (y - 1) % 9 * width; img1_sum_ptr1 = img1_sum + temp; img2_sum_ptr1 = img2_sum + temp; img1_sq_sum_ptr1 = img1_sq_sum + temp; img2_sq_sum_ptr1 = img2_sq_sum + temp; img12_mul_sum_ptr1 = img12_mul_sum + temp; temp = y % 9 * width; img1_sum_ptr2 = img1_sum + temp; img2_sum_ptr2 = img2_sum + temp; img1_sq_sum_ptr2 = img1_sq_sum + temp; img2_sq_sum_ptr2 = img2_sq_sum + temp; img12_mul_sum_ptr2 = img12_mul_sum + temp; for (x = 0; x < width; x++) { img1_sum_ptr2[x] = img1_sum_ptr1[x] + img1[x]; img2_sum_ptr2[x] = img2_sum_ptr1[x] + img2[x]; img1_sq_sum_ptr2[x] = img1_sq_sum_ptr1[x] + img1[x] * img1[x]; img2_sq_sum_ptr2[x] = img2_sq_sum_ptr1[x] + img2[x] * img2[x]; img12_mul_sum_ptr2[x] = img12_mul_sum_ptr1[x] + img1[x] * img2[x]; } if (y > 6) { //calculate the sum of the last 8 lines by subtracting the total sum of 8 lines back from the present sum temp = (y + 1) % 9 * width; img1_sum_ptr1 = img1_sum + temp; img2_sum_ptr1 = img2_sum + temp; img1_sq_sum_ptr1 = img1_sq_sum + temp; img2_sq_sum_ptr1 = img2_sq_sum + temp; img12_mul_sum_ptr1 = img12_mul_sum + temp; for (x = 0; x < width; x++) { img1_sum_ptr1[x] = img1_sum_ptr2[x] - img1_sum_ptr1[x]; img2_sum_ptr1[x] = img2_sum_ptr2[x] - img2_sum_ptr1[x]; img1_sq_sum_ptr1[x] = img1_sq_sum_ptr2[x] - img1_sq_sum_ptr1[x]; img2_sq_sum_ptr1[x] = img2_sq_sum_ptr2[x] - img2_sq_sum_ptr1[x]; img12_mul_sum_ptr1[x] = img12_mul_sum_ptr2[x] - img12_mul_sum_ptr1[x]; } //here we calculate the sum over the 8x8 block of pixels //this is done by sliding a window across the column sums for the last 8 lines //each time adding the new column sum, and subtracting the one which fell out of the window img1_block = 0; img2_block = 0; img1_sq_block = 0; img2_sq_block = 0; img12_mul_block = 0; //prologue, and calculation of simularity measure from the first 8 column sums for (x = 0; x < 8; x++) { img1_block += img1_sum_ptr1[x]; img2_block += img2_sum_ptr1[x]; img1_sq_block += img1_sq_sum_ptr1[x]; img2_sq_block += img2_sq_sum_ptr1[x]; img12_mul_block += img12_mul_sum_ptr1[x]; } if (lumimask) { y2 = y - 7; x2 = 0; if (luminance) { mean = (img2_block + img1_block) / 128.0f; if (!(y2 % 2 || x2 % 2)) *(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block; } else { mean = *(img12_sum_block + y2 * width_uv + x2); mean += *(img12_sum_block + y2 * width_uv + x2 + 4); mean += *(img12_sum_block + (y2 + 4) * width_uv + x2); mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4); mean /= 512.0f; } weight = mean < 40 ? 0.0f : (mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f); plane_summed_weights += weight; plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); } else plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); //and for the rest for (x = 8; x < width; x++) { img1_block = img1_block + img1_sum_ptr1[x] - img1_sum_ptr1[x - 8]; img2_block = img2_block + img2_sum_ptr1[x] - img2_sum_ptr1[x - 8]; img1_sq_block = img1_sq_block + img1_sq_sum_ptr1[x] - img1_sq_sum_ptr1[x - 8]; img2_sq_block = img2_sq_block + img2_sq_sum_ptr1[x] - img2_sq_sum_ptr1[x - 8]; img12_mul_block = img12_mul_block + img12_mul_sum_ptr1[x] - img12_mul_sum_ptr1[x - 8]; if (lumimask) { y2 = y - 7; x2 = x - 7; if (luminance) { mean = (img2_block + img1_block) / 128.0f; if (!(y2 % 2 || x2 % 2)) *(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block; } else { mean = *(img12_sum_block + y2 * width_uv + x2); mean += *(img12_sum_block + y2 * width_uv + x2 + 4); mean += *(img12_sum_block + (y2 + 4) * width_uv + x2); mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4); mean /= 512.0f; } weight = mean < 40 ? 0.0f : (mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f); plane_summed_weights += weight; plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); } else plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); } } } if (plane_summed_weights == 0) return 1.0f; else return plane_quality / plane_summed_weights; } double vp8_calc_ssim ( YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int lumamask, double *weight ) { double a, b, c; double frame_weight; double ssimv; width_y = source->y_width; height_y = source->y_height; height_uv = source->uv_height; width_uv = source->uv_width; stride_uv = dest->uv_stride; stride = dest->y_stride; lumimask = lumamask; luminance = 1; a = vp8_ssim(source->y_buffer, dest->y_buffer, source->y_stride, dest->y_stride, source->y_width, source->y_height); luminance = 0; frame_weight = plane_summed_weights / ((width_y - 7) * (height_y - 7)); if (frame_weight == 0) a = b = c = 1.0f; else { b = vp8_ssim(source->u_buffer, dest->u_buffer, source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height); c = vp8_ssim(source->v_buffer, dest->v_buffer, source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height); } ssimv = a * .8 + .1 * (b + c); *weight = frame_weight; return ssimv; } // Google version of SSIM // SSIM #define KERNEL 3 #define KERNEL_SIZE (2 * KERNEL + 1) typedef unsigned char uint8; typedef unsigned int uint32; static const int K[KERNEL_SIZE] = { 1, 4, 11, 16, 11, 4, 1 // 16 * exp(-0.3 * i * i) }; static const double ki_w = 1. / 2304.; // 1 / sum(i:0..6, j..6) K[i]*K[j] double get_ssimg(const uint8 *org, const uint8 *rec, int xo, int yo, int W, int H, const int stride1, const int stride2 ) { // TODO(skal): use summed tables int y, x; const int ymin = (yo - KERNEL < 0) ? 0 : yo - KERNEL; const int ymax = (yo + KERNEL > H - 1) ? H - 1 : yo + KERNEL; const int xmin = (xo - KERNEL < 0) ? 0 : xo - KERNEL; const int xmax = (xo + KERNEL > W - 1) ? W - 1 : xo + KERNEL; // worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1) // with a diff of 255, squares. That would a max error of 0x8ee0900, // which fits into 32 bits integers. uint32 w = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; org += ymin * stride1; rec += ymin * stride2; for (y = ymin; y <= ymax; ++y, org += stride1, rec += stride2) { const int Wy = K[KERNEL + y - yo]; for (x = xmin; x <= xmax; ++x) { const int Wxy = Wy * K[KERNEL + x - xo]; // TODO(skal): inlined assembly w += Wxy; xm += Wxy * org[x]; ym += Wxy * rec[x]; xxm += Wxy * org[x] * org[x]; xym += Wxy * org[x] * rec[x]; yym += Wxy * rec[x] * rec[x]; } } { const double iw = 1. / w; const double iwx = xm * iw; const double iwy = ym * iw; double sxx = xxm * iw - iwx * iwx; double syy = yym * iw - iwy * iwy; // small errors are possible, due to rounding. Clamp to zero. if (sxx < 0.) sxx = 0.; if (syy < 0.) syy = 0.; { const double sxsy = sqrt(sxx * syy); const double sxy = xym * iw - iwx * iwy; static const double C11 = (0.01 * 0.01) * (255 * 255); static const double C22 = (0.03 * 0.03) * (255 * 255); static const double C33 = (0.015 * 0.015) * (255 * 255); const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); const double c = (2. * sxsy + C22) / (sxx + syy + C22); const double s = (sxy + C33) / (sxsy + C33); return l * c * s; } } } double get_ssimfull_kernelg(const uint8 *org, const uint8 *rec, int xo, int yo, int W, int H, const int stride1, const int stride2) { // TODO(skal): use summed tables // worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1) // with a diff of 255, squares. That would a max error of 0x8ee0900, // which fits into 32 bits integers. int y_, x_; uint32 xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; org += (yo - KERNEL) * stride1; org += (xo - KERNEL); rec += (yo - KERNEL) * stride2; rec += (xo - KERNEL); for (y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride1, rec += stride2) { const int Wy = K[y_]; for (x_ = 0; x_ < KERNEL_SIZE; ++x_) { const int Wxy = Wy * K[x_]; // TODO(skal): inlined assembly const int org_x = org[x_]; const int rec_x = rec[x_]; xm += Wxy * org_x; ym += Wxy * rec_x; xxm += Wxy * org_x * org_x; xym += Wxy * org_x * rec_x; yym += Wxy * rec_x * rec_x; } } { const double iw = ki_w; const double iwx = xm * iw; const double iwy = ym * iw; double sxx = xxm * iw - iwx * iwx; double syy = yym * iw - iwy * iwy; // small errors are possible, due to rounding. Clamp to zero. if (sxx < 0.) sxx = 0.; if (syy < 0.) syy = 0.; { const double sxsy = sqrt(sxx * syy); const double sxy = xym * iw - iwx * iwy; static const double C11 = (0.01 * 0.01) * (255 * 255); static const double C22 = (0.03 * 0.03) * (255 * 255); static const double C33 = (0.015 * 0.015) * (255 * 255); const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); const double c = (2. * sxsy + C22) / (sxx + syy + C22); const double s = (sxy + C33) / (sxsy + C33); return l * c * s; } } } double calc_ssimg(const uint8 *org, const uint8 *rec, const int image_width, const int image_height, const int stride1, const int stride2 ) { int j, i; double SSIM = 0.; for (j = 0; j < KERNEL; ++j) { for (i = 0; i < image_width; ++i) { SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); } } for (j = KERNEL; j < image_height - KERNEL; ++j) { for (i = 0; i < KERNEL; ++i) { SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); } for (i = KERNEL; i < image_width - KERNEL; ++i) { SSIM += get_ssimfull_kernelg(org, rec, i, j, image_width, image_height, stride1, stride2); } for (i = image_width - KERNEL; i < image_width; ++i) { SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); } } for (j = image_height - KERNEL; j < image_height; ++j) { for (i = 0; i < image_width; ++i) { SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); } } return SSIM; } double vp8_calc_ssimg ( YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v ) { double ssim_all = 0; int ysize = source->y_width * source->y_height; int uvsize = ysize / 4; *ssim_y = calc_ssimg(source->y_buffer, dest->y_buffer, source->y_width, source->y_height, source->y_stride, dest->y_stride); *ssim_u = calc_ssimg(source->u_buffer, dest->u_buffer, source->uv_width, source->uv_height, source->uv_stride, dest->uv_stride); *ssim_v = calc_ssimg(source->v_buffer, dest->v_buffer, source->uv_width, source->uv_height, source->uv_stride, dest->uv_stride); ssim_all = (*ssim_y + *ssim_u + *ssim_v) / (ysize + uvsize + uvsize); *ssim_y /= ysize; *ssim_u /= uvsize; *ssim_v /= uvsize; return ssim_all; }