/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyxd_int.h" #include "vp8/common/header.h" #include "vp8/common/reconintra.h" #include "vp8/common/reconintra4x4.h" #include "vp8/common/recon.h" #include "vp8/common/reconinter.h" #include "dequantize.h" #include "detokenize.h" #include "vp8/common/invtrans.h" #include "vp8/common/alloccommon.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "vpx_scale/vpxscale.h" #include "vpx_scale/yv12extend.h" #include "vp8/common/setupintrarecon.h" #include "decodemv.h" #include "vp8/common/extend.h" #if CONFIG_ERROR_CONCEALMENT #include "error_concealment.h" #endif #include "vpx_mem/vpx_mem.h" #include "vp8/common/idct.h" #include "dequantize.h" #include "vp8/common/threading.h" #include "decoderthreading.h" #include "dboolhuff.h" #include #include void vp8cx_init_de_quantizer(VP8D_COMP *pbi) { int i; int Q; VP8_COMMON *const pc = & pbi->common; for (Q = 0; Q < QINDEX_RANGE; Q++) { pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); /* all the ac values = ; */ for (i = 1; i < 16; i++) { int rc = vp8_default_zig_zag1d[i]; pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q); pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); } } } void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; VP8_COMMON *const pc = & pbi->common; /* Decide whether to use the default or alternate baseline Q value. */ if (xd->segmentation_enabled) { /* Abs Value */ if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; /* Delta Value */ else { QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */ } } else QIndex = pc->base_qindex; /* Set up the block level dequant pointers */ for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } #if CONFIG_RUNTIME_CPU_DETECT #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) #else #define RTCD_VTABLE(x) NULL #endif /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd); RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mby_s)(xd); } else { vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */ if (mv->col < (xd->mb_to_left_edge - (19 << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + (18 << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - (19 << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + (18 << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } /* A version of the above function for chroma block MVs.*/ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { mv->col = (2*mv->col < (xd->mb_to_left_edge - (19 << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col; mv->col = (2*mv->col > xd->mb_to_right_edge + (18 << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col; mv->row = (2*mv->row < (xd->mb_to_top_edge - (19 << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row; mv->row = (2*mv->row > xd->mb_to_bottom_edge + (18 << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row; } void clamp_mvs(MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.mode == SPLITMV) { int i; for (i=0; i<16; i++) clamp_mv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); for (i=16; i<24; i++) clamp_uvmv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); } else { clamp_mv_to_umv_border(&xd->mode_info_context->mbmi.mv.as_mv, xd); clamp_uvmv_to_umv_border(&xd->block[16].bmi.mv.as_mv, xd); } } static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, unsigned int mb_idx) { int eobtotal = 0; int throw_residual = 0; MB_PREDICTION_MODE mode; int i; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else if (!vp8dx_bool_error(xd->current_bc)) { eobtotal = vp8_decode_mb_tokens(pbi, xd); } /* Perform temporary clamping of the MV to be used for prediction */ if (xd->mode_info_context->mbmi.need_to_clamp_mvs) { clamp_mvs(xd); } mode = xd->mode_info_context->mbmi.mode; if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && !vp8dx_bool_error(xd->current_bc)) { /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. * */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd); return; } if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd); if (mode != B_PRED) { RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mby)(xd); } else { vp8_intra_prediction_down_copy(xd); } } else { vp8_build_inter_predictors_mb(xd); } /* When we have independent partitions we can apply residual even * though other partitions within the frame are corrupt. */ throw_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual); throw_residual = (throw_residual || vp8dx_bool_error(xd->current_bc)); #if CONFIG_ERROR_CONCEALMENT if (pbi->ec_active && (mb_idx >= pbi->mvs_corrupt_from_mb || throw_residual)) { /* MB with corrupt residuals or corrupt mode/motion vectors. * Better to use the predictor as reconstruction. */ pbi->frame_corrupt_residual = 1; vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); vp8_conceal_corrupt_mb(xd); return; } #endif /* dequantization and idct */ if (mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; int b_mode = xd->mode_info_context->bmi[i].as_mode; RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict) (b, b_mode, b->predictor); if (xd->eobs[i] > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add) (b->qcoeff[0] * b->dequant[0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } else if (mode == SPLITMV) { DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); } else { BLOCKD *b = &xd->block[24]; DEQUANT_INVOKE(&pbi->dequant, block)(b); /* do 2nd order transform on the dc block */ if (xd->eobs[24] > 1) { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff); } DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block) (xd->qcoeff+16*16, xd->block[16].dequant, xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs+16); } static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp8_read_bit(bc)) { ret_val = vp8_read_literal(bc, 4); if (vp8_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include FILE *vpxlog = 0; #endif static void decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd) { int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; /* reset above block coeffs */ xd->above_context = pc->above_context; xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values * that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; #if CONFIG_ERROR_CONCEALMENT { int corrupt_residual = (!pbi->independent_partitions && pbi->frame_corrupt_residual) || vp8dx_bool_error(xd->current_bc); if (pbi->ec_active && xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME && corrupt_residual) { /* We have an intra block with corrupt coefficients, better to * conceal with an inter block. Interpolate MVs from neighboring * MBs. * * Note that for the first mb with corrupt residual in a frame, * we might not discover that before decoding the residual. That * happens after this check, and therefore no inter concealment * will be done. */ vp8_interpolate_motion(xd, mb_row, mb_col, pc->mb_rows, pc->mb_cols, pc->mode_info_stride); } } #endif xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); /* Select the appropriate reference frame for this MB */ if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { /* propagate errors from reference frames */ xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted; } decode_macroblock(pbi, xd, mb_row * pc->mb_cols + mb_col); /* check if the boolean decoder has suffered an error */ xd->corrupted |= vp8dx_bool_error(xd->current_bc); recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; } /* adjust to the next row of mbs */ vp8_extend_mb_row( &pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 ); ++xd->mode_info_context; /* skip prediction column */ } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static void setup_token_decoder_partition_input(VP8D_COMP *pbi) { vp8_reader *bool_decoder = &pbi->bc2; int part_idx = 1; int num_token_partitions; TOKEN_PARTITION multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2); if (!vp8dx_bool_error(&pbi->bc)) pbi->common.multi_token_partition = multi_token_partition; num_token_partitions = 1 << pbi->common.multi_token_partition; if (num_token_partitions + 1 > pbi->num_partitions) vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "Partitions missing"); assert(vp8dx_bool_error(&pbi->bc) || multi_token_partition == pbi->common.multi_token_partition); if (pbi->num_partitions > 2) { CHECK_MEM_ERROR(pbi->mbc, vpx_malloc((pbi->num_partitions - 1) * sizeof(vp8_reader))); bool_decoder = pbi->mbc; } for (; part_idx < pbi->num_partitions; ++part_idx) { if (vp8dx_start_decode(bool_decoder, pbi->partitions[part_idx], pbi->partition_sizes[part_idx])) vpx_internal_error(&pbi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", part_idx); bool_decoder++; } #if CONFIG_MULTITHREAD /* Clamp number of decoder threads */ if (pbi->decoding_thread_count > pbi->num_partitions - 1) pbi->decoding_thread_count = pbi->num_partitions - 1; #endif } static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return (start + len > start && start + len <= end); } static void setup_token_decoder(VP8D_COMP *pbi, const unsigned char *cx_data) { int num_part; int i; VP8_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; vp8_reader *bool_decoder; const unsigned char *partition; /* Parse number of token partitions to use */ const TOKEN_PARTITION multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2); /* Only update the multi_token_partition field if we are sure the value * is correct. */ if (!pbi->ec_active || !vp8dx_bool_error(&pbi->bc)) pc->multi_token_partition = multi_token_partition; num_part = 1 << pc->multi_token_partition; /* Set up pointers to the first partition */ partition = cx_data; bool_decoder = &pbi->bc2; if (num_part > 1) { CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader))); bool_decoder = pbi->mbc; partition += 3 * (num_part - 1); } for (i = 0; i < num_part; i++) { const unsigned char *partition_size_ptr = cx_data + i * 3; ptrdiff_t partition_size, bytes_left; bytes_left = user_data_end - partition; /* Calculate the length of this partition. The last partition * size is implicit. If the partition size can't be read, then * either use the remaining data in the buffer (for EC mode) * or throw an error. */ if (i < num_part - 1) { if (read_is_valid(partition_size_ptr, 3, user_data_end)) partition_size = read_partition_size(partition_size_ptr); else if (pbi->ec_active) partition_size = bytes_left; else vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated partition size data"); } else partition_size = bytes_left; /* Validate the calculated partition length. If the buffer * described by the partition can't be fully read, then restrict * it to the portion that can be (for EC mode) or throw an error. */ if (!read_is_valid(partition, partition_size, user_data_end)) { if (pbi->ec_active) partition_size = bytes_left; else vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", i + 1); } if (vp8dx_start_decode(bool_decoder, partition, partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", i + 1); /* Advance to the next partition */ partition += partition_size; bool_decoder++; } #if CONFIG_MULTITHREAD /* Clamp number of decoder threads */ if (pbi->decoding_thread_count > num_part - 1) pbi->decoding_thread_count = num_part - 1; #endif } static void stop_token_decoder(VP8D_COMP *pbi) { VP8_COMMON *pc = &pbi->common; if (pc->multi_token_partition != ONE_PARTITION) { vpx_free(pbi->mbc); pbi->mbc = NULL; } } static void init_frame(VP8D_COMP *pbi) { VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; if (pc->frame_type == KEY_FRAME) { /* Various keyframe initializations */ vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_init_mbmode_probs(pc); vp8_default_coef_probs(pc); vp8_kf_default_bmode_probs(pc->kf_bmode_prob); /* reset the segment feature data to 0 with delta coding (Default state). */ vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); xd->mb_segement_abs_delta = SEGMENT_DELTADATA; /* reset the mode ref deltasa for loop filter */ vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); /* All buffers are implicitly updated on key frames. */ pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; /* Note that Golden and Altref modes cannot be used on a key frame so * ref_frame_sign_bias[] is undefined and meaningless */ pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; } else { if (!pc->use_bilinear_mc_filter) pc->mcomp_filter_type = SIXTAP; else pc->mcomp_filter_type = BILINEAR; /* To enable choice of different interploation filters */ if (pc->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); } if (pbi->decoded_key_frame && pbi->ec_enabled && !pbi->ec_active) pbi->ec_active = 1; } xd->left_context = &pc->left_context; xd->mode_info_context = pc->mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; /* init without corruption */ xd->fullpixel_mask = 0xffffffff; if(pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; } int vp8_decode_frame(VP8D_COMP *pbi) { vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes; int mb_row; int i, j, k, l; const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; int corrupt_tokens = 0; int prev_independent_partitions = pbi->independent_partitions; if (pbi->input_partition) { data = pbi->partitions[0]; data_end = data + pbi->partition_sizes[0]; } /* start with no corruption of current frame */ xd->corrupted = 0; pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { if (pbi->ec_active) { /* Declare the missing frame as an inter frame since it will be handled as an inter frame when we have estimated its motion vectors. */ pc->frame_type = INTER_FRAME; pc->version = 0; pc->show_frame = 1; first_partition_length_in_bytes = 0; } else { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } } else { pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; if (!pbi->ec_active && (data + first_partition_length_in_bytes > data_end || data + first_partition_length_in_bytes < data)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp8_setup_version(pc); if (pc->frame_type == KEY_FRAME) { const int Width = pc->Width; const int Height = pc->Height; /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (!pbi->ec_active || data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (!pbi->ec_active || data + 6 < data_end) { pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; pc->horiz_scale = data[4] >> 6; pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; pc->vert_scale = data[6] >> 6; } data += 7; if (Width != pc->Width || Height != pc->Height) { int prev_mb_rows = pc->mb_rows; if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); #if CONFIG_ERROR_CONCEALMENT pbi->overlaps = NULL; if (pbi->ec_enabled) { if (vp8_alloc_overlap_lists(pbi)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate overlap lists " "for error concealment"); } #endif #if CONFIG_MULTITHREAD if (pbi->b_multithreaded_rd) vp8mt_alloc_temp_buffers(pbi, pc->Width, prev_mb_rows); #endif } } } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi); if (vp8dx_start_decode(bc, data, data_end - data)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); if (pc->frame_type == KEY_FRAME) { pc->clr_type = (YUV_TYPE)vp8_read_bit(bc); pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); } /* Is segmentation enabled */ xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); if (xd->segmentation_enabled) { /* Signal whether or not the segmentation map is being explicitly updated this frame. */ xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); if (xd->update_mb_segmentation_data) { xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); /* For each segmentation feature (Quant and loop filter level) */ for (i = 0; i < MB_LVL_MAX; i++) { for (j = 0; j < MAX_MB_SEGMENTS; j++) { /* Frame level data */ if (vp8_read_bit(bc)) { xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); if (vp8_read_bit(bc)) xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; } else xd->segment_feature_data[i][j] = 0; } } } if (xd->update_mb_segmentation_map) { /* Which macro block level features are enabled */ vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); /* Read the probs used to decode the segment id for each macro block. */ for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { /* If not explicitly set value is defaulted to 255 by memset above */ if (vp8_read_bit(bc)) xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } } /* Read the loop filter level and type */ pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc); pc->filter_level = vp8_read_literal(bc, 6); pc->sharpness_level = vp8_read_literal(bc, 3); /* Read in loop filter deltas applied at the MB level based on mode or ref frame. */ xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_update) { /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) /* Apply sign */ xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { /*sign = vp8_read_bit( bc );*/ xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) /* Apply sign */ xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } if (pbi->input_partition) { setup_token_decoder_partition_input(pbi); } else { setup_token_decoder(pbi, data + first_partition_length_in_bytes); } xd->current_bc = &pbi->bc2; /* Read the default quantizers. */ { int Q, q_update; Q = vp8_read_literal(bc, 7); /* AC 1st order Q = default */ pc->base_qindex = Q; q_update = 0; pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); if (q_update) vp8cx_init_de_quantizer(pbi); /* MB level dequantizer setup */ mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type != KEY_FRAME) { /* Should the GF or ARF be updated from the current frame */ pc->refresh_golden_frame = vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't refresh golden if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_golden_frame = 0; #endif pc->refresh_alt_ref_frame = vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we shouldn't refresh altref if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_alt_ref_frame = 0; #endif /* Buffer to buffer copy flags. */ pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); } pc->refresh_entropy_probs = vp8_read_bit(bc); if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); #if CONFIG_ERROR_CONCEALMENT /* Assume we should refresh the last frame if the bit is missing */ xd->corrupted |= vp8dx_bool_error(bc); if (pbi->ec_active && xd->corrupted) pc->refresh_last_frame = 1; #endif if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } { pbi->independent_partitions = 1; /* read coef probability tree */ for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) for (l = 0; l < ENTROPY_NODES; l++) { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l])) { *p = (vp8_prob)vp8_read_literal(bc, 8); } if (k > 0 && *p != pc->fc.coef_probs[i][j][k-1][l]) pbi->independent_partitions = 0; } } vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); /* set up frame new frame for intra coded blocks */ #if CONFIG_MULTITHREAD if (!(pbi->b_multithreaded_rd) || pc->multi_token_partition == ONE_PARTITION || !(pc->filter_level)) #endif vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp8_setup_block_dptrs(xd); vp8_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp8_read_bit(bc); vp8_decode_mode_mvs(pbi); #if CONFIG_ERROR_CONCEALMENT if (pbi->ec_active && pbi->mvs_corrupt_from_mb < (unsigned int)pc->mb_cols * pc->mb_rows) { /* Motion vectors are missing in this frame. We will try to estimate * them and then continue decoding the frame as usual */ vp8_estimate_missing_mvs(pbi); } #endif vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); #if CONFIG_MULTITHREAD if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION) { int i; pbi->frame_corrupt_residual = 0; vp8mt_decode_mb_rows(pbi, xd); vp8_yv12_extend_frame_borders_ptr(&pc->yv12_fb[pc->new_fb_idx]); /*cm->frame_to_show);*/ for (i = 0; i < pbi->decoding_thread_count; ++i) corrupt_tokens |= pbi->mb_row_di[i].mbd.corrupted; } else #endif { int ibc = 0; int num_part = 1 << pc->multi_token_partition; pbi->frame_corrupt_residual = 0; /* Decode the individual macro block */ for (mb_row = 0; mb_row < pc->mb_rows; mb_row++) { if (num_part > 1) { xd->current_bc = & pbi->mbc[ibc]; ibc++; if (ibc == num_part) ibc = 0; } decode_mb_row(pbi, pc, mb_row, xd); } corrupt_tokens |= xd->corrupted; } stop_token_decoder(pbi); /* Collect information about decoder corruption. */ /* 1. Check first boolean decoder for errors. */ pc->yv12_fb[pc->new_fb_idx].corrupted = vp8dx_bool_error(bc); /* 2. Check the macroblock information */ pc->yv12_fb[pc->new_fb_idx].corrupted |= corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } /* vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); */ /* If this was a kf or Gf note the Q used */ if ((pc->frame_type == KEY_FRAME) || pc->refresh_golden_frame || pc->refresh_alt_ref_frame) { pc->last_kf_gf_q = pc->base_qindex; } if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); pbi->independent_partitions = prev_independent_partitions; } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif return 0; }