/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vpx_ports/config.h" #include "onyx_int.h" #include "modecosts.h" #include "encodeintra.h" #include "entropymode.h" #include "pickinter.h" #include "findnearmv.h" #include "encodemb.h" #include "reconinter.h" #include "reconintra.h" #include "reconintra4x4.h" #include "g_common.h" #include "variance.h" #include "mcomp.h" #include "vpx_mem/vpx_mem.h" #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif extern int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd); #ifdef SPEEDSTATS extern unsigned int cnt_pm; #endif extern const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES]; extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES]; extern unsigned int (*vp8_get16x16pred_error)(unsigned char *src_ptr, int src_stride, unsigned char *ref_ptr, int ref_stride); extern unsigned int (*vp8_get4x4sse_cs)(unsigned char *src_ptr, int source_stride, unsigned char *ref_ptr, int recon_stride); extern int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, MV *best_ref_mv, int best_rd, int *, int *, int *, int, int *mvcost[2], int, int fullpixel); extern int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]); extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv); int vp8_skip_fractional_mv_step(MACROBLOCK *mb, BLOCK *b, BLOCKD *d, MV *bestmv, MV *ref_mv, int error_per_bit, vp8_subpixvariance_fn_t svf, vp8_variance_fn_t vf, int *mvcost[2]) { (void) b; (void) d; (void) ref_mv; (void) error_per_bit; (void) svf; (void) vf; (void) mvcost; bestmv->row <<= 3; bestmv->col <<= 3; return 0; } static int get_inter_mbpred_error(MACROBLOCK *mb, vp8_subpixvariance_fn_t svf, vp8_variance_fn_t vf, unsigned int *sse) { BLOCK *b = &mb->block[0]; BLOCKD *d = &mb->e_mbd.block[0]; unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what = *(d->base_pre) + d->pre ; int in_what_stride = d->pre_stride; int xoffset = d->bmi.mv.as_mv.col & 7; int yoffset = d->bmi.mv.as_mv.row & 7; in_what += (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3); if (xoffset | yoffset) { return svf(in_what, in_what_stride, xoffset, yoffset, what, what_stride, sse); } else { return vf(what, what_stride, in_what, in_what_stride, sse); } } unsigned int vp8_get16x16pred_error_c ( unsigned char *src_ptr, int src_stride, unsigned char *ref_ptr, int ref_stride, int max_sad ) { unsigned pred_error = 0; int i, j; int sum = 0; for (i = 0; i < 16; i++) { int diff; for (j = 0; j < 16; j++) { diff = src_ptr[j] - ref_ptr[j]; sum += diff; pred_error += diff * diff; } src_ptr += src_stride; ref_ptr += ref_stride; } pred_error -= sum * sum / 256; return pred_error; } unsigned int vp8_get4x4sse_cs_c ( unsigned char *src_ptr, int source_stride, unsigned char *ref_ptr, int recon_stride, int max_sad ) { int distortion = 0; int r, c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { int diff = src_ptr[c] - ref_ptr[c]; distortion += diff * diff; } src_ptr += source_stride; ref_ptr += recon_stride; } return distortion; } static int get_prediction_error(BLOCK *be, BLOCKD *b, const vp8_variance_rtcd_vtable_t *rtcd) { unsigned char *sptr; unsigned char *dptr; sptr = (*(be->base_src) + be->src); dptr = b->predictor; return VARIANCE_INVOKE(rtcd, get4x4sse_cs)(sptr, be->src_stride, dptr, 16, 0x7fffffff); } static int pick_intra4x4block( const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x, BLOCK *be, BLOCKD *b, B_PREDICTION_MODE *best_mode, B_PREDICTION_MODE above, B_PREDICTION_MODE left, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestdistortion) { B_PREDICTION_MODE mode; int best_rd = INT_MAX; // 1<<30 int rate; int distortion; unsigned int *mode_costs; (void) l; (void) a; if (x->e_mbd.frame_type == KEY_FRAME) { mode_costs = x->bmode_costs[above][left]; } else { mode_costs = x->inter_bmode_costs; } for (mode = B_DC_PRED; mode <= B_HE_PRED /*B_HU_PRED*/; mode++) { int this_rd; rate = mode_costs[mode]; vp8_predict_intra4x4(b, mode, b->predictor); distortion = get_prediction_error(be, b, &rtcd->variance); this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; } } b->bmi.mode = (B_PREDICTION_MODE)(*best_mode); vp8_encode_intra4x4block(rtcd, x, be, b, b->bmi.mode); return best_rd; } int vp8_pick_intra4x4mby_modes(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *mb, int *Rate, int *best_dist) { MACROBLOCKD *const xd = &mb->e_mbd; int i; TEMP_CONTEXT t; int cost = mb->mbmode_cost [xd->frame_type] [B_PRED]; int error = RD_ESTIMATE(mb->rdmult, mb->rddiv, cost, 0); // Rd estimate for the cost of the block prediction mode int distortion = 0; vp8_intra_prediction_down_copy(xd); vp8_setup_temp_context(&t, xd->above_context[Y1CONTEXT], xd->left_context[Y1CONTEXT], 4); for (i = 0; i < 16; i++) { MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode; const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(d); error += pick_intra4x4block(rtcd, mb, mb->block + i, xd->block + i, &best_mode, A, L, t.a + vp8_block2above[i], t.l + vp8_block2left[i], &r, &d); cost += r; distortion += d; mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode; // Break out case where we have already exceeded best so far value that was bassed in if (distortion > *best_dist) break; } for (i = 0; i < 16; i++) xd->block[i].bmi.mv.as_int = 0; *Rate = cost; if (i == 16) *best_dist = distortion; else *best_dist = INT_MAX; return error; } int vp8_pick_intra_mbuv_mode(MACROBLOCK *mb) { MACROBLOCKD *x = &mb->e_mbd; unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride; unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride; unsigned char *usrc_ptr = (mb->block[16].src + *mb->block[16].base_src); unsigned char *vsrc_ptr = (mb->block[20].src + *mb->block[20].base_src); int uvsrc_stride = mb->block[16].src_stride; unsigned char uleft_col[8]; unsigned char vleft_col[8]; unsigned char utop_left = uabove_row[-1]; unsigned char vtop_left = vabove_row[-1]; int i, j; int expected_udc; int expected_vdc; int shift; int Uaverage = 0; int Vaverage = 0; int diff; int pred_error[4] = {0, 0, 0, 0}, best_error = INT_MAX; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); for (i = 0; i < 8; i++) { uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1]; vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1]; } if (!x->up_available && !x->left_available) { expected_udc = 128; expected_vdc = 128; } else { shift = 2; if (x->up_available) { for (i = 0; i < 8; i++) { Uaverage += uabove_row[i]; Vaverage += vabove_row[i]; } shift ++; } if (x->left_available) { for (i = 0; i < 8; i++) { Uaverage += uleft_col[i]; Vaverage += vleft_col[i]; } shift ++; } expected_udc = (Uaverage + (1 << (shift - 1))) >> shift; expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift; } for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { int predu = uleft_col[i] + uabove_row[j] - utop_left; int predv = vleft_col[i] + vabove_row[j] - vtop_left; int u_p, v_p; u_p = usrc_ptr[j]; v_p = vsrc_ptr[j]; if (predu < 0) predu = 0; if (predu > 255) predu = 255; if (predv < 0) predv = 0; if (predv > 255) predv = 255; diff = u_p - expected_udc; pred_error[DC_PRED] += diff * diff; diff = v_p - expected_vdc; pred_error[DC_PRED] += diff * diff; diff = u_p - uabove_row[j]; pred_error[V_PRED] += diff * diff; diff = v_p - vabove_row[j]; pred_error[V_PRED] += diff * diff; diff = u_p - uleft_col[i]; pred_error[H_PRED] += diff * diff; diff = v_p - vleft_col[i]; pred_error[H_PRED] += diff * diff; diff = u_p - predu; pred_error[TM_PRED] += diff * diff; diff = v_p - predv; pred_error[TM_PRED] += diff * diff; } usrc_ptr += uvsrc_stride; vsrc_ptr += uvsrc_stride; if (i == 3) { usrc_ptr = (mb->block[18].src + *mb->block[18].base_src); vsrc_ptr = (mb->block[22].src + *mb->block[22].base_src); } } for (i = DC_PRED; i <= TM_PRED; i++) { if (best_error > pred_error[i]) { best_error = pred_error[i]; best_mode = (MB_PREDICTION_MODE)i; } } mb->e_mbd.mbmi.uv_mode = best_mode; return best_error; } int vp8_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra) { BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; MACROBLOCKD *xd = &x->e_mbd; B_MODE_INFO best_bmodes[16]; MB_MODE_INFO best_mbmode; MV best_ref_mv1; MV mode_mv[MB_MODE_COUNT]; MB_PREDICTION_MODE this_mode; int num00; int i; int mdcounts[4]; int best_rd = INT_MAX; // 1 << 30; int best_intra_rd = INT_MAX; int mode_index; int ref_frame_cost[MAX_REF_FRAMES]; int rate; int rate2; int distortion2; int bestsme; //int all_rds[MAX_MODES]; // Experimental debug code. int best_mode_index = 0; int sse = INT_MAX; MV nearest_mv[4]; MV near_mv[4]; MV best_ref_mv[4]; int MDCounts[4][4]; unsigned char *y_buffer[4]; unsigned char *u_buffer[4]; unsigned char *v_buffer[4]; int skip_mode[4] = {0, 0, 0, 0}; vpx_memset(mode_mv, 0, sizeof(mode_mv)); vpx_memset(nearest_mv, 0, sizeof(nearest_mv)); vpx_memset(near_mv, 0, sizeof(near_mv)); vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); // set up all the refframe dependent pointers. if (cpi->ref_frame_flags & VP8_LAST_FLAG) { YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &nearest_mv[LAST_FRAME], &near_mv[LAST_FRAME], &best_ref_mv[LAST_FRAME], MDCounts[LAST_FRAME], LAST_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[LAST_FRAME] = lst_yv12->y_buffer + recon_yoffset; u_buffer[LAST_FRAME] = lst_yv12->u_buffer + recon_uvoffset; v_buffer[LAST_FRAME] = lst_yv12->v_buffer + recon_uvoffset; } else skip_mode[LAST_FRAME] = 1; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { YV12_BUFFER_CONFIG *gld_yv12 = &cpi->common.yv12_fb[cpi->common.gld_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &nearest_mv[GOLDEN_FRAME], &near_mv[GOLDEN_FRAME], &best_ref_mv[GOLDEN_FRAME], MDCounts[GOLDEN_FRAME], GOLDEN_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[GOLDEN_FRAME] = gld_yv12->y_buffer + recon_yoffset; u_buffer[GOLDEN_FRAME] = gld_yv12->u_buffer + recon_uvoffset; v_buffer[GOLDEN_FRAME] = gld_yv12->v_buffer + recon_uvoffset; } else skip_mode[GOLDEN_FRAME] = 1; if (cpi->ref_frame_flags & VP8_ALT_FLAG && cpi->source_alt_ref_active) { YV12_BUFFER_CONFIG *alt_yv12 = &cpi->common.yv12_fb[cpi->common.alt_fb_idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &nearest_mv[ALTREF_FRAME], &near_mv[ALTREF_FRAME], &best_ref_mv[ALTREF_FRAME], MDCounts[ALTREF_FRAME], ALTREF_FRAME, cpi->common.ref_frame_sign_bias); y_buffer[ALTREF_FRAME] = alt_yv12->y_buffer + recon_yoffset; u_buffer[ALTREF_FRAME] = alt_yv12->u_buffer + recon_uvoffset; v_buffer[ALTREF_FRAME] = alt_yv12->v_buffer + recon_uvoffset; } else skip_mode[ALTREF_FRAME] = 1; cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame *returnintra = best_intra_rd; x->skip = 0; ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); // Special case treatment when GF and ARF are not sensible options for reference if (cpi->ref_frame_flags == VP8_LAST_FLAG) { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(255); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_zero(128); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_one(128); } else { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(cpi->prob_last_coded); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_zero(cpi->prob_gf_coded); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_one(cpi->prob_gf_coded); } best_rd = INT_MAX; x->e_mbd.mbmi.ref_frame = INTRA_FRAME; // if we encode a new mv this is important // find the best new motion vector for (mode_index = 0; mode_index < MAX_MODES; mode_index++) { int frame_cost; int this_rd = INT_MAX; if (best_rd <= cpi->rd_threshes[mode_index]) continue; x->e_mbd.mbmi.ref_frame = vp8_ref_frame_order[mode_index]; if (skip_mode[x->e_mbd.mbmi.ref_frame]) continue; // Check to see if the testing frequency for this mode is at its max // If so then prevent it from being tested and increase the threshold for its testing if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1)) { //if ( (cpi->mbs_tested_so_far / cpi->mode_test_hit_counts[mode_index]) <= cpi->mode_check_freq[mode_index] ) if (cpi->mbs_tested_so_far <= (cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index])) { // Increase the threshold for coding this mode to make it less likely to be chosen cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; continue; } } // We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested cpi->mode_test_hit_counts[mode_index] ++; rate2 = 0; distortion2 = 0; this_mode = vp8_mode_order[mode_index]; // Experimental debug code. //all_rds[mode_index] = -1; x->e_mbd.mbmi.mode = this_mode; x->e_mbd.mbmi.uv_mode = DC_PRED; // Work out the cost assosciated with selecting the reference frame frame_cost = ref_frame_cost[x->e_mbd.mbmi.ref_frame]; rate2 += frame_cost; // everything but intra if (x->e_mbd.mbmi.ref_frame) { x->e_mbd.pre.y_buffer = y_buffer[x->e_mbd.mbmi.ref_frame]; x->e_mbd.pre.u_buffer = u_buffer[x->e_mbd.mbmi.ref_frame]; x->e_mbd.pre.v_buffer = v_buffer[x->e_mbd.mbmi.ref_frame]; mode_mv[NEARESTMV] = nearest_mv[x->e_mbd.mbmi.ref_frame]; mode_mv[NEARMV] = near_mv[x->e_mbd.mbmi.ref_frame]; best_ref_mv1 = best_ref_mv[x->e_mbd.mbmi.ref_frame]; memcpy(mdcounts, MDCounts[x->e_mbd.mbmi.ref_frame], sizeof(mdcounts)); } //Only consider ZEROMV/ALTREF_FRAME for alt ref frame. if (cpi->is_src_frame_alt_ref) { if (this_mode != ZEROMV || x->e_mbd.mbmi.ref_frame != ALTREF_FRAME) continue; } switch (this_mode) { case B_PRED: distortion2 = *returndistortion; // Best so far passed in as breakout value to vp8_pick_intra4x4mby_modes vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate, &distortion2); rate2 += rate; distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff); if (distortion2 == INT_MAX) { this_rd = INT_MAX; } else { this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (this_rd < best_intra_rd) { best_intra_rd = this_rd; *returnintra = best_intra_rd ; } } break; case SPLITMV: // Split MV modes currently not supported when RD is nopt enabled. break; case DC_PRED: case V_PRED: case H_PRED: case TM_PRED: vp8_build_intra_predictors_mby_ptr(&x->e_mbd); distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff); rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mbmi.mode]; this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (this_rd < best_intra_rd) { best_intra_rd = this_rd; *returnintra = best_intra_rd ; } break; case NEWMV: { int thissme; int step_param; int further_steps; int n = 0; int sadpb = x->sadperbit16; // Further step/diamond searches as necessary if (cpi->Speed < 8) { step_param = cpi->sf.first_step + ((cpi->Speed > 5) ? 1 : 0); further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; } else { step_param = cpi->sf.first_step + 2; further_steps = 0; } #if 0 // Initial step Search bestsme = vp8_diamond_search_sad(x, b, d, &best_ref_mv1, &d->bmi.mv.as_mv, step_param, x->errorperbit, &num00, &cpi->fn_ptr, cpi->mb.mvsadcost, cpi->mb.mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Further step searches while (n < further_steps) { n++; if (num00) num00--; else { thissme = vp8_diamond_search_sad(x, b, d, &best_ref_mv1, &d->bmi.mv.as_mv, step_param + n, x->errorperbit, &num00, &cpi->fn_ptr, cpi->mb.mvsadcost, x->mvcost); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } } #else if (cpi->sf.search_method == HEX) { bestsme = vp8_hex_search(x, b, d, &best_ref_mv1, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, cpi->fn_ptr.vf, cpi->fn_ptr.sdf, x->mvsadcost, x->mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { bestsme = cpi->diamond_search_sad(x, b, d, &best_ref_mv1, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr, x->mvsadcost, x->mvcost); //sadpb < 9 mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Further step/diamond searches as necessary n = 0; //further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { thissme = cpi->diamond_search_sad(x, b, d, &best_ref_mv1, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr, x->mvsadcost, x->mvcost); //sadpb = 9 if (thissme < bestsme) { bestsme = thissme; mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } } } #endif } if (bestsme < INT_MAX) cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv1, x->errorperbit, cpi->fn_ptr.svf, cpi->fn_ptr.vf, cpi->mb.mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // mv cost; rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv1, cpi->mb.mvcost, 128); case NEARESTMV: case NEARMV: if (mode_mv[this_mode].row == 0 && mode_mv[this_mode].col == 0) continue; case ZEROMV: // Trap vectors that reach beyond the UMV borders // Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point // because of the lack of break statements in the previous two cases. if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max)) continue; rate2 += vp8_cost_mv_ref(this_mode, mdcounts); x->e_mbd.mbmi.mode = this_mode; x->e_mbd.mbmi.mv.as_mv = mode_mv[this_mode]; x->e_mbd.block[0].bmi.mode = this_mode; x->e_mbd.block[0].bmi.mv.as_int = x->e_mbd.mbmi.mv.as_int; distortion2 = get_inter_mbpred_error(x, cpi->fn_ptr.svf, cpi->fn_ptr.vf, (unsigned int *)(&sse)); this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (cpi->active_map_enabled && x->active_ptr[0] == 0) { x->skip = 1; } else if (sse < x->encode_breakout) { // Check u and v to make sure skip is ok int sse2 = 0; sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance)); if (sse2 * 2 < x->encode_breakout) x->skip = 1; else x->skip = 0; } break; default: break; } // Experimental debug code. //all_rds[mode_index] = this_rd; if (this_rd < best_rd || x->skip) { // Note index of best mode best_mode_index = mode_index; *returnrate = rate2; *returndistortion = distortion2; best_rd = this_rd; vpx_memcpy(&best_mbmode, &x->e_mbd.mbmi, sizeof(MB_MODE_INFO)); if (this_mode == B_PRED || this_mode == SPLITMV) for (i = 0; i < 16; i++) { vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO)); } else { best_bmodes[0].mv = x->e_mbd.block[0].bmi.mv; } // Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } // If the mode did not help improve the best error case then raise the threshold for testing that mode next time around. else { cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } if (x->skip) break; } // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 3); cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index]; } // Keep a record of best mode index for use in next loop cpi->last_best_mode_index = best_mode_index; if (best_mbmode.mode <= B_PRED) { x->e_mbd.mbmi.ref_frame = INTRA_FRAME; vp8_pick_intra_mbuv_mode(x); best_mbmode.uv_mode = x->e_mbd.mbmi.uv_mode; } { int this_rdbin = (*returndistortion >> 7); if (this_rdbin >= 1024) { this_rdbin = 1023; } cpi->error_bins[this_rdbin] ++; } if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) { best_mbmode.mode = ZEROMV; best_mbmode.ref_frame = ALTREF_FRAME; best_mbmode.mv.as_int = 0; best_mbmode.uv_mode = 0; best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; best_mbmode.partitioning = 0; best_mbmode.dc_diff = 0; vpx_memcpy(&x->e_mbd.mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } x->e_mbd.mbmi.mv.as_int = 0; return best_rd; } // macroblock modes vpx_memcpy(&x->e_mbd.mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); if (x->e_mbd.mbmi.mode == B_PRED || x->e_mbd.mbmi.mode == SPLITMV) for (i = 0; i < 16; i++) { vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO)); } else { vp8_set_mbmode_and_mvs(x, x->e_mbd.mbmi.mode, &best_bmodes[0].mv.as_mv); } x->e_mbd.mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv; return best_rd; }