/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "encodemb.h" #include "vp8/common/reconinter.h" #include "quantize.h" #include "tokenize.h" #include "vp8/common/invtrans.h" #include "vp8/common/reconintra.h" #include "vpx_mem/vpx_mem.h" #include "rdopt.h" #include "vp8/common/systemdependent.h" #include "vpx_rtcd.h" #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif #ifdef ENC_DEBUG extern int enc_debug; #endif void vp8_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; int r, c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { diff_ptr[c] = src_ptr[c] - pred_ptr[c]; } diff_ptr += pitch; pred_ptr += pitch; src_ptr += src_stride; } } void vp8_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { diff_ptr[c] = src_ptr[c] - pred_ptr[c]; } diff_ptr += pitch; pred_ptr += pitch; src_ptr += src_stride; } } void vp8_subtract_mbuv_s_c(short *diff, const unsigned char *usrc, const unsigned char *vsrc, int src_stride, const unsigned char *upred, const unsigned char *vpred, int dst_stride) { short *udiff = diff + 256; short *vdiff = diff + 320; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { udiff[c] = usrc[c] - upred[c]; } udiff += 8; upred += dst_stride; usrc += src_stride; } for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { vdiff[c] = vsrc[c] - vpred[c]; } vdiff += 8; vpred += dst_stride; vsrc += src_stride; } } void vp8_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc, unsigned char *pred, int stride) { unsigned char *upred = pred + 256; unsigned char *vpred = pred + 320; vp8_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8); } void vp8_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride, const unsigned char *pred, int dst_stride) { int r, c; for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { diff[c] = src[c] - pred[c]; } diff += 16; pred += dst_stride; src += src_stride; } } void vp8_subtract_mby_c(short *diff, unsigned char *src, unsigned char *pred, int stride) { vp8_subtract_mby_s_c(diff, src, stride, pred, 16); } static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { BLOCK *b = &x->block[0]; vp8_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor, b->src_stride); vp8_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); } static void build_dcblock_4x4(MACROBLOCK *x) { short *src_diff_ptr = &x->src_diff[384]; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = x->coeff[i * 16]; } } void vp8_transform_mby_4x4(MACROBLOCK *x) { int i; for (i = 0; i < 16; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { // build dc block from 16 y dc values build_dcblock_4x4(x); // do 2nd order transform on the dc block x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } } void vp8_transform_mbuv_4x4(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 2) { x->vp8_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } static void transform_mb_4x4(MACROBLOCK *x) { vp8_transform_mby_4x4(x); vp8_transform_mbuv_4x4(x); } void vp8_build_dcblock_8x8(MACROBLOCK *x) { int16_t *src_diff_ptr = x->block[24].src_diff; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = 0; } src_diff_ptr[0] = x->coeff[0 * 16]; src_diff_ptr[1] = x->coeff[4 * 16]; src_diff_ptr[4] = x->coeff[8 * 16]; src_diff_ptr[8] = x->coeff[12 * 16]; } void vp8_transform_mby_8x8(MACROBLOCK *x) { int i; for (i = 0; i < 9; i += 8) { x->vp8_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } for (i = 2; i < 11; i += 8) { x->vp8_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i + 2].coeff[0], 32); } if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { // build dc block from 2x2 y dc values vp8_build_dcblock_8x8(x); // do 2nd order transform on the dc block x->short_fhaar2x2(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } } void vp8_transform_mbuv_8x8(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 4) { x->vp8_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } void vp8_transform_mb_8x8(MACROBLOCK *x) { vp8_transform_mby_8x8(x); vp8_transform_mbuv_8x8(x); } void vp8_transform_mby_16x16(MACROBLOCK *x) { vp8_clear_system_state(); x->vp8_short_fdct16x16(&x->block[0].src_diff[0], &x->block[0].coeff[0], 32); } void vp8_transform_mb_16x16(MACROBLOCK *x) { vp8_transform_mby_16x16(x); vp8_transform_mbuv_8x8(x); } #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) #define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp8_token_state vp8_token_state; struct vp8_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO: experiments to find optimal multiple numbers #define Y1_RD_MULT 4 #define UV_RD_MULT 2 #define Y2_RD_MULT 4 static const int plane_rd_mult[4] = { Y1_RD_MULT, Y2_RD_MULT, UV_RD_MULT, Y1_RD_MULT }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, const VP8_ENCODER_RTCD *rtcd, int tx_size) { BLOCK *b; BLOCKD *d; vp8_token_state tokens[65][2]; uint64_t best_mask[2]; const short *dequant_ptr; const short *coeff_ptr; short *qcoeff_ptr; short *dqcoeff_ptr; int eob; int i0; int rc; int x; int sz = 0; int next; int rdmult; int rddiv; int final_eob; int64_t rd_cost0, rd_cost1; int rate0, rate1; int error0, error1; int t0, t1; int best; int band; int pt; int err_mult = plane_rd_mult[type]; int default_eob; int const *scan, *bands; b = &mb->block[i]; d = &mb->e_mbd.block[i]; switch (tx_size) { default: case TX_4X4: scan = vp8_default_zig_zag1d; bands = vp8_coef_bands; default_eob = 16; // TODO: this isn't called (for intra4x4 modes), but will be left in // since it could be used later { TX_TYPE tx_type = get_tx_type(&mb->e_mbd, d); if (tx_type != DCT_DCT) { switch (tx_type) { case ADST_DCT: scan = vp8_row_scan; break; case DCT_ADST: scan = vp8_col_scan; break; default: scan = vp8_default_zig_zag1d; break; } } else { scan = vp8_default_zig_zag1d; } } break; case TX_8X8: scan = vp8_default_zig_zag1d_8x8; bands = vp8_coef_bands_8x8; default_eob = 64; break; } dequant_ptr = d->dequant; coeff_ptr = b->coeff; qcoeff_ptr = d->qcoeff; dqcoeff_ptr = d->dqcoeff; i0 = (type == PLANE_TYPE_Y_NO_DC); eob = d->eob; /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; best_mask[0] = best_mask[1] = 0; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = eob; i-- > i0;) { int base_bits; int d2; int dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp8_dct_value_tokens_ptr + x)->Token; /* Consider both possible successor states. */ if (next < default_eob) { band = bands[i + 1]; pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[tx_size][type][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][band][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_mask[0] |= best << i; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp8_dct_value_tokens_ptr + x)->Token; } if (next < default_eob) { band = bands[i + 1]; if (t0 != DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[tx_size][type][band][pt][ tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t1]; rate1 += mb->token_costs[tx_size][type][band][pt][ tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_mask[1] |= best << i; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = bands[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = bands[i + 1]; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][band][pt][t0]; rate1 += mb->token_costs[tx_size][type][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) final_eob = i; rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]); next = tokens[i][best].next; best = (best_mask[best] >> i) & 1; } final_eob++; d->eob = final_eob; *a = *l = (d->eob != !type); } /************************************************************************** our inverse hadamard transform effectively is weighted sum of all 16 inputs with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the output after inverse wht and idct will be all zero. A sum of absolute value smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht fall between -65 and +65. **************************************************************************/ #define SUM_2ND_COEFF_THRESH 65 static void check_reset_2nd_coeffs(MACROBLOCKD *xd, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int sum = 0; int i; BLOCKD *bd = &xd->block[24]; if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH && bd->dequant[1] >= SUM_2ND_COEFF_THRESH) return; for (i = 0; i < bd->eob; i++) { int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]]; sum += (coef >= 0) ? coef : -coef; if (sum >= SUM_2ND_COEFF_THRESH) return; } if (sum < SUM_2ND_COEFF_THRESH) { for (i = 0; i < bd->eob; i++) { int rc = vp8_default_zig_zag1d[i]; bd->qcoeff[rc] = 0; bd->dqcoeff[rc] = 0; } bd->eob = 0; *a = *l = (bd->eob != 0); } } #define SUM_2ND_COEFF_THRESH_8X8 32 static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int sum = 0; BLOCKD *bd = &xd->block[24]; int coef; coef = bd->dqcoeff[0]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[1]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[4]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[8]; sum += (coef >= 0) ? coef : -coef; if (sum < SUM_2ND_COEFF_THRESH_8X8) { bd->qcoeff[0] = 0; bd->dqcoeff[0] = 0; bd->qcoeff[1] = 0; bd->dqcoeff[1] = 0; bd->qcoeff[4] = 0; bd->dqcoeff[4] = 0; bd->qcoeff[8] = 0; bd->dqcoeff[8] = 0; bd->eob = 0; *a = *l = (bd->eob != 0); } } void vp8_optimize_mby_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; PLANE_TYPE type; int has_2nd_order; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; MB_PREDICTION_MODE mode = x->e_mbd.mode_info_context->mbmi.mode; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; has_2nd_order = (mode != B_PRED && mode != I8X8_PRED && mode != SPLITMV); type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b++) { optimize_b(x, b, type, ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); } if (has_2nd_order) { b = 24; optimize_b(x, b, PLANE_TYPE_Y2, ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); check_reset_2nd_coeffs(&x->e_mbd, ta + vp8_block2above[b], tl + vp8_block2left[b]); } } void vp8_optimize_mbuv_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b++) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); } } static void optimize_mb_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { vp8_optimize_mby_4x4(x, rtcd); vp8_optimize_mbuv_4x4(x, rtcd); } void vp8_optimize_mby_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; PLANE_TYPE type; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; int has_2nd_order = x->e_mbd.mode_info_context->mbmi.mode != SPLITMV; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b += 4) { optimize_b(x, b, type, ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], rtcd, TX_8X8); ta[vp8_block2above_8x8[b] + 1] = ta[vp8_block2above_8x8[b]]; tl[vp8_block2left_8x8[b] + 1] = tl[vp8_block2left_8x8[b]]; } // 8x8 always have 2nd roder haar block if (has_2nd_order) { check_reset_8x8_2nd_coeffs(&x->e_mbd, ta + vp8_block2above_8x8[24], tl + vp8_block2left_8x8[24]); } } void vp8_optimize_mbuv_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { int b; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b += 4) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], rtcd, TX_8X8); ta[vp8_block2above_8x8[b] + 1] = ta[vp8_block2above_8x8[b]]; tl[vp8_block2left_8x8[b] + 1] = tl[vp8_block2left_8x8[b]]; } } static void optimize_mb_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { vp8_optimize_mby_8x8(x, rtcd); vp8_optimize_mbuv_8x8(x, rtcd); } static void optimize_b_16x16(MACROBLOCK *mb, int i, PLANE_TYPE type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, const VP8_ENCODER_RTCD *rtcd) { BLOCK *b = &mb->block[i]; BLOCKD *d = &mb->e_mbd.block[i]; vp8_token_state tokens[257][2]; unsigned best_index[257][2]; const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff; short *qcoeff_ptr = qcoeff_ptr = d->qcoeff; short *dqcoeff_ptr = dqcoeff_ptr = d->dqcoeff; int eob = d->eob, final_eob, sz = 0; int rc, x, next; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; int err_mult = plane_rd_mult[type]; /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) rdmult = (rdmult * 9)>>4; rddiv = mb->rddiv; memset(best_index, 0, sizeof(best_index)); /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = 256; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = eob; i-- > 0;) { int base_bits, d2, dx; rc = vp8_default_zig_zag1d_16x16[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp8_dct_value_tokens_ptr + x)->Token; /* Consider both possible successor states. */ if (next < 256) { band = vp8_coef_bands_16x16[i + 1]; pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; d2 = dx*dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) && (abs(x)*dequant_ptr[rc!=0]Token; if (next < 256) { band = vp8_coef_bands_16x16[i + 1]; if (t0 != DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t0]; rate0 += mb->token_costs[TX_16X16][type][band][pt] [tokens[next][0].token]; } if (t1!=DCT_EOB_TOKEN) { pt = vp8_prev_token_class[t1]; rate1 += mb->token_costs[TX_16X16][type][band][pt] [tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp8_dct_value_cost_ptr + x); if(shortcut) { dx -= (dequant_ptr[rc!=0] + sz) ^ sz; d2 = dx*dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = vp8_coef_bands_16x16[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[TX_16X16][type][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[TX_16X16][type][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = vp8_coef_bands_16x16[i + 1]; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[TX_16X16][type][band][pt][t0]; rate1 += mb->token_costs[TX_16X16][type][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) final_eob = i; rc = vp8_default_zig_zag1d_16x16[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]); next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; d->eob = final_eob; *a = *l = (d->eob != !type); } void vp8_optimize_mby_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; optimize_b_16x16(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl, rtcd); } static void optimize_mb_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { vp8_optimize_mby_16x16(x, rtcd); vp8_optimize_mbuv_8x8(x, rtcd); } void vp8_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; vp8_build_inter_predictors_mb(xd); vp8_subtract_mb(rtcd, x); if (tx_size == TX_16X16) { vp8_transform_mb_16x16(x); vp8_quantize_mb_16x16(x); if (x->optimize) optimize_mb_16x16(x, rtcd); vp8_inverse_transform_mb_16x16(IF_RTCD(&rtcd->common->idct), xd); } else if (tx_size == TX_8X8) { if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4); vp8_transform_mby_8x8(x); vp8_transform_mbuv_4x4(x); vp8_quantize_mby_8x8(x); vp8_quantize_mbuv_4x4(x); if (x->optimize) { vp8_optimize_mby_8x8(x, rtcd); vp8_optimize_mbuv_4x4(x, rtcd); } vp8_inverse_transform_mby_8x8(IF_RTCD(&rtcd->common->idct), xd); vp8_inverse_transform_mbuv_4x4(IF_RTCD(&rtcd->common->idct), xd); } else { vp8_transform_mb_8x8(x); vp8_quantize_mb_8x8(x); if (x->optimize) optimize_mb_8x8(x, rtcd); vp8_inverse_transform_mb_8x8(IF_RTCD(&rtcd->common->idct), xd); } } else { transform_mb_4x4(x); vp8_quantize_mb_4x4(x); if (x->optimize) optimize_mb_4x4(x, rtcd); vp8_inverse_transform_mb_4x4(IF_RTCD(&rtcd->common->idct), xd); } vp8_recon_mb(xd); } /* this function is used by first pass only */ void vp8_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; BLOCK *b = &x->block[0]; #if CONFIG_PRED_FILTER // Disable the prediction filter for firstpass xd->mode_info_context->mbmi.pred_filter_enabled = 0; #endif vp8_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0); vp8_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride); vp8_transform_mby_4x4(x); vp8_quantize_mby_4x4(x); vp8_inverse_transform_mby_4x4(IF_RTCD(&rtcd->common->idct), xd); vp8_recon_mby(xd); }