/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vpx_ports/config.h" #include "vp8/common/idct.h" #if CONFIG_HYBRIDTRANSFORM #include "vp8/common/blockd.h" float dct_4[16] = { 0.500000000000000, 0.500000000000000, 0.500000000000000, 0.500000000000000, 0.653281482438188, 0.270598050073099, -0.270598050073099, -0.653281482438188, 0.500000000000000, -0.500000000000000, -0.500000000000000, 0.500000000000000, 0.270598050073099, -0.653281482438188, 0.653281482438188, -0.270598050073099 }; float adst_4[16] = { 0.228013428883779, 0.428525073124360, 0.577350269189626, 0.656538502008139, 0.577350269189626, 0.577350269189626, 0.000000000000000, -0.577350269189626, 0.656538502008139, -0.228013428883779, -0.577350269189626, 0.428525073124359, 0.428525073124360, -0.656538502008139, 0.577350269189626, -0.228013428883779 }; #endif static const int xC1S7 = 16069; static const int xC2S6 = 15137; static const int xC3S5 = 13623; static const int xC4S4 = 11585; static const int xC5S3 = 9102; static const int xC6S2 = 6270; static const int xC7S1 = 3196; #define SHIFT_BITS 14 #define DOROUND(X) X += (1<<(SHIFT_BITS-1)); #define FINAL_SHIFT 3 #define FINAL_ROUNDING (1<<(FINAL_SHIFT -1)) #define IN_SHIFT (FINAL_SHIFT+1) void vp8_short_fdct8x8_c(short *InputData, short *OutputData, int pitch) { int loop; int short_pitch = pitch >> 1; int is07, is12, is34, is56; int is0734, is1256; int id07, id12, id34, id56; int irot_input_x, irot_input_y; int icommon_product1; // Re-used product (c4s4 * (s12 - s56)) int icommon_product2; // Re-used product (c4s4 * (d12 + d56)) int temp1, temp2; // intermediate variable for computation int InterData[64]; int *ip = InterData; short *op = OutputData; for (loop = 0; loop < 8; loop++) { // Pre calculate some common sums and differences. is07 = (InputData[0] + InputData[7]) << IN_SHIFT; is12 = (InputData[1] + InputData[2]) << IN_SHIFT; is34 = (InputData[3] + InputData[4]) << IN_SHIFT; is56 = (InputData[5] + InputData[6]) << IN_SHIFT; id07 = (InputData[0] - InputData[7]) << IN_SHIFT; id12 = (InputData[1] - InputData[2]) << IN_SHIFT; id34 = (InputData[3] - InputData[4]) << IN_SHIFT; id56 = (InputData[5] - InputData[6]) << IN_SHIFT; is0734 = is07 + is34; is1256 = is12 + is56; // Pre-Calculate some common product terms. icommon_product1 = xC4S4 * (is12 - is56); DOROUND(icommon_product1) icommon_product1 >>= SHIFT_BITS; icommon_product2 = xC4S4 * (id12 + id56); DOROUND(icommon_product2) icommon_product2 >>= SHIFT_BITS; ip[0] = (xC4S4 * (is0734 + is1256)); DOROUND(ip[0]); ip[0] >>= SHIFT_BITS; ip[4] = (xC4S4 * (is0734 - is1256)); DOROUND(ip[4]); ip[4] >>= SHIFT_BITS; // Define inputs to rotation for outputs 2 and 6 irot_input_x = id12 - id56; irot_input_y = is07 - is34; // Apply rotation for outputs 2 and 6. temp1 = xC6S2 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[2] = temp1 + temp2; temp1 = xC6S2 * irot_input_y; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_x; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[6] = temp1 - temp2; // Define inputs to rotation for outputs 1 and 7 irot_input_x = icommon_product1 + id07; irot_input_y = -(id34 + icommon_product2); // Apply rotation for outputs 1 and 7. temp1 = xC1S7 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC7S1 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[1] = temp1 - temp2; temp1 = xC7S1 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC1S7 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[7] = temp1 + temp2; // Define inputs to rotation for outputs 3 and 5 irot_input_x = id07 - icommon_product1; irot_input_y = id34 - icommon_product2; // Apply rotation for outputs 3 and 5. temp1 = xC3S5 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC5S3 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[3] = temp1 - temp2; temp1 = xC5S3 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC3S5 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; ip[5] = temp1 + temp2; // Increment data pointer for next row InputData += short_pitch; ip += 8; } // Performed DCT on rows, now transform the columns ip = InterData; for (loop = 0; loop < 8; loop++) { // Pre calculate some common sums and differences. is07 = ip[0 * 8] + ip[7 * 8]; is12 = ip[1 * 8] + ip[2 * 8]; is34 = ip[3 * 8] + ip[4 * 8]; is56 = ip[5 * 8] + ip[6 * 8]; id07 = ip[0 * 8] - ip[7 * 8]; id12 = ip[1 * 8] - ip[2 * 8]; id34 = ip[3 * 8] - ip[4 * 8]; id56 = ip[5 * 8] - ip[6 * 8]; is0734 = is07 + is34; is1256 = is12 + is56; // Pre-Calculate some common product terms icommon_product1 = xC4S4 * (is12 - is56); icommon_product2 = xC4S4 * (id12 + id56); DOROUND(icommon_product1) DOROUND(icommon_product2) icommon_product1 >>= SHIFT_BITS; icommon_product2 >>= SHIFT_BITS; temp1 = xC4S4 * (is0734 + is1256); temp2 = xC4S4 * (is0734 - is1256); DOROUND(temp1); DOROUND(temp2); temp1 >>= SHIFT_BITS; temp2 >>= SHIFT_BITS; op[0 * 8] = (temp1 + FINAL_ROUNDING) >> FINAL_SHIFT; op[4 * 8] = (temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 2 and 6 irot_input_x = id12 - id56; irot_input_y = is07 - is34; // Apply rotation for outputs 2 and 6. temp1 = xC6S2 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[2 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC6S2 * irot_input_y; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC2S6 * irot_input_x; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[6 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 1 and 7 irot_input_x = icommon_product1 + id07; irot_input_y = -(id34 + icommon_product2); // Apply rotation for outputs 1 and 7. temp1 = xC1S7 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC7S1 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[1 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC7S1 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC1S7 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[7 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Define inputs to rotation for outputs 3 and 5 irot_input_x = id07 - icommon_product1; irot_input_y = id34 - icommon_product2; // Apply rotation for outputs 3 and 5. temp1 = xC3S5 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC5S3 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[3 * 8] = (temp1 - temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; temp1 = xC5S3 * irot_input_x; DOROUND(temp1); temp1 >>= SHIFT_BITS; temp2 = xC3S5 * irot_input_y; DOROUND(temp2); temp2 >>= SHIFT_BITS; op[5 * 8] = (temp1 + temp2 + FINAL_ROUNDING) >> FINAL_SHIFT; // Increment data pointer for next column. ip++; op++; } } void vp8_short_fhaar2x2_c(short *input, short *output, int pitch) { // pitch = 8 /* [1 1; 1 -1] orthogonal transform */ /* use position: 0,1, 4, 8 */ int i; short *ip1 = input; short *op1 = output; for (i = 0; i < 16; i++) { op1[i] = 0; } op1[0] = (ip1[0] + ip1[1] + ip1[4] + ip1[8] + 1) >> 1; op1[1] = (ip1[0] - ip1[1] + ip1[4] - ip1[8]) >> 1; op1[4] = (ip1[0] + ip1[1] - ip1[4] - ip1[8]) >> 1; op1[8] = (ip1[0] - ip1[1] - ip1[4] + ip1[8]) >> 1; } #if CONFIG_HYBRIDTRANSFORM void vp8_fht4x4_c(short *input, short *output, int pitch, TX_TYPE tx_type) { int i, j, k; float bufa[16], bufb[16]; // buffers are for floating-point test purpose // the implementation could be simplified in // conjunction with integer transform short *ip = input; short *op = output; float *pfa = &bufa[0]; float *pfb = &bufb[0]; // pointers to vertical and horizontal transforms float *ptv, *pth; // load and convert residual array into floating-point for(j = 0; j < 4; j++) { for(i = 0; i < 4; i++) { pfa[i] = (float)ip[i]; } pfa += 4; ip += pitch / 2; } // vertical transformation pfa = &bufa[0]; pfb = &bufb[0]; switch(tx_type) { case ADST_ADST : case ADST_DCT : ptv = &adst_4[0]; break; default : ptv = &dct_4[0]; break; } for(j = 0; j < 4; j++) { for(i = 0; i < 4; i++) { pfb[i] = 0; for(k = 0; k < 4; k++) { pfb[i] += ptv[k] * pfa[(k<<2)]; } pfa += 1; } pfb += 4; ptv += 4; pfa = &bufa[0]; } // horizontal transformation pfa = &bufa[0]; pfb = &bufb[0]; switch(tx_type) { case ADST_ADST : case DCT_ADST : pth = &adst_4[0]; break; default : pth = &dct_4[0]; break; } for(j = 0; j < 4; j++) { for(i = 0; i < 4; i++) { pfa[i] = 0; for(k = 0; k < 4; k++) { pfa[i] += pfb[k] * pth[k]; } pth += 4; } pfa += 4; pfb += 4; switch(tx_type) { case ADST_ADST : case DCT_ADST : pth = &adst_4[0]; break; default : pth = &dct_4[0]; break; } } // convert to short integer format and load BLOCKD buffer op = output ; pfa = &bufa[0] ; for(j = 0; j < 4; j++) { for(i = 0; i < 4; i++) { op[i] = (pfa[i] > 0 ) ? (short)( 8 * pfa[i] + 0.49) : -(short)(- 8 * pfa[i] + 0.49); } op += 4; pfa += 4; } } #endif void vp8_short_fdct4x4_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; for (i = 0; i < 4; i++) { a1 = ((ip[0] + ip[3]) << 5); b1 = ((ip[1] + ip[2]) << 5); c1 = ((ip[1] - ip[2]) << 5); d1 = ((ip[0] - ip[3]) << 5); op[0] = a1 + b1; op[2] = a1 - b1; op[1] = (c1 * 2217 + d1 * 5352 + 14500) >> 12; op[3] = (d1 * 2217 - c1 * 5352 + 7500) >> 12; ip += pitch / 2; op += 4; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[12]; b1 = ip[4] + ip[8]; c1 = ip[4] - ip[8]; d1 = ip[0] - ip[12]; op[0] = (a1 + b1 + 7) >> 4; op[8] = (a1 - b1 + 7) >> 4; op[4] = ((c1 * 2217 + d1 * 5352 + 12000) >> 16) + (d1 != 0); op[12] = (d1 * 2217 - c1 * 5352 + 51000) >> 16; ip++; op++; } } #if CONFIG_HYBRIDTRANSFORM void vp8_fht8x4_c(short *input, short *output, int pitch, TX_TYPE tx_type) { vp8_fht4x4_c(input, output, pitch, tx_type); vp8_fht4x4_c(input + 4, output + 16, pitch, tx_type); } #endif void vp8_short_fdct8x4_c(short *input, short *output, int pitch) { vp8_short_fdct4x4_c(input, output, pitch); vp8_short_fdct4x4_c(input + 4, output + 16, pitch); } void vp8_short_walsh4x4_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = (a1 + b1 + 1) >> 1; op[1] = (c1 + d1) >> 1; op[2] = (a1 - b1) >> 1; op[3] = (d1 - c1) >> 1; ip += 4; op += 4; } } #if CONFIG_LOSSLESS void vp8_short_walsh4x4_lossless_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = (ip[0 * pitch_short] + ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; b1 = (ip[1 * pitch_short] + ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; c1 = (ip[1 * pitch_short] - ip[2 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; d1 = (ip[0 * pitch_short] - ip[3 * pitch_short]) >> Y2_WHT_UPSCALE_FACTOR; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = ((a1 + b1 + 1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[1] = ((c1 + d1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[2] = ((a1 - b1) >> 1) << Y2_WHT_UPSCALE_FACTOR; op[3] = ((d1 - c1) >> 1) << Y2_WHT_UPSCALE_FACTOR; ip += 4; op += 4; } } void vp8_short_walsh4x4_x8_c(short *input, short *output, int pitch) { int i; int a1, b1, c1, d1; short *ip = input; short *op = output; int pitch_short = pitch >> 1; for (i = 0; i < 4; i++) { a1 = ip[0 * pitch_short] + ip[3 * pitch_short]; b1 = ip[1 * pitch_short] + ip[2 * pitch_short]; c1 = ip[1 * pitch_short] - ip[2 * pitch_short]; d1 = ip[0 * pitch_short] - ip[3 * pitch_short]; op[0] = (a1 + b1 + 1) >> 1; op[4] = (c1 + d1) >> 1; op[8] = (a1 - b1) >> 1; op[12] = (d1 - c1) >> 1; ip++; op++; } ip = output; op = output; for (i = 0; i < 4; i++) { a1 = ip[0] + ip[3]; b1 = ip[1] + ip[2]; c1 = ip[1] - ip[2]; d1 = ip[0] - ip[3]; op[0] = ((a1 + b1 + 1) >> 1) << WHT_UPSCALE_FACTOR; op[1] = ((c1 + d1) >> 1) << WHT_UPSCALE_FACTOR; op[2] = ((a1 - b1) >> 1) << WHT_UPSCALE_FACTOR; op[3] = ((d1 - c1) >> 1) << WHT_UPSCALE_FACTOR; ip += 4; op += 4; } } void vp8_short_walsh8x4_x8_c(short *input, short *output, int pitch) { vp8_short_walsh4x4_x8_c(input, output, pitch); vp8_short_walsh4x4_x8_c(input + 4, output + 16, pitch); } #endif